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Abstract—This paper presents a dual control approach for 

indirect system configuration propagation with energy-efficient 

agent scheduling. The proposed method influences the MNS 

(Multi-agent Networking Systems) operation by indirectly 

propagating the system configuration within the framework of 

local rules. Also, the proposed method adapts agent’s 

operational state according to the convergence rate of 

configuration propagation in order to balance energy 

consumption among agents in the MNS. Finally, we propose an 

optimal timing control for sequent input. Using the operation 

state control model, the gateway agent determines the optimal 

timing to give next input based on the value of the operation 

state. Simulation results are performed to demonstrate the 

superiority of the proposed method and we observe that the 

proposed scheme is less susceptible to error and shows more 

robust performance than the consensus method in an error-prone 

environment. 
 
Index Terms—Multi-agent networking system, configuration 

propagation, energy efficiency 

 

I. INTRODUCTION 

A Multi-agent Networking System (MNS) consists of a 

large number of agents that coordinate autonomously 

based on underlying control laws [1]-[12]. In a MNS, an 

operator directs agents to carry out mission goals or tasks. 

The resulting behaviors the MNS generates depend on a 

set of parameters of agent algorithms or choice of system 

parameters for their operation. In order to perform 

supervisory control of consensus behaviors, the operator 

should convey  appropriate parameter adjustments or 

system  configuration independent of the number of 

agents as intended goals change [13]-[15]. In addition, 

agent members in a MNS are generally battery-powered, 

so they can be easily depleted of energy if they remain on 

active while these controls are exerting to the MNS. This 

leads to the energy imbalance among agents and a shorter 

life-time of the MNS.  

Existing approaches relay influence from the operator 

to the system by broadcasting the parameter change to all 

                                                           
Manuscript received April 30, 2019; revised August 6, 2019. 
This work was supported by the National Research Foundation of 

Korea under Grant No. 2017R1A2B1007779. 
Corresponding author email: heejungbyun@suwon.ac.kr. 

doi:10.12720/jcm.14.9.773-778

agents in the MNS. Walker et al. [16]-[17] focused on 

two methods of information propagation (flooding and 

consensus methods) and compared the ability of operators 

to manage the MNS to the desired goals. Goodrich et al. 

[18] worked on a leader-based control of systems using 

tele-operated leaders based on Couzin’s control laws. 

Pendleton et al. [19] similarly implemented a leader-

based model using both virtual agents and an operator as 

leaders in a system. In [20], the authors proposed a 

single-hop broadcast algorithm for new software 

downloading but agents that are too far from the user will 

not be reprogrammed. In [21], the authors proposed an 

architecture for multi-agent communication networks, in 

which agents are clustered to one or multiple systems and 

each system can be monitored by some central servers 

through a wireless mesh backbone. In this way, the 

existing studies have been addressed the interaction 

problems between operator and multi-agent system, but 

little work has focused on how the system configuration 

should be spread through the MNS via human-agent 

interactions while achieving energy efficiency of the 

system.  

To address concerns, we propose a dual control 

approach for indirect propagation of system configuration 

with an energy efficient agent scheduling in the MNSs. 

First, we propose a method, which influences MNS 

operation by indirectly propagating the system 

configuration from the operator within the framework of 

local rules in the MNS. Second, we design a scheduling 

controller of agent state, in which each agent 

autonomously determines its operation state depending 

on the configuration propagation rate for saving energy 

while balancing energy consumption among agent 

members. 

