
HawkFlow: Scheme for Scalable Hierarchically Distributed

Control in Software Defined Network

Xiangyang Zhu, Bing Chen, and Hongyan Qian
Institute of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Jiangsu, 211106,

China

Email: {zxycly, cb_china, qhy98}@nuaa.edu.cn

Abstract—Compared with the traditional design of network

architecture, Software Defined Network (SDN) can be

programmed to provide more flexible, fine-grained and

differentiated services because of its control centralization

property. However, with a variety of network functions such as

firewall and multicast are gradually added to the SDN controller,

the heavy computational load on SDN control plane has made it

the bottleneck of whole network architecture in large scale

networks. Among all the solutions proposed in the literature,

distributed control plane is very promising in solving the

problem. This paper presents HawkFlow, a scheme based on

hierarchically distributed control plane, to improve the

efficiency and scalability of SDN control plane. HawkFlow

proposes blocking island theory and network aggregation

mechanism to reduce the searching space of Centralized Single

Controller Routing (CSR) algorithms. Routing requests are

divided into three levels according to the destination IP address,

in which routing processes in local networks are designed to be

CSR to reduce the average routing complexity. Experimental

results show that the mechanisms discussed in this paper can

greatly improve the efficiency of hierarchically distributed

control plane, especially in the networks with large proportions

of local network traffic such as data centers or campus

networks.1

Index Terms—Software defined network, blocking island,

network aggregation, distributed routing

I. INTRODUCTION

The traditional network architecture lacks of global

network view, which makes it unable to dynamically

allocate network resources and provide fine-grained,

differentiated services. Besides, since network functions

are distributed in network devices and “hop-by-hop”

routing protocols are adopted, the end-to-end Quality of

Service (QoS) cannot be guaranteed. To alleviate these

problems, researches on the next generation network have

been launched throughout the world. Particularly,

Software Defined Network (SDN) has succeeded in

drawing the attention of the industry and the academia [1].

SDN decouples the control plane with the forwarding

plane, and the most significant feature of SDN is to

provide centralized control and global view of the

network. SDN abstracts the underlying network resources

Manuscript received May 31, 2016; revised October 19, 2016.
Corresponding author email: zxycly@nuaa.edu.cn.

doi:10.12720//jcm.11.10.910-917

and proposes to utilize a logically integrated controller to

deploy high-level policy. Each switch in the network

communicates with the control plane via a secure channel

implemented by OpenFlow protocol [2], the most famous

and well known technical implementation of SDN.

Network administrators and application developers are

able to configure, manage and optimize network

resources through programming high quality applications.

Application Layer

REST API

Network
Layer

OpenFlow Protocol

OpenVSwitch OpenVSwitch

OpenVSwitch OpenVSwitch

Basic
Modules:

Application
Modules:

REST API

· Link Discovery
· Topology Management
· Route Calculation
· Queue Management
· Flow Cache
· Storage Memory

· … …

· Firewall
· Access Control
· Traffic scheduling
· Load Balancing
· Multicast
· Network Statistics

· … …

Fig. 1. Control plane: waist of SDN architecture

However, along with advantages, SDN also yields

some severe challenges. As is shown in Fig. 1, SDN

control plane serves as the brain and “waist” of the whole

architecture, which contains many basic function modules,

and the characteristics of SDN architecture makes that

various network functions are gradually added to the

control plane, including firewall, load balancing, access

control, resource scheduling, etc. It is just the property of

network control centralization that enables the features of

programmability and flexibility, but the heavy

computational load on SDN control plane may result in

scalability problems. On the one hand, the control plane

needs to interact with all the switches in the network,

while researches show that the amount of data in

OpenFlow channel increases linearly with the number of

service flows and the size of network [3], on the other

hand, centralized control architecture have limited

processing capability. According to statistics, NOX [4]

controller can only handle 30K path calculation requests

per second, while a cluster of 1500 servers can generate

100K new flow requests and a data center composed of

100 switches can generate 10000K new routing

computation requests per second. Simulations on the data

set “The CAIDA Anonymized 2011 Internet Traces

Journal of Communications Vol. 11, No. 10, October 2016

910©2016 Journal of Communications

Dataset” using a self-defined centralized controller

indicate that when the routing request rate exceeds 26K

times per second, the delay will increase dramatically,

which cannot meet the needs of the real time services [5].

In order to improve the efficiency of SDN control

plane, three types of solutions have been proposed in the

literature. NOX, Beacon [6] and SNAC [7] try to improve

the hardware and performance of SDN controller or to

apply more efficient algorithms, but they only provide

limited extra scalability and cannot cope with single point

failure of controller. DevoFlow [8] and DIFANE [9]

attempt to transfer partial control plane tasks to the

forwarding plane, but they require modifications in the

flow table structure and the hardware of switches. ASIC

[10] and Kandoo [11], etc., apply multiple collaborative

controllers to improve the capability of SDN control

plane, these distributed solutions are considered to be

able to solve various problems encountered in SDN.

