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Abstract—Accommodating the heterogeneous traffic demand 

among streams in the downlink MU-MIMO channel is among 

the challenges that affect the transmission efficiency since users 

in the channel do not always have the same traffic demand. 

Consequently, it is feasible to adjust the frame size to maximize 

the system throughput. The existing adaptive aggregation 

solutions do not consider the effects of different traffic 

scenarios and they use a Poison traffic model which is 

inadequate to represent the real network traffic scenarios, thus 

leading to suboptimal solutions. In this study, we propose some 

adaptive aggregation strategies which employ a novel dynamic 

adaptive aggregation policy selection algorithm in addressing 

the challenges of heterogenous traffic demand in the downlink 

MU-MIMO channel. Different traffic models are proposed to 

emulate  real world traffic scenarios in the network and to 

analyze the proposed aggregation polices with respect to various 

traffic models. Finally, through simulation, we demonstrate the 

performance of our adaptive algorithm over the baseline FIFO 

aggregation approach in terms of system throughput 

performance and channel utilization in achieving the optimal 

frame size of the system.  
 

Index Terms—Channel utilization, downlink MU-MIMO, 

heterogeneous traffic, frame aggregation, frame size 

optimization, transmission efficiency, WLAN. 

I.    INTRODUCTION 

As one of the most widely deployed wireless 

technologies, IEEE 802.11 Wireless Local Area Network 

(WLAN) has experienced tremendous growth to fulfill 

the promise of increasing IEEE 802.11 performance and 

effectively supporting more client devices on a network. 

The IEEE 802.11 working group introduced the IEEE 

802.11ac also known as Very High Throughput (VHT) 

[1],[2]. The IEEE 802.11ac standard improves the 

achieved throughput compared to previous standards by 

introducing improvements and new features in the PHY 

and MAC layers. The PHY layer has been enhanced by 

employing modulation and coding rates (256 QAM 5/6 

modulation), wider bandwidth channels (up to 160 MHz) 

and MU-MIMO channel with 4 spatial streams that 

enable higher spectral efficiency in allowing the AP to 

support simultaneous transmission to multiple users 

[1],[2].  
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On the other hand, the IEEE 802.11ac standard 
specifies the use of different frame aggregation 

mechanisms which was first introduced in IEEE 802.11n 
at the MAC layer level to increase channel utilization and 

MAC efficiency [3]. Channel Utilization is the ratio of 

the time that the channel is used for effective packet 

transmission over the total channel time used [3]. These 

aggregation schemes are, the A-MSDU only aggregation, 

the A-MPDU only aggregation, and a two-level 

aggregation that combines both A-MSDU and A-MPDU 

followed by a single acknowledgement frame, denoted 

Block Ack [4], [5]. IEEE 802.11ac includes many of the 

improvements that were first introduced by IEEE 802.11n 

and also uses these three aggregation schemes but enables 

larger frame sizes.   

Aggregation schemes also benefit from amortizing the 

control overhead over multiple packets. However, when 

traffic loads to individual STAs are different, it is 

possible to incur a wastage of space and time resources 

on downlink MU-MIMO channel transmission. The 

longer the aggregate frame is the better the channel 

utilization and the smaller the space channel time wastage. 

Space channel time is the consequence of heterogeneous 

traffic patterns and it occurs when data transmission 

duration among streams is variable while sharing the 

common transmission medium in the downlink Multiple 

User-Multiple Input Multiple Out (MU-MIMO) channel 

of WLAN [6].  

In this study, the efficiency of MAC layer aggregation 

is examined on the performance of downlink MU-MIMO 

channel in focusing on the challenges of heterogeneous 

traffic demand among spatial streams. MU-MIMO allows 

an Access Point (AP) to simultaneously transmit multiple 

data streams as Aggregated Multi-Protocol Data Units 

(A-MPDUs) to a group of multiple stations (STAs) over 

the same channel using MU-MIMO. In the non-MU-

MIMO system, frames are transmitted one after another, 

unlike the MU-MIMO channel which can transmit a 

group of streams simultaneously [7]. These 

communication technologies enable the IEEE 802.11ac 

protocol to use spectrum more efficiently compared to the 

previous standards [7]. However, MU-MIMO wastes the 

unused part of the channel interval when short and long 

data streams are grouped together. To tackle this problem, 

we have proposed a dynamic adaptive aggregation 
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selection algorithm to enhance system throughput and 

channel utilization performance of the downlink MIMO 

channel in WLANs 

A system model must be developed that can capture 

the characteristics of the actual traffic load. Numerous 

traffic models have been proposed to understand and 

analyse the traffic characteristics of the networks in the 

past years. However, there is no single traffic model that 

can efficiently capture the traffic characteristics of all 

types of networks, under every possible scenario [8]-[10]. 

Different models are used to describe different types of 

traffic. Traffic sources such as variable- bit- rate (VBR) 

video are better represented by self-similar traffic models 

[10]. Self-similarity (or “burstiness”) refers to the 

distributions that exhibit the same characteristics at all 

scales [8],[11]. Voice traffic is commonly described using 

the on-off source, therefore traffic models that reflect the 

bursty nature of voice data are the best to describe this 

traffic [11]. Models that are characterized as a self-similar 

and heavy-tailed process, such as Pareto, fractional 

Brownian Motion (fBM) and Weibull distribution are 

among the best fitting traffic models by different studies 

to emulate the basic traffic features of self-similarity and 

long-range dependence (LRD) for VoIP and Video data 

traffic, unlike the Poisson traffic model which is 

memoryless and insufficient to characterise the actual 

internet traffic [8]-[13]. 

In this study, different traffic models are proposed to 

characterize the actual network traffic scenario and 

analysed the performance of the proposed algorithm with 

regard to various traffic models under ideal channel 

conditions, where transmission errors are not present. 

