Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-08-20
Vol. 19, No. 8 has been published online!
2024-07-22
Vol. 19, No. 7 has been published online!
2024-06-20
Volume 19, No. 4 has been indexed by Scopus.
Home
>
Published Issues
>
2020
>
Volume 15, No. 10, October 2020
>
Experimental Study of Component-Differentially-Challenged XOR PUFs as Security Primitives for Internet-of-Things
Khalid T. Mursi
1,2
and Yu Zhuang
1
1. Department of Computer Science, Texas Tech University, Lubbock, Texas, USA
2. College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
Abstract
—Security is critically important for Internet-of-Things, but existing cryptographic protocols are not lightweight enough for resource-constrained IoT devices. Implementable with simplistic circuits and operable with shallow power, physical unclonable functions (PUFs) leverage small but unavoidable physical variations of the circuit to produce unique responses for individual PUF instances, rendering themselves good candidates as security primitives for IoT devices. Component-differentially-challenged XOR PUFs (CDC XPUFs) are among the PUFs which were shown to be highly secure to machine learning modeling attacks. However, no study of implementation and experimentation has been carried out. In this paper, we report our implementations of CDC XPUFs on FPGAs and experimental studies of the essential properties of CDC XPUFs.
Index Terms
—Resource-constrained IoT, IoT security, XOR PUF, FPGA
Cite: Khalid T. Mursi and Yu Zhuang, "Experimental Study of Component-Differentially-Challenged XOR PUFs as Security Primitives for Internet-of-Things," Journal of Communications vol. 15, no. 10, pp. 714-721, October 2020. Doi: 10.12720/jcm.15.10.714-721
Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
1-D0002
PREVIOUS PAPER
First page
NEXT PAPER
The Impacts of DNS Protocol Security Weaknesses