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Abstract—Elliptic curve cryptosystems are nowadays widely 

used in public communication channels for network security. 

Their security depends on the complexity of solving the elliptic 

curve discrete logarithm problem. But, there are several general 

attacks in them. Elliptic curve arithmetic is implemented over 

complex fields to improve the security of elliptic curve 

cryptosystems. This paper begins the characteristics of elliptic 

curve cryptosystems and their security services. Then we 

discuss finite field arithmetic and its properties, prime field 

arithmetic, binary field arithmetic and complex number 

arithmetic, and elliptic curve arithmetic over prime field and 

binary field. This paper proposes how to implement complex 

number arithmetic under prime field and binary field using java 

BigInteger class and we implement elliptic curve arithmetic and 

elliptic curve cryptosystems using complex numbers over prime 

field and binary field and discuss the experiments that got from 

our implementations. 
 
Index Terms—binary field, complex number, elliptic curve, 

experiments, implementation, prime field 

 

I. INTRODUCTION 

Elliptic Curve Cryptosystem (ECC) is a public key 

cryptosystem. In ECC every entity connecting in the 

public communication channel generally has a pair of 

keys, a public key and a private key to perform 

cryptographic transformations such as encryption, 

decryption, signing, verification and authentication. The 

private key must be kept secret but the corresponding 

public key is distributed to all entities connecting in the 

public communication channel. ECC provides the 

security services such as data confidentiality, data 

integrity, message authentication, entity authentication, 

non-repudiation, and public key distribution. 

Nowadays, ECC becomes a major role in the industry 

of information and network security technology. It 

becomes the industrial standard as a consequence of an 

increase in speed and a decrease in power consumption 

during implementation as a result of less memory usage 

and smaller key sizes. Its security depends on the 

complexity of solving the Elliptic Curve Discrete 

Logarithm Problem (ECDLP). The ECDLP is considered 

as a complex problem, but attackers are still making an 
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effort to achieve a difficult task on ECDLP until now. 

Several attacks have been created, experienced and 

analyzed by experts in mathematics and computer science 

over the years, to discover flaws in ECDLP. Some attacks 

have done successfully, but others have not.  

This paper proposes how to implement complex 

number arithmetic under prime field and binary field 

using java BigInteger class and we implement elliptic 

curve arithmetic and elliptic curve cryptosystems using 

complex numbers over prime field and binary field. The 

structure of this paper is as follows. The section 2 

includes finite field arithmetic and their properties, prime 

field arithmetic, binary field arithmetic and complex 

number arithmetic. In section 3, we discuss elliptic curve 

arithmetic over prime and binary fields, its geometric 

properties, the ECDLP and its properties. The section 4 

describes how to implement arithmetic operations of 

complex numbers under prime field and binary field and 

how to implement ECC using complex numbers under 

prime field and binary field. Finally, the section 5 

discusses the arithmetic properties of complex numbers 

and the security of ECC implemented over finite fields of 

complex numbers. 

II. FINITE FIELD ARITHMETIC 

A. Introduction 

A finite field, generally denoted by F , is a field that 

contains a finite number of elements. A finite field can be 

applied to the rational number system, the real number 

system and the complex number system. It contains a 

finite number of elements together with two arithmetic 

operations: addition denoted by the symbol + and 

multiplication denoted by the symbol · that satisfy the 

following arithmetic properties [5]: 

 The Law of Commutativity: ;xyyx   

,.. xyyx  for all Fyx , . 

 The Law of Associativity:  );()( zyxzyx   

),.().( zyxzyx   for all Fzyx ,, . 

 The Law of Distributivity: ,..)( zyzxzyx   for all 

Fzyx ,, . 

 The Law of Identity: Zero, denoted by 0, is the 

additive identity so that zz  0 for all Fz . 
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Besides, one, denoted by 1, is the multiplicative 

identity so that zz 1. for all Fz . 

 The Law of Additive Inverse. For any Fz , there 

exists a unique additive inverse Fz so that 0)(  zz .  

 The Law of Multiplicative Inverse. For any 

Fz where 0z , there exists a unique 

multiplicative inverse Fz 1  so that 1. 1 zz . 

