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Abstract—The algorithm for detecting the coherent-pulse 

signals against correlated interferences is considered. It is 

invariant to both the carrier frequency of the signal and the 

statistical characteristics of its fluctuations. Its optimization is 

implemented in terms of the signal-to-interference ratio. The 

structure of the optimized procedure for extracting the signals 

with the limited statistics is found under the arbitrary signal-to- 

interference ratio. The efficiency of the introduced procedure is 

estimated. A technique is presented for calculating the detection 

characteristics. The usefulness of the obtained results for 

designing the corresponding detection devices is confirmed by a 

number of examples of numerical calculations. 
 
Index Terms—Signal detection, unknown frequency, 

interperiod processing, intraperiod processing, correlated 

interference, signal-to-interference ratio, false alarm probability, 

probability of correct detection 

 

I. INTRODUCTION 

The application of coherent-pulse radar systems 

provides the possibility of effectively protecting the radio 

channel from interference created by the reflections from 

the interfering objects by means of selecting targets by 

speed [1]. Implementation of these possibilities, in turn, 

requires the development of new signal processing 

algorithms. 

The problem of joint processing of n coherent pulse 

group is considered assuming that the length of the 

interfering reflection zone does not exceed the interval 

between any pair of pulses. The processing should consist 

in the generation of an output signal to compare it with 

the detection threshold. 

The problem of detecting the signals produced by 

moving targets under the influence of interfering 

reflections can be formulated as the problem of optimal 

radio reception against the correlated interferences. Under 

the specified conditions, it can be reduced to the 

generation of the separate samples for each of the pulses 

(“intraperiod processing”) with subsequent joint 

processing of the received samples (“interperiod 

processing”). 
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It is well known [2], [3] that in most cases the 

procedure for interperiod processing of the complex 

samples kkk iJRy  , nk ,1  of the additive mix of 

the signal kkk iuxs   and the correlated interference 

kN  is reduced to forming the quadratic form 
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where klQ  is the elements of the processing matrix Q, n 

is the number of samples generated at the output of the 

intraperiod processing system over the probe pulse period, 

and symbol “*” means complex conjugation. 

In [4], [5], the solution is proposed to the problem of 

detecting a signal with an unknown frequency as the 

problem of simultaneous detection and measurement of 

the unknown components kx , ku  of the input signal. 

Because a reliable description of the parameters of the 

signal with an unknown frequency is difficult, it is shown 

that, in this case, the elements of the matrix inverse to the 

interference correlation matrix klRR can be used as 

the processing matrix elements in (1): 
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where m  and mk  ( ml ) are, respectively, the 

eigenvalues and the elements of the eigenvectors mν  of 

the normalized total interference correlation matrix 

  CNNCC PPP IRR  ; I is the  unit matrix; CR  is the 

correlation matrix of the correlated interference 

component; CNCN PPP   is the total interference 

power including the power of both the white noise NP  

and the correlated interference component CP . 

Applying the coefficients (2) provides the invariance 

of the algorithm (1) with respect to both the frequency of 

the signal and the statistical properties of its fluctuations. 

In each specific case, the efficiency of the algorithm (1) 

depends on the real spectrum of signal fluctuations. It is 

obvious that when a priori or experimental characteristics 

of the fluctuations are taken into account, more effective 

procedures can be obtained. 
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One way to improve the procedure (1) using the 

processing matrix (2) is to make some assumptions 

regarding the signal characteristics. In this paper, the 

algorithm (1) is optimized in terms of the signal-to-

(correlated interference + noise) ratio (SINR) 

 CNS
2 PPq   (3) 

where SP  is the power of the received signal. 

Evaluation of the procedure (1) efficiency can be 

obtained based on the study of the detection characteristic 

that is the dependence of the probability of correct 

detection D upon the ratio 2q  (3) under the fixed value of 

the false alarm probability F. In this case, calculations are 

usually performed for the extreme values of the target 

speed, that are the “optimal” speed (when the signal 

phase incursion is   122 kfT , ,2,1k ) 

and the “blind” speed (when  k2 ) [1]. Here the 

notations are: T is the pulse repetition period, f is the 

Doppler signal frequency. However, the construction of 

the detection characteristic as the function  2qDD   for 

the extreme values of the target speed does not show the 

detection efficiency in the range of target speeds 

(Doppler target signal frequencies). Therefore, in this 

paper, when analyzing the efficiency of the presented 

processing systems, the detection characteristics are 

calculated as the function  fTDD   for the different 

values of 2q . 

