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Abstract—Heterogeneous Networks (HetNets), where low-

power nodes are overlaid on the traditional macro base station 

(MBS), have been investigated as a promising paradigm to 

support the deluge of data traffic with higher spectral efficiency 

and energy efficiency. However, the density of BS and the inter-

tier interference are the two important influence factors for the 

network performance implementation. As for the inter-tier 

interferences, time domain Enhanced Inter-cell Interference 

Coordination (eICIC) technique is adopted to mitigate it and 

improve the system capacity for HetNets in LTE-Advanced. In 

this, the reasonable configuration of the density of base stations 

is very essential for the network performance improvement, 

especially for the network energy optimization. Thus in this 

paper, we deduce the closed-form of network energy efficiency 

as a function of the density of BSs with eICIC technology based 

on stochastic geometry theory. Then the impacts of the BSs 

density on the network energy efficiency is further analyzed by 

simulation. Simulation results show that the theoretical 

derivation is verified well by Monte Carlo simulation and the 

reasonable BSs density configuration can improve the network 

energy efficiency effectively. 
 
Index Terms—HetNets, eICIC, energy efficiency, stochastic 

geometry 

 

I. INTRODUCTION 

Data traffic demand in cellular networks has kept on 

increasing at an exponential rate nowadays, and it will 

continue to be strong at least in this decade [1]. However, 

with the scarce spectrum resources, the large demand of 

data traffic is impossible to be satisfied by adding the 

spectrum bandwidth. To solve this problem, 

heterogeneous networks (HetNets) deployment is a trend. 

Heterogeneous network is a new network structure that 

small base stations (SBSs) such as pico, femto and relay 

are overlaid on the traditional macro base stations (MBSs) 

and share the same spectrum with MBSs. In this way, the 

reuse per unit area of the existing spectrum is increased 

cost-effectively and the deluge of data traffic can be 

supported with higher spectral efficiency [2].  
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In heterogeneous networks consisted by MBS and Pico 

Base Stations (PBSs), PBSs usually adopt Cell Range 

Expansion (CRE) to balance the load between MBSs and 

PBSs. CRE is a technique that adds a bias value to 

Reference Signal Received Power (RSRP) from PBSs so 

that more users will choose the PBSs to associate [3], [4]. 

Nevertheless, the pico CRE users which are located in the 

expanded area of the PBSs will suffer severe inter-tier 

downlink interference from MBSs. To cope with the 

inter-tier interference issues, Enhanced Inter-cell 

Interference Coordination is an important feature in LTE-

Advanced, which relies on Almost Blank Subframe (ABS) 

to mitigate the inter-tier downlink interference between 

macrocell and picocell. In eICIC standards, each MBS 

remains silent for ABSs, over which PBS can schedule 

CRE area users with reduced interference [5], [6].  

In addition, with the drastic growth of network 

capacity demand, dense deployment of Base Stations 

(BSs) (especially SBSs) in HetNets offers a cost-effective 

way to increase the reuse per unit area of the existing 

spectrum, which significantly improves the network 

capacity [7]. However, deploying too many BSs will 

cause a lot of energy consumption and a mess of 

interference unavoidably. Therefore, it is very necessary 

to configure reasonable BS density in HetNets from the 

point of view of network energy efficiency optimization.  

The SBS density optimization for network capacity 

improvement was studied respectively in [8]-[11]. 

