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Abstract—In fish farming, maintaining the number of fish is 

important from the viewpoint of stock management, feed 

volume adjustment, and so on. In this study, we evaluated the 

use of multiple scanning sonars to estimate the number of fish 

in a cage. To estimate fish counts based on coordinate 

information obtained from multiple sonars, we applied a 

hierarchical clustering method. The fundamental performance 

of our fish counting system was evaluated using a simulation 

approach by changing the number of fish, number of sonars, and 

size of fish. Our system can successfully estimate the number of 

fish with an error of 1 % or less in certain conditions. 
 
Index Terms—Scanning sonar, fish counting, clustering, group 

average method, simulation 

 

I. INTRODUCTION 

Tuna farming has attracted substantial attention owing 

to the decline in natural tuna populations. At our 

university, we have been involved in research on tuna 

farming. In fish farming, maintaining the number of fish 

is generally important for stock management, feed 

volume adjustment, and so on. Various studies [1]-[8] 

and products [9]-[11] are aimed at automatically counting 

fish. For example, [9] uses a smartphone camera to count 

fish during movement in a pipe between fish cages. 

However, the survival rate of tuna is low, particularly 

in fish cages. Therefore, the development of stress-fee 

methods for counting tuna in a cage is important for tuna 

farming. Sonar-based methods [1], [2] and camera-based 

methods [3]-[7] are non-contact counting methods. In this 

study, we evaluated the use of multiple scanning sonars 

for counting fish in a cage. 

In addition, we use a simulation approach to evaluate 

our counting system. The application of multiple sonars 

enables more accurate counting compared with previous 

methods. In addition, by using a simulation approach, the 

fundamental performance of the newly developed 

counting system based on multiple sonars can be 

evaluated using various parameters. 

An overview of our fish counting system is illustrated 

in Fig. 1. In our counting system, we assume that the cage 

is cylindrical, as is common in tuna farming. Around each 

fish cage are located multiple sonars that use different 
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ultrasound frequencies to avoid interference. To estimate 

the number of fish in a cage based on coordinates 

obtained from multiple sonars, we use a hierarchical 

clustering method. To demonstrate the fundamental 

performance of our fish counting system, we evaluate its 

estimation accuracy by simulation experiments in which 

the number of fish, number of sonars, and size of fish are 

varied. 

 
Fig. 1. Fish counting using multiple scanning sonars in a fish cage. 

The rest of this paper is organized as follows. In 

section II, we introduce related work. In section III, we 

explain the fish farm model, the fish model, and the sonar 

model adopted in this study. Then, we explain the 

clustering-based counting method for fish using sonar 

outputs in section IV. We describe the performance of 

our method, as determined by a simulation approach, in 

section V. Finally, we conclude with an outlook toward 

future work in section VI. 

II. RELATED WORK 

A. Research on Fish Counting 

There are some commercially available fish counters 

for fish farms [9]-[11]. For example, the NEC fish 

counter [9] is a smartphone application for counting fry 

flowing through a pipe. However, it cannot be applied to 

a fish cage. The NEC farmed fish size measurement 

service [12] uses two stereo cameras not to count fish but 

to determine the average fish size. 

Some researchers have proposed methods for counting 

fish in fish farms [1], [3], [4], [8] or in natural marine 

environments [5]-[7]. Most previous work has focused on 

the use of cameras for counting [3]-[7]. For example, Ref. 

[4] used an omni-directional camera to count fish in a 

cage. One drawback of camera-based counting methods 
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is that their performance is affected by environmental 

conditions, such as water turbidity, light intensity, and so 

on. In addition, the performance of single camera-based 

counting methods is reduced by occlusions (i.e., when 

fish hide behind other fish). 

An alternative approach for counting fish is sonar-

based methods [1], [2]. Sonar is often used to estimate the 

amount of fish in the sea [13]. Low-cost sonar-based fish 

detectors are now commercially available (at around 100 

USD) for personal use, such as for fishing. Some 

researchers have applied sonar to fish farms. In [1], dual-

frequency identification sonar was used to estimate the 

number and size of farmed fish. However, in this method, 

only a single sonar is used. 

