Home
Author Guide
Editor Guide
Reviewer Guide
Special Issues
Special Issue Introduction
Special Issues List
Topics
Published Issues
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2010
2009
2008
2007
2006
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access Policy
Publication Ethics
Digital Preservation Policy
Editorial Process
Subscription
Contact Us
General Information
ISSN:
1796-2021 (Online); 2374-4367 (Print)
Abbreviated Title:
J. Commun.
Frequency:
Monthly
DOI:
10.12720/jcm
Abstracting/Indexing:
Scopus
;
DBLP
;
CrossRef
,
EBSCO
,
Google Scholar
;
CNKI,
etc.
E-mail questions
or comments to
editor@jocm.us
Acceptance Rate:
27%
APC:
800 USD
Average Days to Accept:
88 days
3.4
2023
CiteScore
51st percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Maode Ma
College of Engineering, Qatar University, Doha, Qatar
I'm very happy and honored to take on the position of editor-in-chief of JCM, which is a high-quality journal with potential and I'll try my every effort to bring JCM to a next level...
[Read More]
What's New
2024-10-16
Vol. 19, No. 10 has been published online!
2024-08-20
Vol. 19, No. 8 has been published online!
2024-07-22
Vol. 19, No. 7 has been published online!
Home
>
Published Issues
>
2018
>
Volume 13, No. 8, August 2018
>
Contrasting Web Robot and Human Behaviors with Network Models
Kyle Brown and Derek Doran
Department of Computer Science and Engineering, Kno.e.sis Research Center, Wright State University, Dayton, OH, USA
Abstract
—The web graph is a commonly-used network representation of the hyperlink structure of a website. A network of similar structure to the web graph, which we call the session graph has properties that reflect the browsing habits of the agents in the web server logs. In this paper, we apply session graphs to compare the activity of humans against web robots or crawlers. Understanding these properties will enable us to improve models of HTTP traffic, which can be used to predict and generate realistic traffic for testing and improving web server efficiency, as well as devising new caching algorithms. We apply large-scale network properties, such as the connectivity and degree distribution of human and Web robot session graphs in order to identify characteristics of the traffic which would be useful for modeling web traffic and improving cache performance. We find that the empirical degree distributions of session graphs for human and robot requests on one Web server are best fit by different theoretical distributions, indicating at a difference in the processes which generate the traffic.
Index Terms
—Web robot, HTTP, Web graph, session graph
Cite: Kyle Brown and Derek Doran, " Contrasting Web Robot and Human Behaviors with Network Models," Journal of Communications, vol. 13, no. 8, pp. 473-481, 2018. Doi: 10.12720/jcm.13.8.473-481.
10-SDM18-104
PREVIOUS PAPER
Investigation on Tradeoff between Hardware Noise and Outage Performance in Cooperative NOMA
NEXT PAPER
Last page