II. PROPOSED ALGORITHM 

A. Configuration State Propagation Model 

We consider a multi-agent system consisting of N 

nodes. Let N={1,2,…,N} denote the set of nodes in the 

system. The set of neighboring nodes of node i is denoted 

as Ni and the number of neighboring nodes is Ni. The N-

th node is a gateway node. We denote u(t) as the desired 
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system configuration issued by the operator, such as 

command inputs, parameter setting, and parameter 

changes that operator wants to achieve with the MNS at 

time t. Let the vector of the configuration states of all 

agents at time t as x(t) = [x1(t) x2(t) … xN(t)]T where xi(t) = 

[x1
i (t) x2

i (t) … xn
i (t)]T  is the configuration state vector of 

agent i at time t and individual agent has n-dimensional 

configuration state space. The operator interacts with the 

MNS by applying the desired configuration input to the 

gateway agent, while the other agents generate their 

respective configuration state vectors and propagate them 

by interacting with each other following the local control 

law of each agent in the MNS: 

 

   (1) 

The operator gives commands or informs the gateway 

agent of desired configuration sets and parameter changes 

with u(t), after which the user input is transformed into 

configuration state vector and propagated to the MNS 

according to (1). 

B. Operation State Scheduling Model 

When the system configuration issued by the operator 

is spread throughout the MNS, an important aspect to 

consider is to keep the energy consumption of agent 

members balanced. In this section, we propose an 

autonomous operation state control model for each agent 

based on its own configuration state proposed in the 

previous section. We consider two operational modes of 

each agent: active and sleep. In the active mode, an agent 

works normally, sampling and communicating with its 

environment. When the agent is in the sleep mode, the 

radio modules are not in use which helps save its energy. 

The operation state control model focuses on efficient 

power management by scheduling the operation mode of 

each agent. We denote the operation state of agent i as ri, 

which is determined by the following rule: 

       

   (2) 

where ϵr is the control parameter to be chosen and rmin is 

the minimum activation probability value of agents that 

can be set by the operator, which makes the minimum 

number of agents activate. When agent i determines ri, it 

independently generates a random value following the 

uniform distribution within [0, 1]. If the value of ri is less 

than the random value, then the agent goes to sleep; 

otherwise, if it is greater than the random value, the agent 

becomes active by turning on its sensing circuitry. The 

higher value of ri results in a higher probability of being 

active. According to (2), the operation state model works 

in such as way that the minimum activation probability is 

achieved when agent i reaches an equilibrium point, 

where the state of the agent’s configuration converges to 

the user command u(t). As the configuration state of 

agent i is closer to the averaged state among its neighbor 

agents, the value of ri  goes near to zero, which results in a 

lower probability of being active. It means that as the 

configuration state of an agent becomes identical to those 

of its neighbors, the value of ri decreases and the agent 

enters sleep state more frequently, resulting in energy 

savings.  

 
Fig. 1. Numerical results: (a) configuration state and (b) operation state 

Fig. 1 shows the numerical results of the proposed 

controller given by (1) and (2). We consider four agents 

in a MNS. The configuration and operation states of the 

agents except for the gateway one are denoted as x1, x2, x3 

and r1, r2, r3, respectively. We set the initial values of x1, 

x2, x3 to 1, 3, 4, respectively. The user input is initially set 

to u = 4 and changed to u = 2 at 20 min. The minimum 

activation probability value is set to rmin = 0.1. As shown 

in Fig. 1 (a), the configuration states of agents change 

according to the user command and are successfully 

converged to the user command even though each agent 

starts with different initial state. For the operation states 

as shown in Fig. 1 (b), the values of r1, r2, r3 converge to 

the pre-determined value of rmin at the steady state. When 

the user input changes in 20 min, the operation states of 

the agents are also adjusted and finally converged to the 

value of rmin. According to these results, we can see that 

the operation state is affected by the convergence rate of 

the configuration state so that when the configuration 

state approaches user command u(t), the operation state is 

also close to the minimum activation probability rmin.  
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C. Optimal Timing Control 

Another important function is to estimate the system 

state so that the operator can change or properly give 

sequent control input to the system. To support this 

feature, we present an optimal timing control for sequent 

input. Based on the operational state control model, the 

gateway agent determines the optimal time to give next 

input based on the value of operation state of the gateway 

agent. The proposed dynamic is as follows:  

        

(3)  

The gateway agent provides a feedback of the 

operation state to the operator. According to the above 

stability analysis, we know that when the states of all 

agents converge to the desired configuration in the steady 

state that drives the system to rN =rmin. . Therefore, the 

operator can be able to learn to understand system states 

and estimate the timing to give the next control inputs, 

given the feedback from the gateway agent only.  We 

define rD: 

                                (4) 

Then, the operator gives a new input to the system 

when the value of rD is smaller than a predefined constant, 

which is the tolerance for convergence. 