Specifically, in [8], the closed form solution of the 

network capacity as a function of micro BS density is 

derived on the basis of stochastic geometry model and the 

optimal micro BS density was obtained to maximize the 

network capacity. In [9], a general and tractable 

framework for modeling and analyzing joint resource 

partitioning and offloading in a two-tier HetNets based on 

stochastic geometry was investigated, where the ABS 

ratio and CRE bias were optimized together to maximize 

the network rate coverage. The authors of [10] verified 

that HetNets with low-power nodes (i.e., small cells, 

which may be employed indoors or outdoors) was a 

simpler cost-effective way for system capacity expansion 

compared to conventional cell splitting. In [11], the 

impact of the SBS density on Spectral Efficiency (SE) 

and Area Spectral Efficiency (ASE) was studied 

respectively, and the SBS density was optimized to 

maximize the SE and ASE jointly. 
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The BS density optimization for network energy 

efficiency enhancement was investigated respectively in 

[2], [12]-[15]. To be specific, the BS density for 

maximizing network energy efficiency was optimized by 

stochastic geometry theory for homogeneous network 

with different network loads in [12]. In [13], a density 

threshold of small cells in ultra-dense cellular networks 

was investigated considering the backhaul network 

capacity and energy efficiency. The authors of [14] came 

up with an approximation algorithm to solve the 

intractable user association problem by controlling the 

SBS density dynamically. Furthermore, [2] had proved 

that not only the density of SBS had a notable impact on 

the network energy efficiency, the density of MBS can 

also affect the network energy efficiency. The authors of 

[15] optimized the SBS density and MBS density 

together through traffic-aware sleeping strategies to 

enhance the network energy efficiency. However, these 

works did not consider the eICIC for the inter-tier 

interference coordination in HetNets.  

Since the randomness of the BSs deployment in reality, 

the traditional hexagonal cellular model cannot reflect the 

real network deployment precisely [16]. For this, the 

authors of [17] proposed a tractable analytical model for 

the cellular network deployment that the location 

distribution of BSs was modeled as spatial Poisson Point 

Process (PPP). Based on the PPP model, the network 

performance such as average achievable data rate, 

coverage probability, rate coverage and energy efficiency 

can be derived as closed-form expressions.  

 The main contributions of this paper are as follows. 

Firstly we deduce the closed-form expression of the 

network energy efficiency based on the stochastic 

geometry theory. Then the impacts of SBS density and 

MBS density on the network energy efficiency are 

analyzed in detail. 

The rest of this paper is organized as follows. The 

system model is described in Section II. The analytical 

model is given in Section III, where we can obtain the 

closed-form expression of network energy efficiency. 

Numerical results and discussions are presented in 

Section IV. Concluding remarks are given in Section V. 

II. SYSTEM MODEL 

A two-tier HetNets consisting of MBSs with higher 

transmission power and PBSs with lower transmission 

power is considered, as shown in Fig. 1. Let  1,2k  

to denote the tier index. Without any loss of generality, 

let the macrocells be tier 1 and the picocells constitute 

tier 2. We assume that the MBSs and PBSs are spatially 

located according to a homogeneous Poisson point 

process (PPP) m  and p  with density m  and p  

respectively in the Euclidean plane. The UEs are also 

distributed according to a different independent PPP u  

with density u . To mitigate the downlink interference 

from MBS to pico CRE users, ABS scheme is adopted in 

MBS, where all the subframes are configured as the ABS 

subframes and the non-ABS subframes in time domain 

respectively. We denote   to be the ABS ratio, i.e. the 

proportion between the amount of ABS subframes and 

the number of the entire subframes. The transmission 

power of MBS in ABS and Non-ABS subframes are 0w  

and mP  respectively. In ABS subframe, picocells still 

suffer from Cell-specific Reference Symbol (CRS) 

interference which is transmitted at regular intervals by 

MBS. Therefore, we assume that CRS interference 

cancellation is ignored in pico for analysis simplicity.  

The transmission power of PBSs is denoted as pP .   

We consider a cell association based on the maximum 

biased Reference Signal Received Power (RSRP), where 

a User Equipment (UE) is associated with the strongest 

BS in terms of the biased received RSRP at the user. In 

this paper, the association bias for MBS is assumed to be 

unity ( 0dBmB  ) and that for PBS is pico Cell Range 

Expansion (CRE) bias depicted as pB , where 

0dBpB  . According to the cell association, all the 

UEs are divided into three different types as shown in Fig. 