II. OPTIMIZATION OF THE INTERPERIOD PROCESSING 

ALGORITHM 

One considers the sequence of the complex samples 

nyy  ,,1y  of the additive mix of the useful signal 

nss  ,,1s  and the interference nNN  ,,1N  

generated at the output of the intraperiod processing unit 

at the sequential points of time ntt ...,,1 : 

 kkk Nsy   ,      nk ,1  (4) 

The likelihood ratio for the vector y  (4) against 

alternative nNN  ,,1y  is of the form 
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where 
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According to the specified criteria of maximizing the 

ratio (3), the maximum likelihood estimates ms
~̂
  of the 

partial sums ms
~
  can be found from the expression 
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and χ is the Lagrange multiplier that takes into account 

the set value (3). 

Differentiating (7) by the variable ms
~
  leads to the 

equation 

 0
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and its solution is 

  mmm Pys  CN1
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If the ensemble of signals with an arbitrary carrier 

frequency is considered, then it can be assumed that 

0
~~
lk ss  . Then, taking into account (6), the sum of the 

mathematical expectations of the squares of signal 

samples estimates is equal to 
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On the other hand, in view of (8), one can obtain 
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By equating the right-hand sides of the expressions (9) 

and (10), one can write the transcendental equation that 

allows determining the value of the multiplier χ: 
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where  CN
~ P , and the likelihood ratio (5) can be 

represented in the following way: 
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Thus, as it follows from the expression (12) and taking 

account the relation (6) for my
~
 , the processing matrix 

with the elements 
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should be used while implementing the algorithm (1) 

under the known SINR (3). The multiplier ~  in (13) is 

found from (11) taking into account the desired SINR 2q  

(3). Moreover, 2q , if 0~  , and 02 q , if 

~ . 

The analysis of the expression (13) shows that for the 

high SINR ( 2q ), the values of the coefficients of 

the processing matrix coincide with the values 1
klR  in (2). 

However, if the SINR is low ( 02 q ), then the 

elements of the processing matrix are determined as 
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and that corresponds to the application of the squared 

processing matrix inverse to the interference correlation 

matrix 
2

R  [6] in (1). By other means, a similar result 

for the case 02 q  has been obtained in [6]-[9]. 

It should be noted that the expression (13) for the 

matrix processing elements klQ  is a generalization of the 

result obtained in [4], [6], [7] under the arbitrary SINR. 

Thus its application should provide the highest efficiency 

of the algorithm (1) under the specified radio reception 

conditions. 

III. EFFICIENCY OF THE OPTIMIZED ALGORITHM 

In order to determine the efficiency of the algorithm (1) 

while the weight coefficients (2), (13), (14) are applied, 

one calculates the detection characteristics using the 

procedure used in [2, 10] that is based on the calculation 

of the poles of the characteristic distribution function of 

the decision determining statistics (1). According to this 

approach, the probability of threshold 0z  being crossed 

by the value (1) is determined by the expression [10], 

[11]: 
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where nM   is the number of different eigenvalues i  

of the determining matrix Λ equal to the product of the 

processing matrix Q and the correlation matrix of the 

processed sequence: 
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k  and l  are the multiplicities of eigenvalues k  and 

l , respectively; 2q  is the SINR (3) that is determined 

based on the intraperiod processing; 
S

R  is the signal 

correlation matrix. 

From (15), the formulas for calculating the probability 

of threshold crossing can be written for the cases when all 

the eigenvalues of the determining matrix that are not 

equal to zero are different ( 1 lk ) [10, 11]: 
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or all the eigenvalues are multiple ( nlk  , 

 lk ): 
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In [11], it is shown that when using the coefficients (2) 

in the processing matrix, the eigenvalues of the 

determining matrix Λ are equal to 
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In view of (15) and (18), one can obtain the formulas 

for calculating the false alarm probability F and the 

probability of correct detection D: 
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In (21), the relation (19) is taken into account while in 

(22) 1 , 2  are substituted from (20). The formulas for 

calculating the probability of correct detection D obtained 

applying the expression (20) for the number of samples 

(pulses) 62  n  are shown in Table I. 

The direct calculations confirm that when using the 

coefficients (13) and (14) in the processing matrix, the 

eigenvalues of the determining matrix Λ in both the 
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presence and absence of a signal are different positive 

numbers. It allows applying the formula (17) for 

calculating the F and D probabilities. 