Galois open that the elements in the field to be finite 

and the number of elements should be mp , where p  is a 

prime number called the characteristic of the field and 

m is a positive integer. The finite fields are generally 

called Galois fields and also signified by )( mpGF . When 

m = 1, then the field )( pGF  is called a prime field. 

When 2m , then the field )( mpGF is called an 

extension field. The number of elements in a finite field is 

called the order of the field. Any two fields are 

isomorphic when their orders are the same [1]. 

Finite field F  has additive group that performs on the 

arithmetic addition operation as well as multiplicative 

group that performs on the arithmetic multiplication 

operation. However, the subtraction of field elements is 

defined in the expressions of addition operation. For 

instance, let Fyx , , yx   is defined as )( yx  , where 

y  is the additive inverse of y . Correspondingly, the 

division of field elements is defined in the expression of 

multiplication operation. For instance, let Fyx , with 

0y , yx /  is defined as 1. yx , where 1y  is the 

multiplicative inverse of y  [1].  

B. Prime Field 

A finite field of prime order p is called prime field 

denoted by )( pGF . It contains a set of integer elements 

modul p , }1,,2,1,0{ p with additive and multiplicative 

groups that performed modulo p . For any integer x , 

px mod refers to the integer remainder r that obtained 

upon dividing pbyx . This operation is called reduction 

modulo p . In this case, the remainder r is the unique 

integer element between 0 and 1p , i.e. 10  pr . 

The arithmetic operations of elements over )( pGF are 

performed as the following example (1) [1]. 

Example 1. (Prime Field- )( pGF ) The elements of 

)7(GF  are {0,1,2,...,6}. The followings demonstrate 

arithmetic operations of elements in )7(GF . 

o Addition: 3 + 5 = 1 since 8 mod 7 = 1. 

o Subtraction: 3 − 5 = 5 since −2 mod 7 = 5. 

o Multiplication: 3 × 5 = 1 since 15 mod 7 = 1. 

o Inversion:  35 1   since 5× 3mod 7 = 1. 

o Division: 53 = 2since 953 1  
mod 7 = 2. 

C. Binary Field 

A finite field of order m2 is called binary field denoted 

by )2( mGF . It also refers to the finite field with 

characteristic-two. The elements of )2( mGF can be 

constructed by applying a polynomial basis 

representation defined by the equation (1). In this case, 

the elements of )2( mGF  are the binary polynomials with 

degree at most m −1. 

}1,0{,...)2( 01
2

2
2

2
1

1  



 i

m
m

m
m

m aaxaxaxaxaGF (1) 

f (x) is defined as an irreducible binary polynomial 

with degree m if f(x) cannot be factored as a product of 

binary polynomials with degree less than m. Let a(x) and 

b(x) be the elements of )2( mGF . They are the binary 

polynomials with degree at most m−1. The addition of 

elements in )2( mGF refers to the addition of binary 

polynomials, that is, )()( xbxa  . The multiplication of 

elements in )2( mGF refers to the expression 

)(mod)()( xfxbxa  . Let )()()( xbxaxc   and c(x) be a 

binary polynomial with degree more than m. The result of 

the expression c(x) mod f(x) refers to the unique 

remainder polynomial r(x) with degree less than m that 

obtained upon the division of c(x) by f(x); this operation 

is called reduction modulo f(x). The division of elements 

in )2( mGF refers to the expression )(mod)(/)( xfxbxa . 

The division of elements in )2( mGF is calculated as the 

expression )(mod)()( 1 xfxbxa  . The arithmetic 

operations of elements in GF(2
m
)  are performed as the 

following example (2) [1]. 

Example (2). (Binary Field - )2( mGF ) The elements of 

)2( mGF are generated by the reduction polynomial  

1)( 3  xxxf .The period of the reduction polynomial  

1)( 3  xxxf  is 7123  . Therefore, there are 8 

elements from 0 to 7 in ))(( xfGF . The elements of 

))(( xfGF  are represented by 8 binary polynomials of 

degree at most 2 as shown in Table I. 