1: the type of MBS UEs contains the users connected to 

the macrocell, the type of PBS CRE UEs corresponds to 

the users located in the expanded region of the picocell 

(i.e. the users receiving a higher RSRP from the MBS 

than from the PBS) and the type of PBS center UEs 

comprises the users distributed in the original coverage of 

picocell (i.e. the users receiving a higher RSRP from the 

PBS than from MBS). Each MBS remains silent on ABS 

subframes, over which PBS can schedule PBS CRE UEs 

with reduced interference. The Non-ABS subframes will 

be assigned to the MBS UEs and the corresponding 

subframes for pico are allocated to the PBS center UEs.  

MBS
MUE

PBS
PBS

PBS center UE
Pico expanded region

Signal

Inter-tier interference Intral-tier interference

Pico original region

PBS CRE UE

 
Fig. 1. The network scenario 

Without loss of generality, we conduct analysis on a 

typical UE at the origin. This is allowed by Slivyak’s 

theorem, which states that there is no difference in 

property observed either at a point of the PPP or at an 

arbitrary point [9]. We adopt the index 

 , ,u c el m p p L  to denote the indication of the 

above three types of UEs respectively, where um  
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represents MBS UEs, cp  denotes the PBS center UEs 

and 
ep  signifies PBS CRE UEs.  

The received signal power of a typical UE l  from a 

BS of k th tier at a distance of 
lr  can be represented as 

k lP hr 
, where 

kP  is the transmission power of BS in 

the k th tier, the variable h  denotes the channel fast 

fading gain, which is modeled as Rayleigh distributed 

with average unit power, i.e.  exp 1h , the term   

is the large scale path loss exponent, which is assumed to 

be the same in both of the two tiers for analysis simplicity. 

Thus, the SINR of a typical UE l  according to its user 

type can be expressed as:  

2 2
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2 2

,1

2

2,

if

if
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where ,k lI  denotes the interference from the k th tier to 

UE l  .  

We restrict that the PBS CRE UEs can only be 

scheduled by PBS in the subframes that are 

corresponding to the MBS ABS subframes. Therefore, 

when = el p , the interference from MBSs, i.e. tire 1, can 

be omitted when the CRS interference cancellation is 

utilized in pico. That is why we just consider 2,lI , i.e. the 

intral-tier interference from pico tier, in the denominator 

of the SINR expression when = el p .  

III. ANALYTICAL MODEL 

A. User Association Probability 

We assume that the nearest distances from a typical 

UE to a PBS and a MBS are denoted by pr  and mr  

respectively. Thus, the user type of this typical UE can be 

defined according to the relationship between the 

received signal strength from its nearest MBS and PBS 

respectively as (2) below:  

, when
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, when

u m m p p p
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e p p m m p p p
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According to the Lemma 1 in [9], corresponding to the 

user type, the user association probability can be defined 

as  PrlA ob l L  , which is given as below: 
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(3) 

where ˆ
p p mP P P , ˆ

m m pP P P , 1 m u    is 

the ratio between the MBS density and user density in the 

Euclidean plane, and 
2 p u    is the ratio of the 

PBS density to user density in the Euclidean plane. 

B. Distribution of Serving BS Distance 

According to the Lemma 2 in [9], corresponding to the 

user type, the distribution of the distance lr  between a 

typical UE l  and its serving BS can be expressed as (4) 

respectively: 

    

    

    

  

2
2

2
2

2
2 1

2
2

2 ˆexp

2
ˆexp

2
ˆexp

ˆexp

u

u

c

c

e

e

l m
m l l m p p p

m

l p

p l l p m m

p

l p

p l l p p m m

p

l p m m

r
f r r B P

A

r
f r r P

A

r
f r r B P

A

r P









 
  

 
  

 
  

  



 
  

  

 
  

  

  
     

 
           

(4) 

C. The Ratio of Almost Blank Subframe 

We set the value of the ABS ratio   to be the 

proportion between the PBS CRE UE association 

probability and all the PBS user association probability 

(i.e. the sum of the PBS CRE UE association probability 

and the PBS center UE association probability) as shown 

in formula (5).  