In this study, we consider the use of sonars for 

counting fish within a fish cage. The main difference 

between our analysis and previous studies is our use of 

multiple sonars for counting fish. In addition, we also use 

a simulation approach to demonstrate the fundamental 

performance of multiple sonars. 

B. Research on Fish Farm Monitoring 

Our research group has previously proposed a fish 

farm monitoring system [14]-[16]. In this research, the 

target fish is tuna and a sensor node is attached to fish to 

monitor the health status of individuals. We previously 

proposed a method for gathering sensor data from nodes 

attached to fish at a sink node [14]. We have also shown 

that fish size influences data collection in a fish cage [15]. 

In this study, we assume that fish are cuboid in shape for 

simplicity. We use the same previously described model 

[15] to investigate the fundamental characteristics of 

sonar-based counting in fish farms. 

III. MODEL 

In this section, we explain the fish cage model, fish 

model, and sonar model. The fish farm model is based on 

the fish farm at our university, as in our previous studies 

[14]-[16]. The major notations used in this paper are 

summarized in Table I.  

TABLE I: NOTATIONS 

Fish cage 

R Fish cage radius 

H Fish cage height 

Fish 

NF Number of fish 

fi The i-th fish in the fish cage 

F The set of all fish 

𝛼, 𝛽 Cuboid parameters 

𝜑𝑖 Rotation angle of the i-th fish 

dF Fish size 

Sonar 

NS Number of sonars 

𝜃 Apex angle of the sensing region of sonar 

𝛿 Angular resolution of sonar 

L Radius of the sonar sensing region 

NC Number of coordinates 

ci The i-th coordinate obtained from sonars 

C0 The set of all coordinates 

Counting method 

Ci The i-th cluster 

C The set of all clusters 

D Threshold of clustering 

𝑁 Estimated number of fish 

A. Fish Cage Model 

In this paper, the fish cage is a cylinder with a radius of 

R and a height of H, as shown in Fig. 2. We define the x-, 

y-, and z-axes as shown in Fig. 2. The number of fish in 

the cage is denoted by NF, and the set of fish in the cage 

is denoted by 𝑭 = {𝑓𝑖  | 1 ≤ 𝑖 ≤ 𝑁𝐹}. 

 
Fig. 2. Fish cage model. 

B. Fish Model 

For simplicity, we assume that the shape of fish fi is a 

cuboid with length dF, width 𝛼𝑑, height 𝛽𝑑, and rotation 

angle with respect to the z-axis representing 𝜑𝑖, as shown 

in Fig. 3. Here, 𝛼 and 𝛽 are size parameters; we assume 𝛼 

= 0.2 and 𝛽  = 0.4 [15] in this paper. In addition, we 

assume that all fish in the fish cage are of equal size and 

the rotation angle 𝜑𝑖 of fish varies among individuals. 

 
Fig. 3. Fish model. 

Here, the size of fish d is dependent mainly on the age 

of the fish. For example, in tuna farming, when fry are 

released from an indoor tank to an outdoor fish cage, they 

are approximately 5 cm in length. After several years, the 

tuna reach around 100 cm, at which point they are 

harvested. 
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C. Sonar Model 

In this paper, we assume that there are multiple sonars 

si (1 ≤ 𝑖 ≤ 𝑁𝑆) near the fish cage. Here, NS is the number 

of sonars. Fig. 4 shows an overview of sonar used in this 

paper. We assume an ideal sonar to evaluate the 

fundamental performance of our counting system through 

simulations. Each sonar outputs ultrasonic waves at an 

interval of 𝛿, as shown in Fig. 4, and the coordinates of 

obstacles are thus obtained. Here, the j-th coordinate 

obtained from sonars is denoted by cj = (xj, yj, zj) and the 

whole set of coordinates from all sonars is denoted by 

𝑪𝟎 = {𝑐𝑗  | 1 ≤ 𝑗 ≤ 𝑁𝐶} , where NC is the number of 

coordinates obtained from sonars. 

