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Abstract—To solve the problem that the weak signal is difficult 

to detect under a strong background noise, a detection method 

based on lifting wavelet threshold denoising and multi-layer 

autocorrelation method is proposed. Firstly, the original signal 

is denoised by lifting wavelet threshold to improve the signal-

to-noise ratio. Secondly, the multi-layer autocorrelation function 

of the noise-reconstructed signal is calculated, and its time-

frequency signature are analyzed. Finally, the combined 

algorithm is used on weak signals with low signal-to-noise ratio 

to extract weak signal features. Simulation and experimental 

results demonstrate that the proposed method can detect weak 

signal features buried in the heavy noise effectively. The 

proposed method is compared with the traditional noise 

reduction method, which reflects its effectiveness and 

superiority. 
 
Index Terms—Weak signal detection, lifting wavelet, threshold 

function, multi-layer autocorrelation 

 

I. INTRODUCTION 

The detection of weak signals in the strong background 

noise is a research hotspot in the field of signal 

processing, as well as an important problem in fault 

diagnosis, sonar detection, communication transmission, 

biomedicine, and other engineering areas. The weak 

signal has a low signal-to-noise ratio (SNR), which is due 

to the low amplitude of the feature signal itself, in 

addition, strong noise interference will also make the 

SNR lower. The core of weak signal detection is to apply 

various signal processing methods to enhance the SNR of 

the target signal. 

Wavelet transform has received much attention from 

scholars by virtue of its variable scale and adaptive 

matching features [1]. For the shortcomings of the 

traditional wavelet algorithm, which is computationally 

complex and time-consuming, Sweldens et al. [2] 

proposed lifting wavelet threshold denoising based on 

wavelet transform. The lifting wavelet is detached from 

the dependence of the classical wavelet on the Fourier 

transform, and the noise reduction performance is further 

optimized. It also can be completely reconstructed, which 

is more rapid and effective. Many scholars have done a 
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series of improvement studies on lifting wavelets, and 

successfully applied them to weak signal detection, fault 

diagnosis, and other fields [3]-[5]. However, the 

denoising effect of both classical wavelet and lifting 

wavelet depends heavily on the characteristics of the 

signal itself and the parameters of the denoising 

algorithm. For signals with low SNR, wavelet threshold 

method or lifting wavelet threshold method often needs to 

be combined with other methods to achieve the optimal 

denoising effect. In signal processing, the autocorrelation 

function can describe the dependence between the values 

of the signal at different moments and is an effective 

mathematical tool to find repetitive patterns or to identify 

vanishing fundamental frequencies implicit in the 

harmonic frequencies of the signal. The frequency 

components of the signals in engineering are often 

extremely complex. When the noise interference is weak, 

a single autocorrelation process can obtain a high SNR, 

while when the noise interference is strong, the degree of 

improvement is often very limited, so it is necessary to 

carry out multi-layer autocorrelation processes. Multi-

layer autocorrelation can remove random nonperiodic 

Gaussian white noise while preserving the effective 

periodic signal in the mixed signal. Theoretically, the 

more times the autocorrelation is done, the higher the 

SNR obtained, so that the weak signals that are buried in 

the noise can be detected. Therefore, this method is also 

widely utilized in the denoising step of weak signal 

detection [6]. 

Based on the study of traditional wavelet threshold 

denoising, this paper proposes a novel method for 

detecting weak signals under strong noise background by 

introducing lifting wavelet threshold denoising method 

into the process of weak signal noise reduction and 

combining it with multi-layer autocorrelation, and 

verifies the effectiveness of the method by using two 

engineering application examples. 

The rest of the paper is organized as follows. Section II 

introduces the basic theory of lifting wavelet thresholding 

denoising and multi-layer autocorrelation, and proposes 

an improved wavelet threshold function, which provides 

theoretical support for the subsequent noise reduction 

process of the signal. Section III describes the procedure 

of the whole detection algorithm. Section IV and Section 
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V use one simulation example and two experimental 

examples to verify the effectiveness of the proposed 

method, respectively. Finally, conclusions are drawn in 

Section VI. 