Finally, through simulation the proposed scheme will be 

evaluated in comparison with the baseline FIFO 

aggregation approach and we will demonstrate that it 

increases the system throughput performance and 

achieves better channel utilization. 

The rest of this paper is organized as follows. In 

Section II, we discuss previous works on the performance 

of frame aggregation strategies in WLAN in downlink 

MU-MIMO channel to enhance the system throughput 

performance and channel utilization. In Section III, our 

proposed adaptive aggregation approach and traffic 

models will be discussed. In Section IV, we evaluate the 

performance of the proposed approach under ideal 

channel conditions and compare its performance with the 

baseline FIFO aggregation approach. Then, the details of 

the experimental simulation scenarios will be explained 

followed by the results and a discussion. Finally, 

conclusions are given in Section V. 

II. RELATED WORK 

In this section, previous works are reviewed on the 

performance of frame aggregation in WLAN downlink 

MU-MIMO channels to enhance system throughput 

performance and channel utilization. Unlike conventional 

single-user transmission, the performance of frame 

aggregation in MU-MIMO transmission is affected due to 

variable demands of traffic load individual users has in 

the system. Thus, several works have addressed the 

challenges of various frame aggregation approaches in 

downlink MU-MIMO channel. 

A frame duration-based frame aggregation scheme is 

proposed by [14] employing a criteria for selecting a 

receiving Mobile Terminal (MT). This approach provides 

high priority to the MT expecting high throughput in the 

next MU-MIMO transmission and having large amount 

of data while reducing signaling overhead. By equalizing 

the transmission time of all spatial streams in all MTs 

according to their MCS level, they achieved  maximum 

performance of system throughput and minimize space 

channel time in WLAN the downlink MU-MIMO 

channel. However, the experiment considered a Poisson 

traffic model which is inadequate to represent the real 

network traffic scenarios and they did not examine the 

performance  of their approach under the effects of 

different traffic scenarios.  
Aggregated MPDU using fragmented MPDUs with a 

compressed Block ACK mechanism for use in IEEE 

802.11ac MU-MIMO transmission is proposed by [15]. 

The main concept of this study is fragmented MPDU 

instead of A-MPDU pads can be added to fill the length 

of A-MPDU boundary in Enhanced Distributed Channel 

Access (EDCA) Transmission Opportunity (TXOP) 

sharing mode. This mechanism eliminates the overhead 

caused by MPDU padding which in turn increases the 

system throughput and enhances channel utilization in 

eliminating frame pads, called padding bits. However, the 

proposed approach does not elaborate on the traffic 

model adopted. 

The authors in [16] proposed a solution to reduce 

wasting a portion of an A-MPDU of a short data stream 

in a group of unequal streams by concatenating longer 

data streams in consecutive groups. The main concept is 

to propose an average policy where the frame aggregation 

size is set to the average of transmission queue lengths 

for spatial streams. These policies improve channel 

utilization by decreasing the wastage in space and time 

resources. However, average aggregation policy cannot 

always be effective while traffic models in downlink 

MU-MIMO channel is heterogenous among spatial 

streams, thus this leads to suboptimal solution.  

According to [17], they have presented a coordinated 

MAC protocol to improve Channel Utilization in both the 

Time and Spatial domain (CUTS), i.e., the channel access 

time and the antenna usage. Thus, they emphasized that 

the channel utilization in MU-MIMO should consider 

both time and spatial domains. To address this issue, a 

new MAC-PHY architecture design, CUTS, is proposed 

to allow distributed nodes effectively contend for the 

channel and utilize the channel in both maximum channel 

utilization and antenna usage. However, this work 

particularly focuses on channel utilization and antenna 

usage and traffic model used is not elaborated. 
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Focusing on the padding problem of downlink MU-

MIMO [18] and [19] enhances the transmission 

efficiency of MU-MIMO in IEEE 802.11ac networks by 

considering both the channel and heterogeneous frame 

lengths of streams mainly to increase the transmission 

efficiency of multiuser (MU) frames. They have proposed 

a scheme which replaces padding bits with a data frame 

from other stations. However, these phenomena increase 

the complexity of both transmission and reception 

processes of communication since to allow multiple 

destinations within a spatial stream or equivalently 

changing a set of multiplexed users frames and 

accompanied modulation and coding schemes in the 

middle of multi-user (MU) frame requires modification of 

the standard. However, according to the results, 

transmission efficiency and channel utilization are 

enhanced. 

To control the frame aggregation size in downlink 

MU-MIMO channel, [20] has proposed a minimum 

policy when the traffic variation is small and average 

policy when the traffic variation is large in response to 

the traffic variation among spatial streams in considering 

both channel utilization and delay data frames suffer from 

transmission queues. According to their results they have 

achieved efficient channel utilization in keeping the 

transmission delay to a relatively small value. However, 

this study does not elaborate the traffic model they have 

used, thus this leads to suboptimal performance in 

different network scenarios.   

In an effort to reduce the space channel time in the 

downlink MU-MIMO channel, [21] proposed a frame 

size-based aggregation scheme. The basic frame 

aggregation principle of this approach is to use a uniform 

data frame size in each spatial stream by aggregating 

equal number of frames under constant data rate. 

However, this work has considered a Poison traffic model 

which is not adequate to represent the network traffic in 

real system. In addition to this, uniform data frame size 

aggregation policy cannot always achieve better 

performance due to the heterogenous traffic nature among 

spatial streams, thus the algorithm is not suitable for 

variable network scenarios.   

In analysing the impact of different overhead 

components in multi-user transmission of WLAN, a data 

frame construction scheme called DFSC is proposed by 

[22] to optimize the length of frame size transmission in 

both downlink and uplink transmission of WLAN. The 

main contribution of this scheme is to maximize 

transmission efficiency in both uplink and downlink 

multiuser transmission taking into account the buffer 

statuses and transmission rate of the stations. However, 

this work particularly focuses on transmission efficiency 

considering a Poisson traffic generation model for the 

packet arrival distribution.  