 

 
Fig. 4. Sonar model. 

The sonar sensing region is a portion of a sphere 

whose apex angle is 𝜃 and radius is L. For example, in 

Fig. 4, sonar can obtain the information on the 

coordinates of the red points and can detect obstacles. 

Here, if an obstacle is located behind the detected 

obstacle, information about the hidden obstacle cannot be 

obtained by sonar. This problem is called the occlusion 

problem in the area of image processing. In Fig. 4, sonar 

cannot be used to obtain the coordinates of obstacle B but 

it can be used to obtain the coordinates of obstacles A and 

C. Here, if there are multiple sonars and one can obtain 

the coordinates of obstacle B, the whole system can 

detect all three obstacles. 

IV. METHOD FOR COUNTING FISH 

In this paper, we use a hierarchical clustering method 

for coordinates obtained from multiple sonars. Then, the 

number of fish is estimated based on the number of 

clusters. Here, we assume that the fish size dF is known a 

priori. 

The pseudo code for our fish counting method is 

shown in Fig. 5. The procedure consists of the following 

three steps. 

1. First, NC clusters (C1, C2, …, CNC) are generated, 

each of which consists of one coordinate. Here, 

𝑪𝒊 = {𝑐𝑖 ∈ 𝑪𝟎} (1 ≤ 𝑖 ≤ 𝑁𝐶) is the i-th cluster, and 

the set of all clusters is denoted by 𝑪 = {𝑪𝒊 | 1 ≤
𝑖 ≤ 𝑁𝐶}. 

2. The two clusters 𝑪𝒑  ∈ 𝑪 and 𝑪𝒒  ∈ 𝑪, separated by 

the minimum distance, are selected from the set of 

clusters C. In this study, we use the group average 

method as the distance function dC(Ci, Cj) between 

clusters Ci and Cj as follows: 

𝑑𝐶(𝑪𝒊, 𝑪𝒋) =
1

|𝑪𝒊||𝑪𝒋|
∑ ∑ 𝑑(𝑐𝑘 , 𝑐𝑙)

𝑐𝑙∈𝑪𝒋𝑐𝑘∈𝑪𝒊

 

Here, d(ck, cl) is the Euclidean distance between 

coordinates ck and cl. 

3. If the distance dC = dC(Cp, Cq) is less than or equal 

to the threshold D, two clusters Cp and Cq are 

merged into a single cluster and step 2 is initiated. If 

the distance dC is greater than the threshold D, the 

clustering procedure is finished, and the estimated 

number of fish 𝑁̂ is calculated as 𝑁̂ = |𝑪|. 

 
Fig. 5. Pseudo code for our fish counting method. 

In this method, if the threshold D is too small, 

coordinates for one fish are divided into several clusters, 

as shown in Fig. 6(a). As a result, the estimated number 

of fish exceeds the actual number. On the other hand, if 

the threshold D is too large, coordinates for multiple fish 

are grouped into one cluster, as shown in Fig. 6(b), and 

the estimated number of fish is less than the actual 

number. Therefore, the threshold D should be set 

appropriately. Here, the maximum distance between 

coordinates obtained from one fish model is 

𝑑𝐹√1 + 𝛼2 + 𝛽2 , which is the length of the space 

diagonal of the cuboid. Therefore, the threshold should 

satisfy 𝐷 < 𝑑𝐹√1 + 𝛼2 + 𝛽2 . In this study, we simply 

use D = dF as the threshold value. 

 
Fig. 6. Examples of settings for the threshold D. 

V. EVALUATION 

In this section, we investigate the performance of our 

counting method using a simulation approach. 
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A. Simulation Settings 

For the fish cage model, we used a cylinder with radius 

R = 15 m and height H = 10 m, consistent with the size 

used at our university. The size of fish dF varies in the 

range of 0.1 ≤ 𝑑𝐹 ≤ 1.0.  
In the simulation, fish are deployed one by one. The 

location of each fish is randomly selected in the fish cage, 

and the rotation angle 𝜑𝑖  of fish fi is randomly chosen, 

where 0 ≤ 𝜑𝑖 ≤ 360°. At the time of the deployment of a 

new fish, if another fish exists in the same area, the 

location and the rotation angle of the new fish are 

randomly chosen again. 