TABLE I. BINARY AND POLYNOMIAL REPRESENTATIONS 

Binary Binary Binary Binary 

Polynomial Polynomial Polynomial Polynomial 

000 001 010 011 

0 1 x  1x  

100 101 110 111 

2x  12 x  xx 2
 12  xx  

 

The followings demonstrate arithmetic operations of 

elements in ))(( xfGF . 

o Addition: 653  since xxxx  22 )1()1( . 

o Subtraction: 

653  since )1()1( 2  xx = xx 2 . 

o Multiplication: 

453  since 1)1()1( 232  xxxxx and 

223 )(mod)1( xxfxxx  . 
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o Inversion: 

.25 1   

Since  

.1)(mod)1( 2  xfxx  

Therefore xx  12 )1( . 

o Division: 

.65/3   

Since 
12 )1()1(  xx xxxfxx  2)(mod)1( . 

D. Complex Field 

A finite field with complex numbers is called complex 

field denoted by )(nZ . The complex field over )( pGF  is 

denoted by ))(( pGFZ . Similarly, the complex field over 

)2( mGF  is denoted by ))2(( mGFZ . A complex field 

contains a finite number of complex numbers. A complex 

number is a number that can be expressed in the form 

bia , where a  and b  are integer numbers under one of 

finite fields, in which a  is called the real part, and b is 

called the imaginary part. Geometrically, the complex 

number, bia  , can be identified with the point ),( ba  in 

two-dimensional complex plane by using the horizontal 

axis for the real part and the vertical axis for the 

imaginary part [4]. It is demonstrated in Fig. (1). 

a+bi

real part (a)

im
ag

in
ar

y 
pa

rt 

(b
)

 
Fig. 1. Complex plane 

The following rules are applied for addition, 

subtraction, multiplication, division, reciprocal and scalar 

multiplication that are the arithmetic operations of 

complex numbers over finite field. 

Addition. The addition of two complex numbers 

ibax 11   and ibay 22   is defined by the equation 

(2) [4]. 

ibbaayx )()( 2121  .                      (2) 

Subtraction. The subtraction of two complex numbers 

ibax 11   and ibay 22   is defined by the equation (3) 

[4]. 

ibbaayx )()( 2121  .                         (3) 

Multiplication. The multiplication of two complex 

numbers ibax 11   and ibay 22   is defined by the 

equation (4) [4]. 

ibababbaayx )()(. 12212121                 (4) 

Reciprocal. The reciprocal of a nonzero complex number 

biaz   is defined by the equation (5) [4]. 

i
ba

b

ba

a
z

z 2222

11





                      (5) 

Division. The division of two complex numbers 

ibax 11   and ibay 22   is defined by the equation (6) 

[4]. 

1.  yx
y

x
                               (6) 

Scalar Multiplication. The multiplication of a complex 

number biaz   and the scalar integer k is defined by 

the equation (7) [4]. 

bikakzk ...                           (7) 

Example (3). ( Complex Field over )( pGF ). Let two 

complex numbers, ix 21 and iy 12  , be in 

))7((GFZ . The followings demonstrate arithmetic 

operations of complex numbers in ))7((GFZ . 

o Addition: 

iyx 33 since i)7mod)12((7mod)21(  . 

o Subtraction: 

iyx 16 since i)7mod)12((7mod)21(  . 

o Multiplication: 

iyx 5.  since i)7mod)2.21.1((7mod)1.22.1(   

o Inversion: 

iy 461  since i)7mod
14

1
(7mod)

14

2
(





. 

o Division: i
y

x
25  since )46()21( ii  . 

o Scalar Multiplication: ix 35.5  since 

i)7mod)2.5((7mod)1.5(  . 

Table II shows the power representations of g and 

corresponding binary representations for elements of 

)2( 3GF generated by the reduction polynomial 

1)( 3  xxxf . The element of g = (010) is a generator 

of )2( 3GF . 