II. LIFTING WAVELET THRESHOLD DENOISING 

A. The Principle of Lifting Wavelet Transform 

Wavelet analysis has a strong de-correlation, resulting 

in the energy of the effective signal being concentrated in 

a small number of larger wavelet coefficients in the 

wavelet domain, while the corresponding wavelet 

coefficients of the noise are small, and the corresponding 

coefficients of the noise still satisfy the Gaussian white 

noise distribution. Based on this characteristic, the time 

domain signal or spatial domain signal can be converted 

into the wavelet domain by lifting wavelet decomposition. 

The noise reduction process can be achieved by setting an 

appropriate threshold value to filter out the noisy wavelet 

coefficients and subsequently reconstructing the 

threshold-filtered wavelet coefficients. The lifting scheme 

process includes three stages of decomposition, 

prediction, and update [7]. 

B. Parameter Selection 

1) The choice of wavelet basis functions 

In the wavelet transform process, the choice of wavelet 

basis function directly determines the noise reduction 

effect. At present, dbN and symN series wavelets are 

more widely used, these two series wavelets have 

superior regularity and better sensitivity for the detection 

of signal mutation points. To compare the performance of 

various wavelets, a simulated sinusoidal signal 

y=sin(2π·20t) with a SNR of -10dB is constructed. The 

number of decomposition layers is set to 3. The threshold 

function selects soft threshold. The SNR of reconstructed 

signal, root mean square error (RMSE) and correlation 

coefficient of original signal are used as evaluation 

indexes. The SNR, RMSE and correlation coefficient ρ 

are calculated as follows [8]: 
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where N is the number of sampling points of the signal, 

S(n) is the original signal sequence, ( )S n is the 

reconstructed signal sequence after lifting denoising. 

The SNR, RMSE and correlation coefficient of the 

wavelet reconstruction signal is shown in Fig. 1. The 

horizontal coordinates indicate the type of wavelet, 

including both dbN and symN series. The results show 

that when db5 wavelet basis function is selected, the 

reconstructed signal has the highest output SNR, the 

highest correlation coefficient with the source signal, and 

the lowest RMSE. This demonstrates that the db5 wavelet 

has the best noise reduction and the lowest distortion. 

Therefore, without special instructions, db5 wavelets are 

used in this paper. 

 
(a) 

 
(b) 

 

(c) 

Fig. 1. Denoising effects of various types of wavelets. (a) SNR; (b) 
RMSE; (c) Correlation coefficient. 

2) Selection of the threshold value 

According to the reference [9], among the generic 

threshold estimation, extreme value threshold estimation, 

unbiased likelihood estimation, and heuristic estimation, 

the generic threshold estimation has a better denoising 

effect. The expressions are as follows: 

 = 2lnN   (4) 
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where N is the signal length and σ is the standard 

deviation of Gaussian white noise, which is estimated as 

shown in (5). 

 1( ( ) ) / 0.6745med d k   (5) 

where, d1(k) is the first wavelet coefficient sequence after 

lifting wavelet decomposition of the original signal, and 

med means taking the median calculation. 

3) Selection of the threshold function 

The basic principle of threshold function is to filter the 

wavelet coefficients that contain noise coefficients, and 

retain or shrink the large wavelet coefficients. Both the 

smoothness and distortion of the reconstructed signal 

depend on the threshold function. Therefore, the selection 

of the threshold function is one of the key procedures to 

lifting wavelet threshold denoising. Traditional 

thresholding functions include hard and soft thresholding 

functions. In this paper, based on the characteristics of 

these two traditional threshold functions, an improved 

threshold function is proposed with the following 

expressions: 
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where μ is the adjustment factor of the improved 

threshold function, which takes values in the range [0, 1]. 

When μ tends to 0, the improved threshold function is 

close to the soft threshold function, and when μ tends to 1, 

it approximates the hard threshold function. Taking the 

threshold values λ=1, μ=0.5, the function schematic of the 

three methods is shown in Fig. 2. 

 
Fig. 2. Schematic diagram of the threshold function. 