III. SIMULATION RESULTS 

A. Configurations 

To evaluate the performance of our proposed MNS 

model, we developed a simulation environment using 

MATLAB. We compared the performance of the 

proposed method with the consensus method [16], [22]. 

The consensus algorithm is an asynchronous distributed 

protocol for distributed averaging, which aims to 

compute the average values. Each member in a system 

averages the values of all of its neighbors, and adapts its 

own value toward that average. Both the proposed 

approach and the consensus method have distributed 

nature for data propagation and require only simple 

iterative computation, as such the consensus algorithm 

can serve as a baseline for the   comparison. The 

performance comparison is based on four metrics: 

 Configuration state: The system configuration state 

vector controlled by each agent. 

  Operation state: The operation state controlled by 

each agent. 

 Energy difference ratio: The energy consumption 

difference between the agent with the highest energy 

consumption ratio (Emax) and the agent with lowest 

one (Emin) in the MNS. The energy consumption ratio 

of each agent is the ratio of the agent’s consumed 

power to the initial power E0. Then, the energy 

difference ratio is evaluated as  

Emax - Emin 

The energy difference ratio approaching zero means 

that energy balance is achieved. 

 Remained energy ratio: The available energy of the 

agent with the highest energy consumption rate (Emax) 

in the MNS, which is represented as  

(1 - Emax) × 100 (%) 

The higher remained energy ratio means the longer 

lifetime of the MNS. 

The simulation area is 100m × 100m, where the entire 

network is divided into equally shaped grids, and the 

agents are uniformly deployed. We set N = 50, and the 

agent members are arbitrary connected. The gateway 

agent is denoted as R50, which is chosen randomly by the 

operator. The channel capacity is set to 200 kbps, the 

transmission range and carrier sense range to 20m and 

40m, respectively. The current consumption for Tx, Rx, 

and mode switch are set to 17.4mA, 19.7mA, and 

10.05mA, respectively. The mode switch time and back-

off time are set to 300s and 30ms. The parameters of the 

function in (2) are set to ϵr = 1 and rmin = 0.1, respectively. 

B. Results 

 

 
Fig. 2. Operation state adaptation and energy difference ratio for the 

proposed method: (a) operation state and (b) energy difference ratio. 

Fig. 2 (a) shows the operation state adaptation behavior 

for the proposed method. We set the initial values of r1, r2, 
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r3 to 0.2, 0.3, 0.4, respectively. From the result, it can be 

seen that the operation state of each agent is 

autonomously adjusted and converged to the pre-defined 

value of rmin even though it starts from different initial 

operation states. Also, the operation state is automatically 

adjusted and stabilized according to the change of the 

configuration state and user input as well. Fig. 2 (b) 

shows the energy difference ratio for the proposed 

method. After the first user control input is issued, the 

energy difference ratio approaches zero as the operation 

state stabilizes. When the next control input is applied in 

20 min and the operation state is automatically adjusted, 

the energy difference increases slightly and then 

gradually decreases to zero. It means that when the 

operation state is stabilized, the energy difference 

converges toward zero, which indicates that the energy 

balance is achieved because the highest energy 

consumption ratio and the lowest one are almost identical. 

 

 
Fig. 3. Energy efficiency: (a) energy difference ratio difference between 

the agent with the highest energy consumption ratio and the agent with 
lowest one in the MNS and (b) remained energy ratio in the MNS. 