                        = c

c e

p

p p

A

A A



                                  (5) 

D. Average Achievabe Downlink Rate 

Assume that the network system adopts full buffer 

traffic model and all the users in the coverage of a BS 

share the entire frequency resource equally. Thus, the 

mean achievable downlink data rate of a typical UE l  

can be represented as follows:                

 
 2log 1l

l l

l

W
R E

E N
   

                  (6) 

where lN  is the mean load in a Voronoi cell and the 

expectation of lN  is     1l l kE N A   , when 

= ul m , then 1k   and when  ,c el p  , then 
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2k  . lW  is the time-frequency resource that is 

allocated to user l  and its value depends on the user type 

of user  l . Specifically, when = el p , then 
lW W  and 

when  ,u cl m p , then  1-lW W .  

Based on the analysis above, we get Lemma 1 in the 

following: 

Lemma 1: The average achievable downlink rate of a 

typical UE l can be further deduced as: 

   2
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2
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Corollary 1: With noise ignored, and set the large 

scale path loss exponent =4 , the average achievable 

downlink rate of a typical UE l  can be simplified 

respectively according to its user type as follows:       
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where    1,4, tanQ x x x    . 

E. BS Power Cconsumption and Energy Efficiency 

Generally, BS consists of two types of power 

consumptions: static power consumption and transmit 

power consumption [2]. Then for the k th tier, a BS 

power consumption can be given as follows: 

, ,k k s k k tP P P                             (9) 

where ,k sP  is the static power consumption of a BS in 

the k th tier, which is caused by signal processing, 

battery backup, as well as site cooling, and is independent 

with the BS transmit power. 
,k tP  is the  transmit power 

of a BS for data transmission in the k th tier, and k is 

the load-dependent power consumption coefficient of a 

BS in the k th tier. 

 Note that the transmit powers of MBS in ABS 

subframe and Non-ABS subframe are different. Therefore, 

the system power consumption in ABS subframe and 

Non-ABS subframe will not be the same. Thus, we 

decompose the system power consumption into two parts: 

the system power consumption in ABS subframe 
absP  

and the system power consumption in Non-ABS 

subframe _non absP . Especially, the transmit power 

consumption of MBS for data transmission in ABS 

subframe is assumed to be zero due to its silence in ABS 

subframe.   Combined with (9) and the density of MBS 

and PBS, absP  and _non absP  can be obtained in the 

following respectively: 

2,
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   (11) 

Considering the ABS ratio  , the system total power 

consumption can be derived as: 

                 _1total abs non absP P P                  (12) 

F. Network Energy Efficiency 

The network energy efficiency can be defined as the 

ratio of the effective system capacity over the system 

total power consumption:   
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          (13) 

For convenient derivation, we set =4 , 
2 =0 . Then, 

combining (8), (9)-(13), the expression of the network 

energy efficiency is obtained as follows: 
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where 

   1 , 2 ,s , , ,1 1 +
eu total m s p p p t m m t p p tP P P A P A P A P         . 

Referring to (14), with fixed 
pB , the network energy 

efficiency function  is non-linear with 
1  and 

2 . Thus, 

in the following section, the effections of 
1  and 

2  on 

the network energy efficiency is analyzed by numerical 

simulations. 

IV. NUMERICAL SIMULATION RESULTS 

In this section, we consider a two-tier HetNets 

consisted by MBSs and PBSs. The the effections of 1  

and 2  on the network energy efficiency is simulated 

according to (14) as theoretical results. The Monte Carlo 

simulation is adopted to verify the theoretical results. The 

simulation parameters are summarized in Table I. 