It can be obtained that in the hard thresholding 

function, the reconstructed signal may produce 

oscillations. Although the wavelet coefficients estimated 

by the soft-threshold method have better continuity, when 

the absolute value of the wavelet coefficients is higher 

than the threshold value, it leads to deviations in λ and μ, 

which seriously affects the approximation of the 

reconstructed signal to the real signal [10]. Compared 

with the two traditional ones, along with the change of 

adjustment factor μ, the improved thresholding function 

considers the advantages of both soft and hard 

thresholding functions, and overcomes the defects of both, 

so that the reconstructed signal is smoother and the useful 

information of the signal can be better retained. 

Still using the sinusoidal signal y=sin(2π·20t) with a 

SNR of -10dB as an example. The number of 

decomposition layers is still set to 3, and the wavelet 

basis function is selected as db5. The SNR and the RMSE 

are used to judge the noise reduction performance of 

different threshold functions. Table I shows the denoising 

results of different threshold functions. By using the 

improved threshold function, the highest SNR and 

correlation coefficient are obtained, and the RMSE is the 

lowest. This demonstrates that the proposed improved 

threshold function has the most superior denoising effect.  

TABLE I: THE COMPARISON OF DENOISING EFFECT OF DIFFERENT 

THRESHOLD FUNCTIONS 

threshold function SNR (dB) RMSE 
Correlation 

Coefficient 

Hard threshold -2.89 0.986 0.645 

Soft threshold -1.19 0.812 0.718 

Improved threshold -0.91 0.784 0.736 

C. Multi-layer Autocorrelation 

The denoising effect and distortion degree of wavelet 

threshold denoising is influenced by many factors such as 

the number of decomposition layers, wavelet basis 

function, and threshold function. It is impossible to 

combine the denoising effect and the distortion degree of 

the reconstructed signal when the SNR is low, which 

leads to the limitation of its application in the field of 

weak signal detection. In contrast, time-delayed multi-

layer autocorrelation does not lose useful signal 

components [11], and combining the lifting wavelet 

threshold denoising method with multi-layer 

autocorrelation can improve the accuracy of 

autocorrelation calculation while reducing the distortion 

of reconstructed signals, thus expanding the SNR 

detection range. 

By the characteristics of the autocorrelation function, 

the autocorrelation function of a periodic signal still 

behaves as a periodic signal, and the period remains the 

same as the original signal. The traditional 

autocorrelation detection method is based on the 

uncorrelated characteristics between noise and signal and 

noise and noise, and the autocorrelation operation is 

performed between the original signal and its signal after 

delay τ. Multi-layer autocorrelation treats the 

autocorrelation function of the original signal as a new 

periodic signal and repeats the autocorrelation operation, 

and the higher the number of autocorrelations, the better 

the improvement of SNR [12]. 

Assume that the signal obtained after the lifting 

wavelet threshold denoising process is: 

 ( ) ( ) ( )Y t = s t +q t  (7) 

where s(t) is the reconstructed target signal and q(t) is the 

reconstructed noise signal. An autocorrelation is done for 

the reconstructed signal and is expressed as follows: 

 ( ) [ ( ) ( )] ( ) ( ) ( )YY ss sq qqR t E Y t Y t R R R         (8) 
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where Rss(τ) is the autocorrelation function of the signal; 

Rsq(τ) means the cross-correlation function of signal and 

noise and Rqq(τ) refers to the autocorrelation function of 

the noise, respectively, as follows: 
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It is worth noting that if q(t) is standard Gaussian white 

noise, then Rsq(τ)=0, and its autocorrelation function is 0 

for all delayed quantities except at τ=0. 

To further analyze the effect of multi-layer 

autocorrelation, proceed to construct the sinusoidal signal 

y=sin(2π·20t) by varying its SNR linearly from -30dB to 

10dB. Firstly, the signal is pre-processed by using the 

previously mentioned lifting wavelet threshold denoising. 

Then, the processed signal is subjected to different times 

of autocorrelation operations. The correlation coefficient 

of the final processing result with respect to the source 

signal can be calculated. The results are shown in Table II, 

and the data plot are shown in Fig. 3. The simulation 

results show that the denoising performance of the 

autocorrelation method improves with the increase of the 

number of autocorrelation calculations. Especially under 

the condition of low SNR. the advantage of 

autocorrelation with more layer is more obvious.  