To show the performance of energy efficiency and 

energy balancing, we set the initial power (E0) for each 

differently. We apply the same error condition randomly 

for all agents in the MNS. Fig. 3 (a) shows the energy 

difference between agents with the proposed scheme and 

the consensus scheme. In the case of the consensus 

method, there is no appropriate mechanisms for operation 

adaptation to schedule agent’s state, so we enable the 

agents to be activated stochastically.  

Each agent randomly generates a number and 

compares it with a given threshold. If the probability 

value is larger than the threshold, the agent becomes 

activated. In this simulation, the threshold values are set 

to 0.3 (mid-th), 0.02 (min-th), and 0.7 (maxth), 

respectively. For the metric of energy difference ratio, the 

smaller the energy difference is, the more the energy 

balancing is achieved. As shown in Fig. 3 (a), the 

proposed method shows that the energy difference ratio 

decreases over time and goes near to zero after 350 min.  

It means that the energy consumption ratio is balanced 

among the agents in the MNS. However, in the case of 

the consensus method, the energy difference ratio is 

maintained or becomes larger. In the plot of the 

consensus method with min-th, the energy difference 

ratio suddenly drops to zero after 250 min, which means 

that the agents’ batteries are exhausted. The energy 

depletion with min-th is occurred within a shorter time 

compared to other threshold values, which is caused by 

more frequent activation of agent. Fig. 3 (b) shows the 

remained energy ratio of the proposed and consensus 

schemes.  

According to the result, the proposed method shows 

the highest available energy ratio, but for the consensus 

method, we observe that energy depletion occurs 

relatively early, which leads to a reduction in network 

lifetime. Also, the consensus method with min-th shows a 

much shorter network lifetime than with other threshold 

values.  

 
Fig. 4. Configuration state adaptation according to user input change 

during runtime: (a) consensus method and (b) proposed method. 
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Fig. 4 shows the configuration state adaptation 

behavior for consensus method and the proposed method 

according to control input changes. Both methods show 

that the configuration state values of all agents are 

adjusted according to the user control input changes. For 

the consensus method, however, the malfunction of agent 

2 directly affects the state values of the neighboring 

agents. In the consensus method, the state value of each 

agent is sensitive to changes in its neighbor agents’ states, 

so there is a large difference in state values between 

agents. On the other hand, the proposed method shows 

that the wrong behavior of agent 2 does not have a 

significant effect on the state control of other agents. The 

configuration state change between the agents is not large 

despite the malfunction of agent 2 and it is adapted 

successfully according to the desired user input. This is 

because each agent indirectly uses the configuration state 

of neighboring agents in adjusting its configuration state 

values, which leads to be less susceptible to error 

conditions and more robust performance. 

Based on these results, we can see that the proposed 

method automatically adjusts the operation state of each 

agent so that the energy consumption ration is balanced 

among the agents. Also, the proposed method can control 

unnecessary energy waste and increase network lifetime 

effectively by automatically adjusting the operation state 

according to the configuration state. 

IV. CONCLUSIONS 

This paper presents a dual control approach for energy 

efficient MNS interaction system. First, for the system 

configuration control, the proposed scheme indirectly 

influences the consensus operation of the multi-agent 

networking system by propagating the configuration state 

values to the system based on the proposed control laws 

of each agent.  

Second, we propose a controller for agent’s operational 

state scheduling according to the configuration 

propagation. Each agent determines the rate of 

propagation by reducing the number of message to be 

exchanged while keeping the energy consumption of 

agent members balanced.  

Third, we propose an optimal timing control for 

sequent input. Using the operation state control model, 

the gateway agent determines the optimal timing to give 

next input based on the value of the operation state. From 

the simulation results, we observe that the proposed 

scheme is less susceptible to error and shows more robust 

performance than the consensus method in an error-prone 

environment.  

An important area for further study includes the 

selection of the values of parameter rmin and ϵr, estimation 

of performance impact of applied parameters, and state 

modeling of moving MNS. This research could also 

investigate the effective collaboration among agents for 

appropriate decision making. 
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