According to the literature, the existing adaptive 

aggregation solutions are based on the assumption of a 

specific Poisson traffic model or they do not elaborate the 

traffic model they have used. However, it is feasible to 

control the effects of different networks traffic scenarios 

on frame aggregation size determination in downlink 

MU-MIMO channel to enhance system throughput 

performance. 

III. PROPOSED ADAPTIVE AGGRIGATION APPROUCH 

In this section, we describe the proposed adaptive 

aggregation algorithm which has been developed to 

achieve the goal of realizing a maximum system 

throughput performance of WLAN in downlink MU-

MIMO channel. The adaptive aggregation policy 

employed determines the optimal frame size of the 

system according to the traffic load among STAs. The 

following diagram illustrates the structure of the proposed 

approach. 

 
Fig. 1. The structure of the proposed adaptive model 

As Fig. 1 shows, the algorithm is essentially a 

feedback-based system which encompasses four main 

operations. It operates in such a way so as to predict the 

optimal frame size of the system which maximizes the 

system throughput employing adaptive aggregation 

polices. The traffic models employed are used to emulate 

the real traffic scenario to efficiently capture the traffic 

characteristics of all types of networks under every 

possible circumstance. The function of each element is  

discussed as follow: 

(i)  Traffic Generator: The Traffic generator is the first 

element to generate the traffic data according to the 

specified traffic generation model employed in the system 

such as Pareto, Weibull or Fractional Brownian Motion 

(fBM). The description of each traffic models is 

discussed in section A. 

(ii) AP Buffer Manager: The buffer manager accepts 

the new arrival packets generated by the traffic generator 

and stations in the network could have variable buffer 

capacity as shown in the Figure. The AP stores all 

packets as long as it has buffer space to accommodate 

them. If the buffer is full the AP denies accepting new 

traffic data and continue the aggregation process. It also 

stores remaining packets received from Aggregation 

Policy Analyser and arrange them for next transmission.     

(iii) Adaptive Aggregation Manager: The adaptive 

aggregation manager is an algorithm used to aggregate 

the traffic data received from the buffer manager 

employing the aggregation models proposed. Different 

aggregation strategies do not always achieve the same 
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performance under heterogenous traffic conditions in 

downlink MU-MIMO channel. These aggregation 

strategies are specified as (Agg1, Agg2, Agg3, Agg4) in 

the figure and they are briefly discussed in section B.  

(iv) Aggregation Policy Analyser: The aggregation 

policy analyser is used to selects optimal aggregation 

strategy which produces the optimal fame size that 

maximize the system throughput. If more than one 

aggregation polices archived the same performance, the 

AP always prioritize the one that promotes more frames 

transmission at a time. For instance, if All Agg FA 

(Baseline approach) and Avg Num MPDUs have similar 

performance, All Agg FA (Baseline Approach) will be 

selected as the optimal aggregation strategy. The 

characteristics of each aggregation polices are discussed 

in section B. The optimal frame size and the 

corresponding throughput are recorded at every 

simulation run. Finally, the performance of our adaptive 

aggregation compare with the baseline FIFO aggregation 

approach in terms of system throughput performance and 

channel utilization under ideal channel condition. 

Remaining frames which are not selected due to the 

adaptive aggregation procedure is buffered back to the 

AP for the next transmission. This process continues 

throughout the simulation time. 

A. Traffic Model 

Voice traffic data type is the main focus of this study 

to characterize the traffic load on a network addressing 

the challenges of heterogeneous traffic pattern on the 

system performance of downlink MU-MIMO WLAN, we 

will use the following mathematical traffic models: 

Pareto, Weibull, and fractional Brownian motion (fBM).  

TABLE I: SIMULATION PARAMETERS  

Parameters Symbol Values 

#Antenna at AP NAnt 4 

#Stations with a 

single antenna 

NumSTA 2-4 

Traffic Type   VoIP 

Average Data 

frame length 

Ldata 100 Byte 

Traffic rate  20Kbps 

Data rate  260Mbps per 

user 

Basic Rate for 

control frames 

 6Mbps 

Average A-MSDU 

length 

 11454 Byte 

Max Number of 

MPDU Frames 

Aggregated 

 64 

Max A-MPDU 

length 

 1.0 Mbyte 

AP Buffer size LBuf 50MB 

 

We focus on the busy traffic scenarios in all 

distribution models. The generation interval of frames 

depends on the average frame size and traffic rate 

considered for VoIP as specified in Table I. Once data 

frames are generated, all data are buffered at the AP 

whose maximum length is LBuf. An ideal channel 

condition is considered in this study with no transmission 

errors. The successful transmission is followed by an 

acknowledgement from the stations. 

1) Pareto distribution model 

Pareto distribution is a skewed, heavy-tailed 

distribution applied to model self-similar arrival in packet 

traffic [8], [9] which is feasible to emulate the real bursty 

traffic scenario. The parameters such as shape parameter 

λ and scale parameter k are used to characterize the 

behaviour of random Pareto distribution. Other important 

characteristics of the model are, the Pareto distribution 

has an infinite variance, when λ ≥ 2 and achieves infinite 

mean when λ ≤ 1. Mathematically this is formulated as 

follows. For X ∼ Pareto (λ, κ), the pdf and expected value 

E is defined by the following expressions [9]. 
 

                   𝑓(𝑥) =
𝑘𝜆𝑘

𝑥𝑘+1
                       𝑖𝑓 𝜆 > 1            (1) 

                          𝐸(𝑥) = 𝑘𝜆/𝜆 − 1                                    (2) 

X is a random variable generated from Pareto 

distribution. Given input parameters such as average 

packet size, average packet arrival rate, shape parameters 

and average burst time, the interval between packet 

arrivals and burst length can be computed as shown 

below. 