TABLE  II. POWER AND BINARY REPRESENTATIONS 

Power Binary Power Binary Power Binary Power Binary 

0 000 g  010 3g  
011 5g  

111 

1 001 2g  
100 4g  

110 6g  
101 

 

Example (4). ( Complex Field over )2( mGF ). Let two 

complex numbers, ix 21  and iy 12 , in 
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)))((( xfGFZ . They can be represented by the power of 

g . Then gix 1 and igy 1 . The followings 

demonstrate arithmetic operations of complex numbers in 

)))((( xfGFZ . 

o Addition: 

iyx 33 since i)001010()010001(   and 

iggyx 33  . 

o Subtraction: 

iyx 33 since i)001010()010001(   and 

iggyx 33  . 

o Multiplication: 

.5. iyx   

Since 

)1()1( iggi   

igggg ).1.1()1..1(   

= ig )1( 2 = ig 6 . 

o Inversion: iy 241   since 11 )1(   igy  

i
gg

g

1

1

1 22 



  

i
gg

g
66

1
  

igg 65    

= gig 2 . 

o Division:  

i
y

x
1  since iiggi 1)1()1( 1   . 

o Scalar Multiplication: ix 155   since 

)1(.5 6 gigx   = ig 16  . 

III. ELLIPTIC CURVE ARITHMETIC 

A. Introduction 

The elliptic curve over finite field )(GFE is a cubic 

curve defined by the general Weierstrass equation (8) 

over GF where GFai   and GF is a finite field [2].  

64
2

2
3

31
2 axaxaxyaxyay                  (8) 

Elliptic curves are driven from the general Weierstrass 

equation (8). The elliptic curve ))(( pGFE  is determined 

by the equation (9) [2]:  

baxxy  32
                          (9) 

where 3p is a prime and )(, pGFba   satisfy that 

0274 23  ba . (a1 = a2 = a3 = 0; a4 = a and a6 = b 

corresponding to the general Weierstrass equation) 

Elements over )2( mGF must be firstly generated by 

using a reduction polynomial )(xf . These elements are 

applied to construct an elliptic curve ))2(( mGFE over 

)2( mGF . The elliptic curve ))2(( mGFE is determined by 

the equation (10) [1]:  

baxxxyy  232                       (10) 

where )2(, mGFba   and 0b .  

The addition of two points on an elliptic curve uses the 

chord-and-tangent rule that results a third point on the 

curve. The addition operations with the points on an 

elliptic curve generate a group with point at infinity O 

serving as its identity. It is the group of points on an 

elliptic curve that is used in the construction of elliptic 

curve cryptosystems. It is the best way to explain the 

point addition rule geometrically. 

Let ),( 11 yxP  and ),( 22 yxQ  be two distinct points on 

an elliptic curve. Assume that the point ),( 33 yxR   is 

obtained by addition of P  and Q . This point addition is 

illustrated in Fig. (2). The line connecting through P  and 

Q  intersects the elliptic curve at the point called R . R  

is the reflection of R  with respect to the x-axis. Assume 

that doubling of P  is ),( 33 yxR  in the case 

of ),( 11 yxP  . This point doubling is illustrated in Fig 

(3). The tangent line drawing from point P  intersects the 

elliptic curve at the point called R . R  is the reflection 

of R  with respect to the x-axis as in the case of addition. 

x

y

P

Q

-R

R  
Fig. 2. Addition  (R = P + Q) 

x

y

P

-R

R  
Fig. 3. Doubling (R = P + P) 

B. Elliptic Curve Arithmetic Over )( pGF  

The followings are algebraic methods for the addition 

of two points on ))(( pGFE  and the doubling of a point on 

))(( pGFE  [2]. 

 PPOOP  and OPP  )( for all 

))(( pGFEP . If ))((),( pGFEyxP  , the point 

),( yx  is signified by (-P) that is called the inverse 

of P. O  is the point at infinity serving as additive 

identity. 
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 (Point Addition). Let ))((, pGFEQP  , ),( 11 yxP   

and ),( 22 yxQ   where .QP   Then 

).,( 33 yxQP   In this case, 21
2

3 xxx    and 

.)( 1313 yxxy    where )/()( 1212 xxyy  . 

 (Point Doubling). Let ))((),( 11 pGFEyxP   

where PP  . Then ),(2 33 yxP  . In this case, 

1
2

3 2xx   and 1313 )( yxxy   where

1
2

1 2/)3( yax  . 