In summary, when the effective signal of mixed 

Gaussian white noise is calculated by autocorrelation, the 

noise reduction of the effective signal and the extraction 

of periodic signal features can be achieved. Theoretically, 

when the signal period T is infinite, both Rsq(τ) and Rqq(τ) 

converge to 0. However, in practical engineering, T 

cannot be infinite, so both will always exist and the 

denoising situation is not ideal. If the autocorrelation 

function a of the signal is treated as a new periodic signal 

and multiple autocorrelation operations are performed, 

although it will bring about changes in signal amplitude 

and phase, it will not change the frequency, and the 

improvement in SNR will be improved more and more 

with the number of autocorrelation operations, so multi-

layer autocorrelation can be used to detect the weak 

signal drowned in noise. 

TABLE II: THE TABLE OF CORRELATION COEFFICIENT WITH SOURCE SIGNAL UNDER AUTOCORRELATION WITH DIFFERENT LAYERS 

SNR (dB) -30 -25 -20 -15 -10 -5 0 5 10 

One-time 0.002 0.119 0.384 0.648 0.779 0.842 0.865 0.904 0.947 

Two-time 0.139 0.217 0.533 0.661 0.748 0.903 0.924 0.962 0.972 

Three-time 0.212 0.325 0.661 0.703 0.861 0.955 0.972 0.972 0.973 

Four-time 0.383 0.519 0.704 0.862 0.915 0.957 0.972 0.973 0.968 

 

 
Fig. 3. Correlation coefficient with source signal under autocorrelation 

with different layers. 

III. ALGORITHM PROCESS 

In this paper, we propose a weak signal detection 

method based on improved lifting wavelet threshold 

denoising and multi-layer autocorrelation, the specific 

process of the method is as follows: 

 Select the appropriate wavelet basis function, 

threshold value λ and decomposition layers to perform 

the lifting wavelet transform on the original signal 

and obtain the wavelet coefficients wj,k. 

 Apply the improved threshold function to find the 

optimal adjustment factor and threshold quantization 

to process the wavelet coefficients of each layer to 

obtain the new wavelet coefficients. 

 The new wavelet coefficients are inverse transformed 

to obtain the reconstructed signal and complete the 

noise reduction of the original signal. 

 Inverse lifting wavelet transform is done for the new 

wavelet coefficients to obtain the reconstructed signal 

and complete the noise reduction of the original signal. 

 Perform envelope multi-layer autocorrelation 

operation on wavelet reconstructed signal, combine 

with spectrum analysis to complete the detection of 

weak single frequency signal under strong noise 

background. 

IV. SIMULATION ANALYSIS 

To verify the effectiveness of the proposed method, the 

target signal ( ) 0.1sin(2 100 )s t t  is selected, the 

sampling frequency is set to 12k Hz, the sampling time is 

1s, and the Gaussian white noise is mixed to an initial 

signal-to-noise ratio of -30dB. After constructing the 
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simulated signal, the time domain waveform is shown in 

Fig. 4(a), the frequency spectrum is shown in Fig. 4(b), 

and the STFT time-frequency diagram is shown in Fig. 

4(c). Obviously, the noise interference is very serious, 

and the SNR is low, so the feature signal is drowned in 

the severe background noise. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Time-frequency diagram of simulated signal. (a) Time-domain 

waveform; (b) Frequency spectrum; (c) STFT time-frequency diagram. 

Different values of μ in the threshold function are 

taken to compare the RMSE of the reconstructed signal 

with that of the original signal. The parameter μ 

corresponding to the smallest RMSE value is the best. Fig. 

5 shows the trend of RMSE with μ, and μ=0.05 is the best 

value. The original signal is decomposed and 

reconstructed by 3-layer wavelet decomposition, and the 

time-frequency diagram of the reconstructed signal using 

lifting wavelet threshold denoising are shown in Fig. 6. 

After lifting wavelet denoising, the frequency of the 

characteristic signal appears in the spectrum. Four 

distinct energy bands appear in the STFT time-frequency 

diagram. This illustrates that the proposed method 

preserves the information of multiple frequency bands, 

and the distortion level of the signal is suppressed. 