 

    𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 ×8

𝑟𝑎𝑡𝑒 
                           (3) 

           𝐵𝑢𝑟𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ =
𝑏𝑢𝑟𝑠𝑡𝑇𝑖𝑚𝑒

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
                          (4) 

Then, to generate the Pareto traffic the burst length can 

be denoted as the following expression [23]. 

          𝐵𝑢𝑟𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ = 𝐸(𝑥) = 𝑘 ×
𝜆

𝜆−1
                (5) 

Then, the scale parameter k can be derived as follow:    

        𝑘 = 𝐵𝑢𝑟𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ ×
(𝜆 −1)

𝜆
                        (6) 

Finally, the Pareto random number generator generates 

the next random scale parameter p using scale k and 

shape parameters λ using inverse transform sampling, 

given a random variate U drawn from the uniform 

distribution on the unit interval (0, 1] using the following 

expression. 

𝑈~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)   

   𝑝= 𝑘/𝑈1/𝜆                                         (7) 

Different values for the shape parameter λ for each 

station are considered to allow different traffic patterns. 

Whereas the scale parameter is randomly generated using  

(7) to determine the traffic rate depending on the average 

frame size and traffic rate considered. In general, the 

shape and scale are the main parameters which affect the 

behaviour of the distribution given a constant traffic rate 

and frame size values. 

2) Weibull distribution model 
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Weibull distribution is one of the most widely used 

lifetime distributions in reliability engineering. However, 

it is also adaptable to characterise bursty network traffic 

distribution in ON/OFF bases [8], [9] based on the value 

of the shape and scale parameter. Therefore, we have also 

adopted a Weibull distribution to generate network traffic. 

Then the pdf of two-parameter Weibull distribution f and 

expected value of random variable 𝑥 denoted by E(x) is 

defined by the following expression [9]. 

 

              (8)  

   𝐸(𝑥) =  βγ (1 +
1

α
 )                          (9) 

where: 

 α is the shape parameter 

 β is the scale parameter 

 μ is the location parameter. 

 𝛾 is gamma. A gamma function at parameter a 

can be  evaluates as 𝛾(𝑎) = (𝑎−1)! [9]. 

Following the same procedure as Pareto, given the 

input parameters such as average packet size, average 

packet arrival rate, shape parameters and average burst 

time, the interval between packet arrivals and burst length 

are derived using formulas specified in (3) and (4). 

Then, to generate the Weibull traffic, we apply the 

same procedure as of Pareto, then the burst length i.e., the 

expected value of Weibull distribution denoted by the 

following equation. 

  𝐵𝑢𝑟𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ = 𝐸(𝑥) ==  βγ (1 +
1

α
 )           (10) 

So that the scale parameter β can be derived from the 

formula in (10) as follows. 

   𝛽 =
𝐵𝑢𝑟𝑠𝑡𝑙𝑒𝑛

𝛾(1+
1

𝛼
)

                                    (11) 

Finally, the Weibull random number generator 

generates the next random scale parameter given the scale 

value β and shape parameters α using inverse transform 

sampling method with a given a random variate U drawn 

from the uniform distribution on the unit interval (0, 1].  

Therefore, for X ~ Weibull (β, α), the random variable 

W which is the scale value represents the traffic rate in 

our case is generated randomly according to the 

following expression. 

               𝑈~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  

                             𝑊 = −β [ ln(1 − U)]1/α                     (12) 

Similarly, a different shape value is assigned to vary 

the traffic pattern generated for each station. Whereas the 

scale parameter is randomly generated using (12) to 

determine the traffic rate depending on the average frame 

size and traffic rate considered. Therefore, to change the 

behaviour of the distribution, the shape and scale 

parameters can be adjusted. Fig. 2 demonstrates an 

example of the bursty traffic scenario generated using 

Weibull distribution model for a single user case. 

 
Fig. 2. Sample traffic generated using Weibull traffic model for a single 

user case. 

3) Fractional Brownian Motion (fBM) traffic model 

According to the authors [8], [12], [13], fBm is a 

continuous-time Gaussian process defined for all positive 

time values, with mean centred at 0. Gaussian distribution 

appears when a large number of independent, random 

variables are summed together. It is also characterises the 

important feature of self-similarity and long-range 

dependence of traffic behaviour depends on the Hurst 

parameter H, where 0 < H < 1. According to the value of 

H, the fBM exhibits for H > 0.5 Long-range dependence, 

and H < 0.5 Short-range dependents. We consider H > 

0.5 in this study. Fractional Brownian traffic is defined as 

a process of the form defined in (13). We adopt this 

analytical approach to generate fBM traffic for the 

experiment [13]. 

            𝐴(𝑡) =  𝑀 ×  𝑡 + √𝑎 × 𝑀   ×  𝐵𝐻 (𝑡)               (13) 

Then, we use MATLAB programming function ‘wfbm’ 

to generate the fBM signal given the inputs Hurst 

parameter H and sample size S using the following syntax.  

               𝐵𝐻(𝑡) =  𝑓 =  𝑤𝑓𝑏𝑚 (𝐻, 𝑆)                        (14) 

where: 

   A(t) is the amount of traffic that enters the 

network in the time interval [0, T] 

   M, M > 0 is the average traffic intensity 

 a, a > 0 is a constant for variance coefficient 

called the peakness parameter  

 BH(t) is a normalized fBM and a continuous-time 

Gaussian process BH(t) on [0, T]. 