C. Elliptic Curve Arithmetic Over )2( mGF  

The followings are algebraic methods for the addition 

of two distinct points on ))2(( mGFE  and the doubling of 

a point on ))2(( mGFE  [2]. 

 PPOOP   and OPP  )(  for all 

))2(( mGFEP . If ))2((),( mGFEyxP  , the 

point ),( yxx  is signified by (-P) that is called the 

inverse of P. O  is the point at infinity serving as 

additive identity. 

 (Point Addition). Let ))2((, mGFEQP  , 

),( 11 yxP   and ),( 22 yxQ   where .QP   Then 

).,( 33 yxQP  In this case, 

axxx  21
2

3  , 13313 )( yxxxy    

where )/()( 1212 xxyy  . 

 (Point Doubling). Let ))2((),( 11
mGFEyxP   

where PP  . Then ),(2 33 yxP  . In this case, 

ax  2
3 and 33

2
13 xxxy   where

)/( 111 xyx  . 

D. Point Multiplication 

The complexity of solving ECDLP determines the 

security of ECC. Let P and Q be the points on an elliptic 

curve such that Q = kP, where k is an integer number. k is 

called the discrete logarithm of Q to the base P. Known 

two points, P and Q, it is unable to compute k, when the 

group order of the points is enough large [7].  

Point Multiplication is a major operation usually used 

in ECC. The scalar multiplication operation of a integer 

scalar k with a point P on the elliptic curve creates 

another point Q on this curve. The point Q is gotten by 

performing point addition and point doubling operations 

according to bit sequence patterns of integer scalar k. The 

bit sequence patterns of integer k is shown as the equation 

(11)  

01
2

2
1

1 22 kkkkk n
n

n
n  




                 (11) 

where 11 nk and 1,,2,1,0},1,0{  niki  [5]. This 

operation is based on the binary method which scans the 

bit sequence patterns of k either from left-to-right or 

right-to-left. The Algorithm (1) illustrates the scalar 

multiplication operation of a integer scalar k with a point 

P on the elliptic curve using binary method [3]. This 

method can be applied for both elliptic curves over 

)( pGF  and )2( mGF . 

Algorthm (1). Scalar Multiplication of a Point 

Input : point P and integer scalar k 
Output : point Q such that Q = kP 
Begin 

1,,2,1,0},1,0{  niki   
Q=P 
For i = n-1 to 0 do 
{ 
    Q = Point-Doubling of Q 
    If ki = 1 then 
    Q = Point-Addition of P and Q 
} 
Return Q 
End 

IV. IMPLEMENTATION AND EXPERIMENTS 

At first level, the PrimeField class including methods 

for addition, subtraction, multiplication, division, additive 

inverse and multiplicative inverse, finite field arithmetic 

operations of )( pGF  is implemented by using methods of 

java BigInteger class. Similarly, the BinaryField class 

including methods for addition, subtraction, 

multiplication, division, additive inverse and 

multiplicative inverse, finite field arithmetic operations of 

)2( mGF is implemented by using java BigInteger class. 

We have already described how to implement them in our 

paper [6]. At second level, the ComplexFp class 

including methods for addition, subtraction, 

multiplication, division, additive inverse and 

multiplicative inverse, complex arithmetic operations of 

))(( pGFZ , complex field based on )( pGF , is 

implemented by using methods of PrimeField class. 

Similarly, the ComplexF2m class including methods for 

addition, subtraction, multiplication, division, additive 

inverse and multiplicative inverse, complex arithmetic 

operations of ))2(( mGFZ , complex field based 

on )2( mGF , is implemented by using methods of 

BinaryField class. At third level, the ECCFpCx class 

including methods for point addition, point doubling and 

point multiplication, elliptic curve arithmetic operations 

of )))((( pGFZE , the elliptic curve based on complex 

field ))(( pGFZ , is implemented by using methods of 

ComplexFp class. Similarly, the ECCF2mCx class 

including methods for point addition, point doubling and 

point multiplication, elliptic curve arithmetic operations 

of )))2((( mGFZE , the elliptic curve based on complex 

field ))2(( mGFZ , is implemented by using methods of 

ComplexF2m. At fourth level, elliptic curve 

cryptosystems are implemented by using corresponding 

methods of ECCFpCx class and ECCF2mCx class. For 
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the implementation logic design of elliptic curve 

cryptosystems, the general hierarchy is shown in Fig (4). 