In this study, we consider a maximum of three sonars, 

as shown in Fig. 1. The apex angle is set to 𝜃 = 160°, 

and the angular resolution is set to 𝛿 = 1°. The first sonar 

is located in the center of the fish cage's bottom. The 

second sonar is located at height H/2 on the side of the 

fish cage. The third sonar is located across from the 

second sonar. All sonars are located 3 m away from the 

fish cage and are positioned facing the center of the cage. 

B. Examples of Obtained Coordinates 

Figures 7, 8 and 9 show examples of coordinates 

obtained from sonars. In Fig. 7, the fish size is set to dF = 

1 m, the number of sonars is set to NS = 3, and the 

number of fish NF is set to 100, 500, and 1000. As shown 

in Fig. 7, the number of coordinates obtained from sonars 

increases according to the increase in the number of fish. 

 

(a) NF = 100 (b) NF = 500 (c) NF = 1000
 

Fig. 7. Examples of acquired coordinates according to number of fish NF (dF = 1 m, NS = 3). 

(a) dF = 0.1 m (b) dF = 0.5 m (c) dF = 1 m
 

Fig. 8. Examples of acquired coordinates according to fish size dF (NF = 1000, NS = 3). 

(a) NS = 1 (b) NS = 2 (c) NS = 3
 

Fig. 9. Examples of acquired coordinates according to number of sonars NS (NF = 1000, dF = 1 m). 

In Fig. 8, the size of fish dF is varied while the number 

of fish is NF = 1000 and the number of sonars is NS = 3. 

As shown in Fig. 8, the number of coordinates increases 

according to the increase in fish size. 

In Fig. 9, the number of sonars NS is varied. In Fig. 

9(a), when the number of sonars is one, the first sonar is 

used. When the number of sonars is two in Fig. 9(b), both 

the first and the second sonars are used. When the 

number of sonars is three in Fig. 9(c), all sonars are used. 
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As shown in these figures, the number of coordinates 

increases according to the increase in the number of 

sonars. 

C. Evaluation of Fundamental Performance 

We first evaluate the fundamental performance of our 

counting method. As an evaluation index, we used the 

mean absolute error (MAE) eMAE and the mean error (ME) 

eME, respectively calculated as follows: 

𝑒𝑀𝐴𝐸 =
1

𝑀
∑ |𝑁̂𝑖 − 𝑁𝐹|

𝑀

𝑖=1

 

𝑒𝑀𝐸 =
1

𝑀
∑(𝑁̂𝑖 − 𝑁𝐹)

𝑀

𝑖=1

 

Here, 𝑁̂𝑖 is the estimation result for the i-th simulation, 

and M is the number of simulations. In this paper, we 

conducted M = 100 simulations.  

 
(a) MAE according to the number of fish NF (dF = 0.5 m) 

 
(b) MAE according to the size of fish dF (NF = 800) 

Fig. 10. Mean absolute error (MAE) according to the number and size 

of fish. 

Fig. 10(a) shows the MAE according to the number of 

fish NF and the number of sonars NS when fish size is 

fixed to dF = 0.5 m. Fig. 10(b) shows the MAE according 

to the size of fish dF and the number of sonars NS when 

the number of fish is fixed to NF = 800. As shown in Figs. 

10(a) and 10(b), by increasing the number of sonars, 

MAE decreases. For example, when the number of fish is 

NF = 1000, the MAE is around 100 in the case of a single 

sonar. By increasing the number of sonars to three, the 

MAE decreases to around 20. This is because the rate of 

occlusion decreases as the number of sonars increases, as 

explained in section III-C. 