B. Aggregation Models 

In this section, our aggregation models are discussed to 

tackle the challenges of bursty traffic on the performance 

of the downlink MU-MIMO channel aiming to maximize 

the system throughput performance. Due to the 

heterogeneity of the traffic patterns among streams in the 

network it is not easy to determine the optimal 

aggregation policy which could achieve the best 

performance. In this regard, it is difficult for one 

aggregation policy to always achieve the goal of good 

performance. In addressing this issue, we have proposed 

the following aggregation schemes to employ adaptive 

aggregation policy which determines the optimal frame 
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size that produces the maximum throughput as per the 

traffic condition in the system. 

(i) Maximum Size Aggregation Policy (All Agg FA):- 

This strategy follows a FIFO aggregation policy which 

suggests using a larger frame size aggregation as large as 

the maximum aggregation frames length that is allowed 

per transmission. This strategy promotes all frames in the 

AP buffer to be transmitted to the receivers rather than 

dropping some of them in the buffer for the next 

transmission. However, if the frame size is large and  the 

channel is noisy, many frames could be lost. So that the 

frame success rate will be decreased, thus the throughput 

is degraded. In addition to this, longer frame size would 

take longer transmission times and will affect the 

throughput performance. We use this aggregation policy 

as a baseline approach to assess the performance of our 

proposed approach. 

(ii) Equal Length of Frame Size Aggregation Policy 

(Equal Frame Size FA):- This approach emphasizes 

equalizing the number of frames aggregated for all 

streams. Since the aggregated frame length is equalized in 

all streams, this approach enhances channel utilization 

and eliminate channel time wastage. However, channel 

overhead could be a problem with short frames 

aggregated. If the length of the frames transmitted is short, 

a better throughput can be achieved due to shorter data 

transmission time on air. However, when the traffic is 

bursty the number of frames left in the AP buffer will be 

increased due to the frame length equalization policy, and 

this allows more frames to remain in the buffer for the 

next transmission and consumes memory space.  

(iii) Equal Number Of MPDUs Aggregation Policy 

(Equal Num MPDUs FA):- Under this aggregation policy, 

an equal number of MPDUs are aggregated on each 

stream. In the case of less bursty traffic among stations, 

this approach could perform better than Equal Frame Size 

FA as it allows more frames transmitted as a form of 

MPDU aggregated frame. When the network traffic is 

more bursty, the station with many MPDUs could be 

affected as more frames would be left in the buffer for the 

next transmission. This approach has a better 

performance in terms of space channel time utilization 

enhancing the channel utilization better than All Agg FA 

approach. 

(iv) Average Number of MPDUs Aggregation Policy 

(Avg Num MPDUs FA):- In this approach, the average 

number of MPDUs are computed to determine the length 

of data frame transmitted on each stream. Therefore, the 

number of MPDUs equal to the average value will be 

selected for each stream and aggregated for transmission. 

This approach enhances transmission of more frames 

especially when the traffic rate variation is bigger among 

streams. The performance of channel utilization and 

space channel time is better than All Agg FA mechanism. 

However, it has poor performance of space channel time 

as compared to aggregation approaches Equal Frame Size 

FA and Equal Num MPDUs FA but is better in 

minimizing the number of frames waiting in the buffer 

before transmission than Equal Frame Size FA and Equal 

Num MPDUs FA. 

Finally, each of the aggregation policies perform the 

following operation to construct the wireless frame 

setting for A-MSDU and A-MPDU derived from the 

mathematical model [1], [14]. The total length of LMSDU 

is constructed by aggregating the number of MSDUs of 

MAC data frames of length LData[Bits] and can be 

calculated as shown in (15). The maximum length of A-

MSDU frame (LMSDU) is 11454 Byte according to 

IEEE802.11ac. In this scheme the MSDU size is kept 

constant at 100Byte for VoIP traffic data. 

            𝐿𝑀𝑆𝐷𝑈 = 𝑀𝐴𝐶𝐻𝑑𝑟 + (𝑁𝑀𝑆𝐷𝑈𝑠 + 𝐿𝐷𝑎𝑡𝑎)             (15) 

From this equation, we can derive the maximum 

number of MSDUs (NMSDUss) that can be aggregated into a 

single A-MSDU data frame as shown the following 

expression. The function floor(x) is used to get the largest 

integer less than x. 

                𝑁𝑀𝑆𝐷𝑈𝑠 =  𝑓𝑙𝑜𝑜𝑟 (
𝐿𝑀𝑆𝐷𝑈− 𝑀𝐴𝐶𝐻𝑑𝑟

𝐿𝐷𝑎𝑡𝑎
)               (16) 

After we have obtained the maximum number of 

MSDUs (NMSDUs), the AP can construct the A-MSDU 

frames for each receiving STAs. The number of A-

MSDUs which is used to construct A-MPDU can also be 

formulated as follow: 

 

                𝑁𝑀𝑃𝐷𝑈𝑠 = 𝑐𝑒𝑖𝑙(
𝑇𝑜𝑡𝑎𝑙𝑁𝑀𝑆𝐷𝑈𝑠

𝐿𝐷𝑎𝑡𝑎
)                        (17) 

where the function ceil(x) is used to get the smallest 

integer number greater than x. Therefore, the A-MPDU 

frame is set as a wireless frame transmitted for all 

receiving STAs. This aggregation procedure is carried out 

for all receiving stations by the AP. The 1 MByte is the 

maximum A-MPDU size considered in this study which 

is approximately 1048575 Bytes according to IEEE 

802.11ac and the maximum number of MPDUs that can 

be aggregated is 64. 

The two-layer aggregations such as A-MSDU and A-

MPDU are applied to achieve our adaptive aggregation 

models. These aggregation models are used to adaptively 

adjust the optimal frame size of the system that 

maximizes the system throughput as per the condition of 

the traffic pattern among the streams. This approach is 

feasible since a particular aggregation strategy cannot 

always contribute to the achievement of the maximum 

system throughput while the real situation of the traffic 

pattern in downlink MU-MIMO channel is influenced by 

heterogeneous traffic patterns. 