TABLE I: THE FORMULAS FOR CALCULATING THE PROBABILITY OF 

CORRECT DETECTION 

n The probability of correct detection D 
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As an example, one presupposes that the reflected 

signal is the pulse packet, the correlation matrix 

components of which are of the form: 

   lkkl jR  expS   

where jj fT 2  is the phase incursion of the j-th pulse, 

T is the pulse repetition period while interferences are the 

mix of the white noise and the correlated interference 

with the Gaussian correlation function 

    8.2exp
22 lkfTrkl   (23) 

In (23), f  is the interference bandwidth at the level 

of 0.5 while the normalized correlation coefficients of the 

total interference are    2
C

2
C 1 qrqR klklkl  , where 

kl  is the Kronecker symbol [2] and NC
2
C PPq   is the 

correlated interference-to-noise ratio. 

In Figs. 1, 2, there are shown the results of calculating 

the detection characteristics for a periodic sequence of 

five pulses ( 5n ) while the false alarm probability F is 

fixed and equal to 
310

 (during the detection the 

Neyman-Pearson criterion is applied) and the normalized 

interference bandwidth is 05.0fT . 

In Fig. 1, the characteristics are presented as the 

dependence of the probability of correct detection D upon 

the normalized signal frequency fT, if the signal-to-noise 

ratio is 10CS
2
S  PPq  and the correlated interference-

to-noise ratio is 22
C 10q  (Fig. 1a) or 42

C 10q  (Fig. 1b). 

Curve 1 corresponds to the case when the coefficients (13) 

are used in the algorithm (1), curve 2 depicts that the 

coefficients (2) are used and curve 3 – that the 

coefficients (14) are used. 

These characteristics allow tracing the change in the 

probability of correct detection D within the expected 

signal frequency range fT when using processing matrices 

with the coefficients (2), (13), (14). 

The characteristics drawn in Fig. 2 represent the 

dependences of the probability of correct detection D 

upon the signal-to-noise ratio 2
Sq  while the processing 

algorithm is used with the coefficients (2), (13) and (14) 

(curves 1, 2, and 3, respectively). It is assumed that the 

correlated interference-to-noise ratio is 52
C q  (Fig. 2a) 

or 42
C 10q  (Fig. 2b) and the normalized signal 

frequency is 5.0fT  while the SINR (3) varies within 

the ranges 3.38.02 q  (Fig. 2a) and 

0025.00004.02 q  (Fig. 2b). 

 
a) 

 
b) 

Fig. 1. The dependence of the probability of correct detection upon the 

normalized signal frequency. 
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a) 

 
b) 

Fig. 2. The dependence of the probability of correct detection upon the 

signal-to-noise ratio. 

From Fig. 1a, it follows that the probability of correct 

detection gets higher over the whole frequency range, if 

in the detection algorithm the optimized processing 

matrix II
Q  (curve 1) is used instead of the matrix I

Q  

(curve 2), while the SINR (3) is high enough. 

However, with the increasing signal power, the values 

of the probability of correct detection when using the 

matrices I
Q  and II

Q  get closer and closer together (Figs. 

1a, 2a). It should also be noted that under the high SINRs 

(3) the application of the matrix III
Q  (curves 3 in Figs. 

1a, 2a) during the signal detection turns to be impractical. 

According to Fig. 1b, if the SINR (3) is high enough, 

then the values of the probability of correct detection 

obtained with the help of the matrices II
Q  (curve 1) and 

III
Q  (curve 3) coincide over the whole frequency range. 

At the same time, when the correlated interference 

level is high, the application of the matrix I
Q  (curves 2 

in Figs. 1a, 2a) leads to great losses and is thus 

impractical. 

The analysis of the detection characteristics reveals 

that the availability of information about the SINR value 

allows obtaining a gain in the threshold signal 0z . Thus, 

for the specified example such gains are up to 3 dB. 

IV. CONCLUSIONS 

One has considered the algorithm (1) for processing 

the coherent-pulse signal against the correlated 

interferences, that is invariant to both the carrier 

frequency value and the statistical characteristics of 

fluctuations of the signal. This algorithm can provide 

higher efficiency during the detection of moving objects 

when a priori or experimental data on the signal-to-

interference ratio value are available and the relation (13) 

is applied to calculate the processing matrix components. 

As the conducted numerical calculations demonstrate, 

the obtained results can be effectively used for designing 

the corresponding detection devices. Under current 

conditions, when the computing facilities are widely used 

as part of the radar, the implementation of the introduced 

procedure (13) for forming the weight coefficients in the 

algorithm (1) does not appear difficult. 
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