BigInteger

Finite Field Arithmetic

PrimeField BinaryField

Complex Number Arithmetic

ComplexFp ComplexF2m

Elliptic Curve Arithmetic

ECCFpCx ECCF2mCx

Elliptic Curve Cryptosystems

First level

Second level

Third level

Fourth level

 
Fig. 4. Implementation logic design 

A. Experiments on ))(( pGFZ  

Suppose that two complex numbers, 

ix 21 , iy 12   and iz 23  are belongs to 

complex field ))7((GFZ , that is, ))7((,, GFZzyx  .  The 

arithmetic of these complex numbers is computed by 

using methods of ComplexFp class. The followings are 

experiments on arithmetic operations of complex 

numbers in ))(( pGFZ . 

o isyx 33 . 

o ixys 21 . 

o iyxs 12 . 

o isyx 5.  . 

o ixys 21/  . 

o iyxs 12/  . 

o izyxzyx 56)()(  . 

o izyzxyxz 13)(  . 

o Additive inverse of x = ix 56)(   and 

0)(  xx . 

o Multiplicative inverse of y = iy 461 
 and 

1. 1 yy .  

B. Experiments on ))2(( mGFZ  

Suppose that two complex numbers, 

ix 21 , iy 12  and iz 23  are belongs to 

complex field ))2(( mGFZ with elements generated by the 

reduction polynomial 1)( 3  xxxf  as shown in Table 

(2), that is, )))(((,, xfGFZzyx  . The arithmetic of 

these complex numbers is computed by using methods of 

ComplexF2m class. The followings are experiments on 

arithmetic operations of complex numbers in ))2(( mGFZ . 

o isyx 33 . 

o ixys 21 . 

o iyxs 12 . 

o isyx 5.  . 

o ixys 21/  . 

o iyxs 12/  . 

o izyxzyx 1)()(  . 

o  izyzxyxz 33)(  . 

o additive inverse of x = ix 21)(   and 

0)(  xx . 

o multiplicative inverse of y = iy 241   and 

1. 1 yy . 

C. Elliptic Curve ElGamal Encryption Scheme  

1) Experiments on )))((( pGFZE  

Let’s consider to encrypt and decrypt the message 

using the elliptic curve 1: 32  xxyE over 

))7((GFZ where 1a and 1b . The followings are 

experiments on elliptic curve arithmetic operations using 

methods of ECCFpCx class. 

a) Key generation 

o Entity A and Entity B agree to choose the point 

)36,33( iiP   as a base point. 

o Entity B chooses an integer 15d  as a private key.  

o Entity B computes 

)1,6()36,33(15 iiiPdQ   as a public 

key. 

b) Encryption 

o Entity A chooses the point )23,12( iiM  as a 

message. 

o Entity A chooses an integer 3r as a random 

number. 

o Entity A computes: 

PrC 1 = )36,33(3 ii  = )44,61( ii  . 

o Entity A computes )(2 QrMC   

= )1,6.(3)23,12( iii  = )53,62( ii  . 

o Entity A sends the points 1C  and 2C  to Entity B as 

cipher texts. 

c) Decryption 

o Entity B receives the points 1C  and 2C as cipher 

texts. 

o Entity B computes the message )( 12 CdCM   

= )44,61.(15)53,62( iiii  = )23,12( ii  . 

2) Experiments on )))2((( mGFZE  

Let’s consider to encrypt and decrypt the message 

using the elliptic curve 1: 232  xxxyyE  

over )))((( xfGFZ where 1a  and 1b . The 

followings are experiments on elliptic curve arithmetic 

operations using methods of ECCF2mCx class. 

a) Key generation 
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o Entity A and Entity B agree to choose the point 

)41,31( iiP   as a base point. 

o Entity B chooses an integer 5d  as a private key.  

o Entity B computes )41,31(5 iiPdQ   

= )14,53( ii   as a public key. 

b) Encryption 

o Entity A chooses the point )43,62( iiM  as a 

message. 

o Entity A chooses an integer 3r as a random 

number. 

o Entity A computes PrC 1 = )41,31(3 ii   

= )21,62( ii  . 

o Entity A computes )(2 QrMC  . 