IV. PERFORMANCE EVALUATION 

The performance of the proposed approach is 

evaluated in this section under the assumption of an ideal 

channel condition (i.e., BER=0) which means there is no 

error transmission and no penalty for large frame size. 

Therefore, the aggregate frame size will be as large as 

possible, e.g., 1 MByte according to the limitation 
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defined in the IEEE 802.11ac standard [1] for the A-

MPDU frame. Weibull, Pareto and Fractional Brownian 

Motion (fBM) analytical traffic generation models are 

used to emulate real network traffic data and the adaptive 

aggregation approach proposed are the main simulation 

scenarios. We developed the MATLAB program to 

simulate the algorithm. Simulation parameters are chosen 

for IEEE 802.11ac [1] standard and the detailed 

simulation parameters are shown in Table I. The 

simulation operates at a data rate of 260Mbps per-user. 

Each simulation result is performed ten times to obtain an 

average result. The proposed approach will be compared 

with the baseline FIFO aggregation approach. The AP 

can communicate with up to STAs ≤ NANT under the 

assumptions of ideal spatial channel separation and ideal 

channel orthogonality between the antennas at the AP 

[14]. In this section, we will perform the following 

experiments: (i) the performance of system throughput 

under variable numbers of STAs. (ii) performance of 

system throughput with increasing traffic load. System 

throughput is the ratio of the sum of the successful frame 

size of the system over total channel transmission time 

which involves data transmission time, DIFS and Backoff 

times, and block acknowledgement time. (iii) the 

performance of channel utilization with increasing traffic 

load. Channel utilization is the ratio of the time that the 

channel is used for effective packet transmission over the 

total channel time. Analytically it is formulated as 

follows: 

     𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑡𝑖𝑚𝑒(𝐶𝑇)𝑖 = ∑ 𝑇𝑋𝐷𝑎𝑡𝑎𝑖
4
𝑖=1                (18) 

      𝑆𝑃𝑇𝑖𝑚𝑒 = ∑ (𝑀𝑎𝑥(4
𝑖=4 𝑇𝑋𝐷𝑎𝑡𝑎) − 𝑇𝑋𝐷𝑎𝑡𝑎𝑖)            (19) 

Then, the channel utilization ratio (ChUtil) of the 

system in percentage is formulated as: 

      𝐶ℎ𝑈𝑡𝑖𝑙(%) =
∑ (

𝑇𝑋𝐷𝑎𝑡𝑎𝑖
𝑇𝑋𝐷𝑎𝑡𝑎𝑖 +   𝑆𝑃𝑇𝑖𝑚𝑒𝑖  

×100)
4

𝑖=1

𝑁𝑢𝑚𝑆𝑇𝐴
                   (20) 

where 

 i counts the number of stations 

 SPTimei   is the space channel time. It is an idle 

channel time when no data is transmitted for 

STAi 

 TxDatai is the data transmission time of STAi. 

 NumSTAs: the total number of STAs  

Then, (iv) the performance of transmission efficiency 

of the system is examined. Transmission efficiency is 

computed as the ratio of the total number of successful 

payloads bite over the total bits transmitted (i.e., payload 

bits plus the MAC overhead bits). Analytically it is 

expressed as shown in  (22). 

𝑓𝑟𝑚 = ∑ (
𝑆𝑢𝑐𝑐_𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑖 

𝑆𝑢𝑐𝑐_𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑖  +   𝑀𝐴𝐶_𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑖  
× 100)

4

𝑖=1
     (21) 

  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%) =  
  𝑓𝑟𝑚

𝑁𝑢𝑚𝑆𝑇𝐴
       (22) 

Were, 

 Succ-Payload: the payload frames that is 

successfully delivered to the receiver 

 MAC-Overhead: it involves the overhead frame 

add at each MPDU and PSDU frames. 

 NumSTAs: the total number of STAs  

 frm: the ratio of the sum of the system successful 

frames transmitted in percentage 

Finally, (v) the performance of individual user’s 

throughput is simulated under the traffic load offered.  
The experiments are conducted with a fixed frame size 

of 100Byte VoIP traffic with a data rate of 20kbps. 

Variable Hurst parameter H = 0.5,0.7,0.9 and 1 is 

considered for each STAs respectively for the case of 

fBM traffic model. Average traffic burst time (106, 105, 

104 and 106 microseconds), and shape parameter (2,3,4 

and 5) are used for each STA respectively for Weibull 

and Pareto traffic generation models. 

A. Performance of System Throughput under a Variable  

Number of STAs 

Fig. 3 demonstrates the performance of the system 

throughout under the effect of variable number of STAs 

using fBM traffic model. As the number of stations 

increases the amount of data traffic transmitted increases, 

this in turn increases the system throughput. As the 

simulation result shows, different aggregation approaches 

perform different performance for each number of station. 

However, the proposed approach exhibits better 

performance due to its adaptive aggregation strategy 

employed to be adjusted as per the traffic condition of the 

system at each number of STAs. 

 
Fig. 3. Performance of average system throughput as the number of 

STAs varies from 2 to 4 using fBM traffic model 

B. Performance of Average System Throughput with 

Increasing Traffic Offered Load 

In this section Weibull, Pareto, and fBM traffic models 

are considered to examine the effects of different traffic 

scenarios and analyze the performance of different 

aggregation polices on the performance of system 

throughput. 