TABLE I: SIMULATION PARAMETERS 

Parameter Value 

Carrier frequency f   2GHz  

Path loss exponent    4  

Path loss L   

   
0

10 log 10 log
m

L L d   

where 

 
2

0
4L f c ,

8
3 10c m s    

MBS transmit power 
mP   or 

,m tP  43dBm  

PBS transmit power 
pP  or 

p,tP  30dBm  

Bandwidth W   10MHz   

MBS static power 
,m sP   800W   

PBS static power 
,p sP  130W  

PBS CRE bias 
pB   3dBm  

 

The network energy efficiency versus 1  with 

different 2 1   and fixed UE density is shown in Fig. 2. 

The simulation results show that the curves of the 

theoretical simulation results can capture the Monte Carlo 

simulation results in practical scenario accurately, which 

verify the validity of our theoretical formulation. With 

different 2 1  , the curves of the network energy 

efficiency keep increasing with the increase of 1  at the 

initial stage. Nonetheless, with 1  further increasing, the 

curves of the network energy efficiency tend to decline 

due to the rise of power consumption caused by the 

increment of MBS density. Therefore, with fixed 2 1   

and UE density, there exits an optimal 1  to maximize 

the network energy efficiency. Furthermore,  the curve of 

the network energy efficiency with higher 2 1  always 

outperforms that with lower 2 1  , which signifies that 

increase the ratio of PBS density to MBS density will be 

more energy efficient for HetNets. 
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Fig. 2. The network energy efficiency versus 
1  with different 

2 1  . 

The network energy efficiency versus 2  with 

different 2 1   and fixed UE density is depicted in Fig. 

3. It also shows that the network energy efficiency with 

higher 2 1   performs better than that with lower 

2 1  . And with the increase of 2 , the network 

energy efficiency curve will rise first and drop. This is 

due to the fact that too many PBSs deployed in the 

network will not only cause severe interference to users, 

but also cause a lot of power consumption, which make 

the network energy efficiency deteriorate severely. 

Therefore, the PBS density should be deployed carefully 

with the given UE density and 2 1  .  
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Fig. 3. The network energy efficiency versus 
2  with different 

2 1  . 

The relationship between the network energy 

efficiency and 1  with different 2  is depicted in Fig. 4. 

The theoretical results match the Monte Carlo simulation 

results very well. The network energy efficiency will 

keep decreasing with the increase of 1 .  Hence, when 

the UE density and PBS density is given, the less MBSs 

are deployed in the HetNet, the higher network energy 

efficiency will be obtained. 

Journal of Communications Vol. 13, No. 2, February 2018

©2018 Journal of Communications 64



0 0.05 0.1 0.15

4

6

8

10

x 10
4

1

N
e
tw

o
rk

 E
n

e
rg

y
 E

ff
ic

ie
n

c
y

[b
it

/w
] 

 

 

Theoretical Simulation 2=2

Monte Carto Simulation 2=2

Theoretical Simulation 2=1

Monte Carto Simulation 2=1

Theoretical Simulation 2=0.5

Monte Carto Simulation 2=0.5

 

Fig. 4. The network energy efficiency versus 
1  with different 

2 . 

The impact of 2  on the network energy efficiency 

with different 
1  is shown in Fig. 5. The network energy 

efficiency curve performs better with lower 1  than that 

with higher 1 .  And all the curves present convex with 

the increase of 2 . Therefore, there exists an optimal 

2  to maximize the network energy efficiency with 

fixed 1  and UE density.  
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Fig. 5. The network energy efficiency versus 

2  with different 
1 . 

V. CONCLUSION 

In this paper, we analyze the effections of the MBSs 

and PBSs densities on the network energy efficiency in a 

two-tier HetNets with eICIC. We first obtain the closed-

form of network energy efficiency as a function of MBSs 

and PBSs densities by adopting stochastic geometry 

theory. Then, the theoretical derivation is verified by 

Monte Carto simulation. Simulation analysis show that 

the network energy efficiency can be improved by 

adjusting the reasonable densities of MBSs and PBSs. 

This work can provide a theoretical basis for 

the deployment of base stations in HetNets with eICIC. 
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