= )14,53.(3)43,62( iiii  = )0,3( . 

o Entity A sends the points 1C  and 2C  to Entity B as 

cipher texts. 

c) Decryption 

o Entity B receives the points 1C  and 2C as cipher 

texts. 

o Entity B computes the message )( 12 CdCM   

= )21,62.(5)0,3( ii  = )43,62( ii  . 

D. Point Counting 

The number of points on the elliptic curves over 

)( pGF and )2( mGF is computed by our systems, ECCFp 

and ECCF2m, implemented in the reference [7]. The total 

number of points on the elliptic curve 

1: 32  xxyE over )7(GF is 5 and all the points are 

shown in Appendix (A). The total number of points on 

the elliptic curve 1: 232  xxxyyE
 
over )2( 3GF is 

14 and all the points are shown in Appendix (B).  

The number of points on the elliptic curves over 

))(( pGFZ and ))2(( mGFZ is computed by our systems, 

ECCFpCx and ECCF2mCx, implemented in this paper. 

Our systems compute and list all the point on the curve 

by substituting each of the values 0, 1, 2, 3,…,e.t.c in turn 

for real part and imaginary part of x in the curve elliptic 

equation and finding real part and imaginary part of y that 

satisfy the elliptic curve equation.  The total number of 

points on the elliptic curve 1: 32  xxyE
 
over 

))7((GFZ is 55 and all the points are shown in Appendix 

(C). The total number of points on the elliptic 

curve 1: 232  xxxyyE over ))2(( 3GFZ  is 105 

and all the points are shown in Appendix (D).    

V. CONCLUSION 

The sections (4.a) and (4.b) prove that complex 

numbers over finite fields satisfy the arithmetic properties 

of rational numbers over finite fields and they also 

perform the same as arithmetic operations of rational 

numbers over finite fields. The section (4.c) proves that 

complex numbers over finite fields can be used to 

construct the elliptic curve cryptosystems. The section 

(4.d) proves that the total number of points on the elliptic 

curve over finite field of complex numbers is much larger 

than the same curve over finite field of rational numbers, 

that is, the order of the elliptic curve over finite field of 

complex numbers is much greater than the order of the 

same curve over the same finite field of rational numbers. 

This effect increases the complexity of ECDLP. 

Therefore, the security of elliptic curve cryptosystems 

implemented over finite field of complex numbers is 

greatly improved. This approach makes general attacks [8] 

over elliptic curve more difficult. 

 

Appendix A. All points on 1: 32  xxyE over )7(GF . 

0,1 0,6 2,2 2, 5 O 

 

Appendix B. All points on 1: 32  xxyE over ))7((GFZ . 

0, 1 0, 6  1, 2i 1, 5i 2, 2 

2, 5 3, 2i 3, 5i 4, 1i 4, 6i 

5, 3i 5, 4i 6, 1i 6, 6i 1i,1 

1i, 6 1 + 1i, 4 + 3i 1 + 1i, 3 + 4i 2 + 1i, 3 + 2i 2 + 1i, 4 + 5i 

3 + 1i, 3 + 1i 3 + 1i, 4 + 6i 4 + 1i, 3 + 1i 4 + 1i, 4 + 6i 2i, 4 + 1i 

2i, 3 + 6i 1 + 2i, 3i 1 + 2i, 4i 4 + 2i, 5 + 2i 4 + 2i, 2 + 5i 

6 + 2i, 2 6 + 2i, 5 3 + 3i, 6 + 3i 3 + 3i, 1 + 4i 3 + 4i, 1 + 3i 

3 + 4i, 6 + 4i 5i, 3 + 1i 5i, 4 + 6i 1 + 5i, 3i 1 + 5i, 4i 

4 + 5i, 2 + 2i 4 + 5i, 5 + 5i 6 + 5i, 2 6 + 5i, 5 6i, 1 

6i, 6 1 + 6i, 3 + 3i 1 + 6i, 4 + 4i 2 + 6i, 4 + 2i 2 + 6i, 3 + 5i 

3 + 6i, 4 + 1i 3 + 6i, 3 + 6i 4 + 6i, 4 + 1i 4 + 6i, 3 + 6i O 

 

Appendix C. All points on 1: 232  xxxyyE over ))(( xfGF where 1)( 3  xxxf . 