However, the noise interference component still exists. 

No useful information is observed at the characteristic 

frequency in the STFT time-frequency diagram. The 

precise detection of weak signals has not yet been 

achieved. 

 
Fig. 5. The trend of RMSE with parameter μ. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Time-frequency diagram of reconstructed signal. (a) Time-
domain waveform; (b) Frequency spectrum. ;(c) STFT time-frequency 

diagram. 

When the signal is under a strong noise background, 

Fig. 6 reveals that if only the proposed lifting wavelet 

threshold noise reduction method is used, it is not enough 

to accomplish the precise detection of weak signal. 

Therefore, the autocorrelation process is performed on 

the reconstructed signal obtained after the lifting wavelet 

threshold denoising process, and the obtained one-time 

autocorrelation and four-time autocorrelation frequency 

spectrums are shown in Fig. 7 and Fig. 8, respectively. 

Fig. 9 shows the STFT time-frequency diagram of four-

time autocorrelation of reconstructed simulation signal. 

From the comparison effect, the higher the number of 

autocorrelations, the more obvious the detection effect is. 

In addition, comparing with Fig. 6(c), Fig. 9 shows a 

clear concentration of energy at the characteristic 

frequency of 100 Hz, and there is no interference around. 
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From above simulation analysis, the results show that the 

proposed method can improve the SNR of single-

frequency weak signals and obtain obvious detection 

effects. 

 
Fig. 7. One-time autocorrelation frequency spectrum of reconstructed 
simulation signal. 

 
Fig. 8. Four-time autocorrelation frequency spectrum of reconstructed 
simulation signal. 

 

Fig. 9. STFT time-frequency diagram of four-time autocorrelation of 

reconstructed simulation signal. 

V. EXPERIMENT VERIFICATION 

A. Rolling Bearing Fault Feature Extraction 

Bearing vibration fault signals are susceptible to 

contamination by various noises, especially at the early 

fault occurrence when the characteristic information is 

weak [13]. To verify the practicality of the proposed 

method, the fault signals from the rolling bearing 

database of Case Western Reserve University in the 

United States are utilized. The data of the outer race 

faults numbered 130 are chosen for analysis. The 

sampling frequency is 12 kHz, and take the first 8192 

points of the experimental data for analysis and add -10 

dB of Gaussian white noise to the original signal. The 

rotate speed is 1797 rpm and the fault frequency of the 

bearing is 107.36 Hz. The time-domain waveform and 

envelope spectrum of the signal are shown in Fig. 10. 

 
(a) 

 
(b) 

Fig. 10. Time domain waveform and envelope spectrum of bearing 
vibration signal. (a) Time-domain waveform; (b) Envelope spectrum. 

As can be observed from Fig. 10, the time domain 

waveform of the rolling bearing outer ring vibration 

signal after noise addition is complex. There is severe 

noise interference in the envelope spectrum, and the fault 

characteristic frequencies are completely submerged. The 

signal is denoised by using the lifting wavelet to obtain 

the reconstructed signal. By choosing different 

parameters of the improved threshold function, the 

RMSE of the reconstructed signal and the original signal 

are compared, and the best value of the parameter μ is 

obtained when the RMSE value is the smallest. As can be 

seen from Fig. 11, the best value is 1. The time-domain 

waveform and envelope spectrum of the reconstructed 

signal are shown in Fig. 12. 

 
Fig. 11. The trend of RMSE with parameter μ. 

Comparing Fig. 10(b) and Fig. 12(b), it can be found 

that the reconstructed signal after lifting wavelet achieves 

a fine noise reduction effect, less obvious characteristic 

frequency in the envelope spectrum can be observed, but 

the spectrum is still very complicated. Using the multi-

layer autocorrelation method for subsequent processing, 

the envelope autocorrelation function of the reconstructed 

signal is solved. After the reconstructed signal is 

autocorrelated once and autocorrelated four times, their 

frequency spectrums are shown in Fig. 13 and Fig. 14, 

respectively. Besides, Fig. 15 shows the STFT time-

frequency diagram of four-time autocorrelation of 

reconstructed simulation signal. 
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(a) 

 
(b) 

Fig. 12. Time domain waveform and envelope spectrum of 
reconstructed vibration signal. (a) Time-domain waveform; (b) 

Envelope spectrum. 