Fig. 4 shows the performance of system throughput 

using Weibull traffic model. It can be seen that as the 

traffic load increases, the system throughput performance 

of each aggregation policy increases. However, our 

approach exhibits a better performance of 427Mbps than 

the All Agg FA (Baseline approach) as it adaptively 

adjusts the optimal aggregation strategy according to the 
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traffic pattern that contributed to the optimal frame size 

and maximizes the system throughput. As the result 

shows, All Agg FA(Baseline approach), Avg Num 

MPDUs FA, and Equal Num MPDUs FA exhibits the 

same performance initially, however, the performance of 

the proposed approach increased after the traffic load of 

0.2Mbps. Avg Num MPDUs FA aggregation policy 

contributed for the maximum performance in this traffic 

model whereas Equal Frame Size FA is the worst 

performance aggregation policy. This result exhibits that 

a particular aggregation approach cannot always achieve 

the maximum performance due to the bursty traffic nature 

in the downlink MU-MIMO wireless channel.  

 
Fig. 4. Performance of average system throughput with increasing 

offered traffic load using Weibull traffic model. 

The result in Fig. 5 shows the performance of system 

throughput using Pareto traffic model. Similarly, the 

system throughput performance of each aggregation 

policy increases as the traffic load increases. Avg Num 

MPDUs FA aggregation policy contributed for the 

optimal aggregation strategy in this traffic model 

throughout the simulation time. As the result shows the 

proposed approach exhibits better performance of 

384Mbps than All Agg FA (Baseline approach). Whereas 

Equal Frame Size FA has the worst performance 

aggregation policy with 303Mbps.  

 
Fig. 5. Performance of average system throughput with increasing 

offered traffic load using Pareto traffic model. 

Fig. 6 shows the performance under fBM traffic model 

as the traffic load increases. Initially all aggregation 

policies perform the same performance however, as the 

simulation result shows the proposed approach broadly 

increases after 0.3Mbps traffic load. Equal Frame size FA 

aggregation policy contributed to the optimal aggregation 

strategy in this traffic model and therefore, the proposed 

approach exhibits the performance of 606Mbps 

maximum performance better than All Agg FA (Baseline 

approach). 

 
Fig. 6. Performance of average system throughput with increasing 

offered traffic load using fBM traffic model. 

In general, according to the simulation results shown, 

adaptive aggregation policy is a feasible approach to 

manipulate the challenges of different traffic scenarios 

and achieve the maximum system throughput in 

downlink MU-MIMO channel.   

C. Performance of Channel Utilization with Increasing 

Traffic Load 

In this section the performance of the channel 

utilization is examined using Weibull, Pareto, and fBM 

traffic models. Using these traffic models the effects of 

different traffic scenarios are examined on the 

performance of different aggregation polices to achieve 

better  performance  of channel utilization.   

As the simulation result shows in Fig. 7, using Weibull 

traffic model the performance of channel utilization 

decreases from 54%, however, when the traffic load 

increases after 0.3Mbps the proposed approach exhibits 

better performance of 54% than the All Agg FA (Baseline 

approach) which has the worst performance of 50% due 

to the adaptive aggregation approach employed. Whereas 

Equal Frame Size FA policy enforced the length of 

aggregated A-MPDU frames to have equal length setting. 

This in turn allowed Equal Frame Size FA policy to 

achieve 100% channel utilization performance as the 

result shows. 

 
Fig. 7. Performance of channel utilization with increasing offered traffic 

load using Weibull traffic model 

The simulation result in Fig. 8 shows the performance 

of channel utilization using Pareto traffic model. As the 

result shows, when the traffic load increases the 

performance of Equal Frame Size FA and Equal Num 

MPDUs aggregation policies exhibit better performance 

since both approaches encourage equal frame size 

aggregation policy which enhance channel utilization 

performance. The maximum 100% channel utilization 
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performance is achieved by Equal Frame Size FA. Since 

the proposed approach follows adaptive aggregation 

strategy, the performance of channel utilization 

influenced by the selected optimal aggregation policy. In 

this traffic model Avg Num MPDUs FA contributed for 

the optimal aggregation policy. Therefore, as the result 

shows, the proposed approach performs better 

performance with a maximum 40% channel utilization as 

compared with the All Agg FA (Baseline approach) 

which performs the least 39%. 

 
Fig. 8. Performance of channel utilization with increasing offered traffic 

Load using Pareto traffic model 

Fig. 9 shows the performance of channel utilization 

using fBM traffic model. As the result shows channel 

utilization performance of the proposed approach 

extensively increased after the traffic load 0.1Mbps. This 

result shows that channel utilization performance 

influenced by the adaptive aggregation approach 

employed in the system. Initially All Agg FA (Baseline 

Approach, Equal Num MPDUs FA, and Avg Num 

MPDUs FA achieved similar performance, however, after 

0.3Mbps the channel utilization performance of the 

proposed approach increased with 100% following Equal 

Frame size FA which is contributed for the optimal 

aggregation strategy better than All Agg FA (Baseline 

Approach) which contributed the worst performance 

throughout the simulation. 

 
Fig. 9. Performance of channel utilization with increasing offered traffic 

Load using Pareto traffic model 

D. Performance of Transmission Efficiency with 

Increasing Traffic Load  

In this section Weibull, Pareto, and fBM traffic models 

are used to examine the effects of different traffic 

scenarios on the performance of different aggregation 
polices to achieve better performance of average system 

transmission efficiency.  

The simulation result in Fig. 10 shows the performance 

of transmission efficiency when the traffic load increases 

using Weibull traffic model. Transmission efficiency 

increases if the number of A-MSDUs frames aggregated 

per A-MPDUs is large in minimizing the MAC layer 

overhead. The size of MAC overhead will be larger when 

the size of the actual payload is small in the aggregation. 

As the result shows, Equal Frame Size FA aggregation 

approach achieved the worst performance since it allows 

a smaller number of frames to be aggregated due to equal 

number of frames aggregation policy employed for it. 

However, our proposed adaptive approach achieved 

better performance increasing from 94% up to the 

maximum 99% as the traffic load increases which is 

similar performance with All Agg FA(Baseline Approach), 

Equal Num MPDUs, and Avg Num MPDUs FA. 