0, 1 4, 3 3, 3 6, 3 2, 7 

4, 7 7, 7 2, 5 6, 5 5, 5 

3, 0 7, 0 5, 0 O  
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Appendix D. All points on 1: 232  xxxyyE over )))((( xfGFZ  where 1)( 3  xxxf . 

0, 1 0, 1i 0, 3 + 2i 0, 2 + 3i 0, 5 + 4i 

0, 4 + 5i 0, 7 + 6i 0, 6 + 7i 2, 5 2, 7 

3, 0 3, 3 4, 3 4, 7 5, 0 

5, 5 6, 3 6, 5 7, 0 7, 7 

2 + 1i, 1 + 2i 2 + 1i, 3 + 3i 3 + 1i, 3 + 4i 3 + 1i, 5i 4 + 1i, 1 + 4i 

4 + 1i, 5 + 5i 5 + 1i, 5 + 6i 5 + 1i, 7i 6 + 1i, 1 + 6i 6 + 1i, 7 + 7i 

7 + 1i, 7 + 2i 7 + 1i, 3i 2i, 4 + 1i 2i, 4 + 3i 1 + 2i, 7 + 4i 

1 + 2i, 6 + 6i 4 + 2i, 1 + 4i 4 + 2i, 5 + 6i 5 + 2i, 5 + 5i 5 + 2i, 7i 

6 + 2i, 2 + 5i 6 + 2i, 4 + 7i 7 + 2i, 1 + 1i 7 + 2i, 6 + 3i 3i, 5 + 5i 

3i, 5 + 6i 1 + 3i, 1 + 4i 1 + 3i, 7i 4 + 3i, 6 + 1i 4 + 3i, 2 + 2i 

5 + 3i, 6 + 5i 5 + 3i, 3 + 6i 6 + 3i, 4 + 4i 6 + 3i, 2 + 7i 7 + 3i, 2 + 1i 

7 + 3i, 5 + 2i 4i, 6 + 1i 4i, 6 + 5i 1 + 4i, 2 + 2i 1 + 4i, 3 + 6i 

2 + 4i, 6 + 3i 2 + 4i, 4 + 7i 3 + 4i, 1 + 1i 3 + 4i, 2 + 5i 6 + 4i, 7 + 2i 

6 + 4i,1 + 6i 7 + 4i,3i 7 + 4i,7 + 7i 5i,7 + 2i 5i,7 + 7i 

1 + 5i, 3i 1 + 5i, 1 + 6i 2 + 5i, 4 + 3i 2 + 5i, 6 + 6i 3 + 5i, 4 + 1i 

3 + 5i, 7 + 4i 6 + 5i, 2 + 1i 6 + 5i, 4 + 4i 7 + 5i, 5 + 2i 7 + 5i, 2 + 7i 

6i, 2 + 1i 6i, 2 + 7i 1 + 6i, 5 + 2i 1 + 6i, 4 + 4i 2 + 6i, 1 + 2i 

2 + 6i, 3 + 4i 3 + 6i, 3 + 3i 3 + 6i, 5i 4 + 6i, 6 + 3i 4 + 6i, 2 + 5i 

5 + 6i, 1 + 1i 5 + 6i, 4 + 7i 7i, 3 + 3i 7i, 3 + 4i 1 + 7i, 1 + 2i 

1 + 7i, 5i 2 + 7i, 4 + 1i 2 + 7i, 6 + 6i 3 + 7i, 4 + 3i 3 + 7i, 7 + 4i 

4 + 7i, 2 + 2i 4 + 7i, 6 + 5i 5 + 7i, 6 + 1i 5 + 7i, 3 + 6i O 
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