MAE increases according to the increase in the number 

of fish NF, as shown in Fig. 10(a). This is because the rate 

at which occlusion occurs increases according to the 

increase in the number of fish in each cage. In addition, 

because distances between fish also decrease as the 

number of fish increases, the possibility of obtaining 

coordinates from multiple fish in close proximity 

increases and the possibility of failed clustering increases. 

We then investigate the relationship between MAE and 

fish size dF. As shown in Fig. 10(b), MAE increases as 

fish size dF decreases. This can be explained by the small 

fish size compared to the angular resolution of sonar 

𝛿 = 1°; some fish cannot be detected by sonar. MAE also 

increases as fish size increases, as shown in Fig. 10(b). 

This reason is similar to that described in previous section. 

When fish size increases, the rate at which occlusion 

occurs increases and the possibility of failed clustering 

increases. As a result, MAE increases. 

 
(a) ME as a function of the number of fish NF (dF = 0.5 m) 

 
(b) ME as a function of the size of fish dF (NF = 800) 

Fig. 11. Mean error (ME) as a function of the number and size of fish. 

Figures 11(a) and 11(b) show ME as a function of the 

number of fish NF and the size of fish dF, respectively. 

When we compare Fig. 10(a) and Fig. 11(a), the graphs 

are approximately vertically symmetrical. Figures 10(b) 

and 11(b) are also approximately vertically symmetrical. 

This symmetry indicates that the number of fish 

estimated by our counting method tends to underestimate 

the actual number. Therefore, the combined effect of 

multiple fish clustering together and of occlusion are 

greater than the effect of a single fish clustering into 

multiple groups. 

D. Improved Counting Method and Its Evaluation 

As described in the previous section, our counting 

method tends to underestimate the number of fish. Here, 
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the low counting accuracy is mainly dependent on the 

location of fish during the sonar scan. In realistic 

conditions, the number of fish in a cage does not change 

frequently. Therefore, for example, it may be possible to 

scan a fish cage several times a day, and record the best 

result. 

In this section, we consider the following number as 

the estimate: 

𝑁̂max = max
1≤𝑖≤𝑀

𝑁̂𝑖 

Here, we assume that scanning is performed M times 

over a certain time period, and 𝑁̂𝑖 is the estimation for the 

i-th scan. We refer to this as the improved method. In this 

case, the estimation error can be calculated as follows. 

𝑒 = 𝑁𝐹 − 𝑁̂max 

 

 
(a) Error as a function of the number of fish NF (dF = 0.5 m) 

 
(b) Error as a function of the size of fish dF (NF = 800) 

Fig. 12. Error as a function of the number and size of fish. 

Figures 12(a) and 12(b) summarize the simulation 

results. For comparison, we also show the results 

described in the previous section (Figs. 11(a) and 11(b)) 

as a baseline. As shown in Figs. 12(a) and 12(b), the error 

of the improved method is smaller than that of the 

baseline method for all parameter settings. For example, 

as shown in Fig. 12(b), when the number of sonars is NS 

= 3 and the size of fish is 0.3 ≤ 𝑑𝐹 ≤ 0.6, it is possible to 

estimate the number of fish accurately, with an error of 1% 

or less. When the number of sonars is NS = 3 and the fish 

size is dF = 1.0, the relative error of the improved method 

is around 7% whereas that of the baseline method is 

around 9%. To further reduce the error, one approach is 

to improve the clustering method to account for fish 

shape. A detailed discussion and evaluation are aims of 

our future work. 

VI. CONCLUSION 

In this study, we considered the use of multiple 

scanning sonars to estimate the number of fish in a cage. 

To obtain fish counts based on coordinate information 

obtained from multiple sonars, we applied a hierarchical 

clustering method. The fundamental performance of our 

fish counting system was evaluated by simulations with 

different numbers of fish, numbers of sonars, and fish 

sizes. 

In future work, we aim to propose a method for 

estimating the size of each fish in a situation where fish 

vary in size, and we will also consider error in the sonar 

results. In addition, we plan to investigate and propose a 

counting method that uses multiple low-cost and low-

performance sonars. 
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