 
Fig. 13. One-time autocorrelation frequency spectrum of reconstructed 

vibration signal. 

 
Fig. 14. Four-time autocorrelation frequency spectrum of reconstructed 

vibration signal. 

 

Fig. 15. STFT time-frequency diagram of four-time autocorrelation of 
reconstructed vibration signal. 

As can be seen from Fig. 13, after one-time 

autocorrelation process, the frequency spectrum of the 

outer ring reconstructed signal can be observed at the 

fault feature frequency fo, but its multiples cannot be 

obtained, and the noise interference is still numerous. 

After four-time autocorrelation processes, Fig. 14 and Fig. 

15 clearly shows the fault frequency and its double 

frequency, with obvious components, which significantly 

reduce the influence of noise. Therefore, the proposed 

method in this article can accurately extract the fault 

characteristic frequency in the rolling bearing fault 

vibration signal under a strong noise background. 

B. Weak Electrical Signal Detection 

To further verify the generality of the method in this 

paper, a weak electrical signal provided by the research 

group is used for detection. The test system modulates 

and outputs the weak sinusoidal signal and converts it 

into a digital signal for analysis [14]. Fig. 16 shows a test 

system consisting of a signal generator (generating a sine 

wave), a weak signal amplification analog circuit board 

(amplifying the signal by modulation), a signal 

acquisition instrument (whose type is the Donghua 

DH5908N, with a maximum sampling frequency of 128 

kHz per channel and a minimum voltage resolution of 5 

µV), a shielded box and a PC. The sampling frequency is 

set to 128 kHz, the number of sampling points is 1274860, 

and the target signal frequency is 93 Hz. 

  
(a) (b) 

Fig. 16. The test system. (a) The overall test system; (b)The analog 
amplifier circuit board. 

 
(a) 

 
(b) 

Fig. 17. Time domain waveform and envelope spectrum of the original 
weak signal. (a) Time-domain waveform; (b) Envelope spectrum. 

A signal with a length of 16384 is randomly selected 

from the modulation signal for analysis. Fig. 17 shows 

the time-domain waveform and envelope spectrum of the 
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modulating signal. The traditional envelope demodulation 

method cannot extract the frequency of the target signal 

due to the noise interference and the weakness of the 

original signal itself. 

Like the previous section, firstly, by choosing different 

threshold function parameters μ, the RMSE variation 

curve of the reconstructed signal and the original signal 

with μ is obtained, and Fig. 18 shows the optimal μ is 0.6. 

Then, the original signal is processed using the lifting 

wavelet threshold denoising method with the optimal 

parameter, and the time domain waveform and envelope 

spectrum are shown in Fig. 19. 

 
Fig. 18. The trend of RMSE with parameter μ. 

 
(a) 

 
(b) 

Fig. 19. Time domain waveform and envelope spectrum of 

reconstructed weak signal (a) Time-domain waveform; (b) Envelope 

spectrum. 

From Fig 19(b), after the original modulated signal is 

processed by lifting wavelet threshold denoising, the 

frequency of the target signal can be extracted by using 

traditional envelope demodulation. However, the 

amplitude corresponding to the target frequency is not 

prominent and there is still serious noise interference. 

Therefore, relying only on lifting wavelet threshold 

denoising cannot achieve precise detection of the target 

signal frequency. At this point, the reconstructed signal is 

processed in combination with the multi-layer 

autocorrelation algorithm. The envelope autocorrelation 

function of the reconstructed signal is calculated, and its 

frequency spectrum is obtained. Comparing the frequency 

spectrum with only one-time autocorrelation process and 

four-time autocorrelation processes, the results are shown 

in Fig. 20 and Fig. 21, respectively. In addition, Fig. 22 

shows the STFT time-frequency diagram of four-time 

autocorrelation of reconstructed weak signal. 