 
Fig. 10. Performance of channel utilization with increasing offered 

traffic Load using Pareto traffic model using Weibull traffic model. 

Fig. 11 shows the performance of traffic efficiency 

using Pareto traffic model. All Agg FA(Baseline 

Approach), Equal Num MPDUs FA, and Avg Num 

MPDUs FA aggregation approaches achieve the 

maximum performance as the traffic load increases. In 

this experiment, the performance of the proposed 

approach increased from 97% to 99% as load increases. 

Whereas Equal Frame Size FA achieves the poorest  

performance again. 

 
Fig. 11. Performance of system transmission efficiency with increasing 

offered traffic load using Pareto traffic model 

Similarly, Fig. 12 shows the performance of 

transmission efficiency under fBM traffic model. The 

performance of the proposed approach increases from 

95.8% to 99% as the traffic load increases. However, it  

decreases slightly between 0.4 and 0.9Mbps traffic load 

due to the adaptive aggregation approach employed 

following Equal Frame Size FA aggregation policy which 

achieved the worst performance. 
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In general, according to all the simulation results of 

Weibull, Pareto and fBM traffic models, Equal Frame 

Size FA aggregation policy is the worst performance 

since it enforces the length of aggregated A-MPDU 

frames to have equal length setting as compared to the 

other aggregation approaches.  

 
Fig. 12. Performance of system transmission efficiency with increasing 

offered traffic load using fBM traffic model. 

E.  Performance of Individual STAs Throughout with 

Increasing Traffic Load 

In this experiment the performance of individual STAs 

throughout is examined using Weibull, Pareto, and fBM 

traffic models. The traffic models are used to capture the 

characteristics of different traffic scenarios and analyze 

the performance of different aggregation polices on the 

performance of individual STAs throughout. Average 

individual throughput is computed as the ratio of the sum 

of individual users throughout over the total number of 

STAs. These experiments demonstrate the throughput 

performance from individual users’ point of view.  

The simulation result in Fig. 13 shows the performance 

of average individual users’ throughput as the traffic load 

increases in the system using Weibull traffic model. As 

the result shows, different aggregation approaches exhibit 

different results. However, our proposed approach 

achieved the maximum individual throughput 

performance of 142Mbps improved from 60Mbps as the 

traffic load increases. It is better than the Equal Num 

MPDUs and Equal Frame Size FA approaches which is 

the worst performance with maximum 55Mbps. As the 

result shows the All Agg FA (Baseline approach) is the 

optimal aggregation strategy to predict the optimal frame 

size which maximized the average individual users’ 

throughput performance. This result indicates that our 

adaptive aggregation approach can achieve better 

performance in both system throughput and individual 

user’s throughput. 

 

Fig. 13. Performance of average individual user’s throughput with 

increasing offered traffic load using Weibull traffic model. 

The result in Fig. 14 shows the performance of 

individuals user’s throughput using Pareto traffic model. 

The performance of all aggregation approaches increased 

as the traffic load increases. As the result shows the 

performance of the proposed approach increased from 

128Mbps to 173Mbps. However, the worst performance 

of 76Mbps is exhibited by Equal Frame Size FA. Pareto 

traffic model achieved the maximum performance than 

Weibull traffic model in Fig. 13 since the traffic load 

generated in pareto is bigger than Weibull as the result 

shows. This indicates that the more the traffic load in the 

system the maximum the performance of individual 

user’s throughput exhibited. 

 

Fig. 14. Performance of average individual users’ throughput with 

increasing offered traffic load using Pareto traffic model. 

Fig. 15 shows the performance of individual user’s 

throughout using fBM traffic model. The performance 

our proposed approach increased from 50Mbps to 

174Mbps as the traffic load increases. As the result shows, 

All Agg AF (Baseline Approach) and Avg Num MPDUs 

FA aggregation policy contributed for the maximum 

performance. Since traffic load generated at the earlier 

simulation time is smaller, poor performance of 50Mbps 

is exhibited as compared to both Pareto and Weibull 

traffic models. However, as the traffic load increases the 

maximum performance of 174Mbps is achieved.    

 
Fig. 15. Performance of average individual user’s throughput with 

increasing offered traffic load using Pareto traffic model. 

In general, according to the results in Fig. 13, Fig. 14, 

and Fig. 15, all the Agg FA (Baseline approach) and Avg 

Num MPDUs FA aggregation policies contributed more 

to the maximum performance for individual users’ 

throughput which support more frame aggregation per 

transmission. Therefore, our adaptive approach is feasible 

in providing a good performance from an individual users’ 

point of view. 
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V. CONCLUSION 

In this paper, we have studied the performance of 

frame aggregation in a downlink MU-MIMO channel. An 

adaptive aggregation approach is proposed to address the 

trade-off between frame aggregation policies and 

heterogeneous traffic patterns to predict the optimal 

aggregation frame size which enhances system 

throughput performance under ideal channel condition. 

We have demonstrated simulation experiments 

employing Weibull, Pareto and fractional Brownian 

motion (fBM) traffic models to emulate real world traffic 

scenarios in the network and to analyze the proposed 

aggregation polices with respect to various traffic models. 

The performance of the algorithm is tested under the 

effect of increasing traffic offered load in the system, 

increasing number of stations, the performance of system 

throughput, channel utilization, transmission efficacy, 

and individual users’ throughput in comparing its 

performance with the baseline approach. Based upon on 

the simulation results, our approach produces batter 

performance than the baseline approach in terms of 

channel utilization time and system throughput. Future 

work will extend our algorithm to examine its 

performance on a noisy wireless channel, the issue of 

delay and buffer management, including the uplink MU-

MIMO transmission in IEEE 802.11ax networks. 
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