 
Fig. 20. One-time autocorrelation frequency spectrum of reconstructed 

weak signal. 

 
Fig. 21. Four-time autocorrelation frequency spectrum of reconstructed 

weak signal. 

 

Fig. 22. STFT time-frequency diagram of four-time autocorrelation of 
reconstructed weak signal. 

Fig. 20 illustrates that the frequency of the target signal 

becomes more prominent after one-time autocorrelation 

process. However, there is interference from this high 

frequency modulation component in the frequency 

spectrum, and the noise in the frequency band range is 

not completely removed. Fig. 21 and Fig. 22 displays the 

results of four-time autocorrelation processes, the high-

frequency modulation components are effectively 

suppressed, the target detection frequency is extremely 

prominent, and there is almost no extra noise interference. 

In summary, the proposed method in this paper can 

achieve the precise detection of weak signals, and it is 

applicable to different engineering fields. 

VI. COMPARATIVE STUDY 

In order to further demonstrate the superiority of the 

proposed method, it is compared with the traditional 

singular value decomposition (SVD) denoising and 

narrow-band filtering method. The correlation coefficient 

with respect to the source signal was used as the criterion 
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for quantitative evaluation. For the simulation test, Case 1 

and Case 2, the correlation coefficients were obtained by 

the above three denoising algorithms. It should be noted 

that for Case 1, the source signal is the bearing vibration 

signal without any noise added. For Case 2, the source 

signal is the original sine wave before high-frequency 

modulation. The results obtained are shown in Table III, 

and the bar graph is shown in Fig. 23. 

TABLE III: THE TABLE OF CORRELATION COEFFICIENT WITH SOURCE 

SIGNAL UNDER DIFFERENT METHODS 

Method Simulation Case 1 Case2 

Proposed 0.647 0.527 0.486 

SVD 0.426 0.419 0.478 

Narrow-band filter 0.366 0.278 0.285 

 
Fig. 23. Comparison of denoising effects of different methods 

As can be seen from Table I and Fig. 5, in simulation 

case, the noise reduction performance of the proposed 

method is superior to the other two methods. This 

demonstrates that the proposed method is suitable for 

weak sinusoidal signal detection under low SNR 

conditions. In two experimental cases, the proposed 

method achieves a similar effect to SVD decomposition, 

but is still optimal overall. The performance of the 

algorithm is affected by the coupling of rotating parts and 

the interference thermal noise in the circuit board. 

However, combined with the above analysis, the 

detection accuracy of the proposed method can meet the 

requirements of related engineering applications. 

Compared with traditional methods, it has certain 

advantages. 

VII.   CONCLUSION 

In this article, the detection of weak signals based on 

lifting wavelet threshold denoising and multi-layer 

autocorrelation is investigated and some conclusions can 

be obtained as follows. 

 The proposed method combines lifting wavelet 

threshold denoising with multi-layer autocorrelation. 

It can effectively reduce the distortion of the 

reconstructed signal while improving the SNR and 

expanding the detection range for the precision 

detection of weak signals. 

 This article proposes a new improved threshold 

function, which overcomes the defects of traditional 

soft and hard threshold function. The improved 

threshold function has favorable adaptability, and 

facilitates the retention of target signal wavelet 

coefficients. Thus, the filtering effect has been 

improved.  

 Simulation and experimental analysis verify that the 

proposed method can effectively suppress Gaussian 

white noise, improve the SNR of the target signal, 

reduce the RMSE, as well as successfully detect the 

single-frequency weak electrical signal under a strong 

noise background. In addition, the proposed method 

can also accurately extract the rolling bearing fault 

signal frequency and its multiplier. The detection 

results are more prominent, indicating that the method 

has strong engineering practicality. 

 Compared with the traditional noise reduction 

methods, the method proposed in this paper has 

advantages, and has a certain wide range of 

applications. For multi engineering background, the 

anti-interference performance of this method still has 

room to improve. Moreover, the rounding error 

caused by multi-layer autocorrelation can also be used 

as the focus of future research. The solution of the 

rounding error can overcome the problem of unstable 

accuracy caused by the increase of autocorrelation 

times, and further improve the effect of this method. 
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