Compared with Fully Distributed Control Plane (FDP),

Hierarchically Distributed Control Plane (HDP) is more

promising in addressing the scalability problem, because

each controller in FDP needs to maintain the information

of global network, which will consume a lot of storage

space and bandwidth of OpenFlow channel, while only

upper layer of HDP needs to maintain global network

status, which makes it more easier to extend with less

extra overhead. The main contributions of this paper are

as follows:

1) Blocking island theory and network aggregation

methods are applied to reduce the average complexity

of Centralized Single Controller Routing (CSR)

algorithms.

2) The routing requests are divided into three levels to

make full use of advantages of CSR.

3) The fully distributed routing is designed to be an

ordered sequence of CSR, which greatly reduce the

complexity of distributed routing.

The rest of this paper is organized as follows. Section

II reviews the related works. In section III the details of

HawkFlow are presented, including using blocking island

theory and network aggregation to reduce the searching

space of CSR, three levels of routing and fully distributed

routing algorithm. Section IV presents the simulation

environment and results. Finally, Section V concludes the

paper.

II. RELATED WORK

There are several non-standard distributed control

plane schemes that have been proposed in the literature,

they use different information consistency methods and

focus on different problems.

HyperFlow [12] stores the controller status in a

distributed file system named WheelFS, the network is

divided into a number of regions which are managed by

local controllers, but all controllers have to maintain the

global network information, the fully distributed

architecture will reduce the speed of information

synchronization between controllers. Onix [13] maintains

the consistency of the global network state through

Network Information Library (NIB), and it provides a set

of programming APIs for customizing flexible network

applications. NIB is designed to adopt mature distributed

control system solutions, so it may be faced with

problems like poor performance and network state

inconsistency. Master/Slaves [14] is proposed to mainly

improve the reliability of distributed control plane,

working controllers are called Masters, backup

controllers are called Slaves, when the tasks of Masters

will automatically switched to Slaves when they are

detected to be failed. Masters are detected to be failed,

but the architecture does not concern the scalability

problems of distributed control plane. ASIC is designed

to solve load balancing problem between controllers,

especially when a large number of routing requests arrive

at the distributed control plane, ASIC use MySql database

to store network information and achieve information

consistency, but problems of scalability in large scale

networks and distributed routing algorithms are not

discussed.

Kandoo is a kind of hierarchical distributed control

plane, which puts all frequent operations on the local

controllers. The central controller of Kandoo is

responsible for the maintenance of the global network

status and interactions with applications. Kandoo aims to

reduce the information exchange between forwarding

plane and central controller, while lots of operations such

as all routing requests still need to invoke central

controller, it points out that the central controller can also

be distributed control plane, but no detailed

implementation is proposed. ElastiCon [15] is proposed

to adaptively change the number of controllers based on

traffic conditions and the load to improve responsiveness

of the control plane, but the architecture mainly focus on

how to obtain the least number of controllers needed

according to the network status, rather than how to obtain

best performance of given controllers by designing high

efficient distributed control plane architectures.

Among other distributed control plane architectures,

Zebra [16] processes routing requests concurrently

propose a control plane model focusing on evolving inter-

domain routing so that the legacy BGP remains

Software Defined Internet Architecture (SDIA)

considering both intra and inter-domain forwarding tasks.

III. THE HAWKFLOW SCHEME

To address the scalability and performance issues in

SDN, this paper proposes a novel scheme called

HawkFlow that leverages several mechanisms to reduce

the average complexity of routing algorithms. HawkFlow

is based on HDP, for the convenience of discussion, we

assume that the upper-layer control plane is fully

distributed, and each upper-layer controller (called UC)

Journal of Communications Vol. 11, No. 10, October 2016

911©2016 Journal of Communications

through a way of shared data view. Kotronis et al. [17]

compatible. Also, Raghavan et al. [18] introduce a

administrates several lower-layer controllers (called LC).

Each LC manage a local network (called LA) which can

be heterogeneous, the network managed by a UC is called

UA.

The high complexity of distributed routing may lead to

performance decline, but to the best of our knowledge,

the advantages of CSR have not been fully utilized in

distributed control planes. To reduce the average

complexity of routing, we will divide the routing requests

into three levels, in which level-1 and level-2 routing are

regarded as CSR, and apply blocking island theory and

network aggregation mechanism to reduce the searching

space of CSR. Aggregated network is computed by LCs

and reported to UCs when the system is initiated, when a

switch is added, removed or other topology changes take

place, a little aggregated information which is related to

the changed parts needs to be recomputed and uploaded.

The distributed optimal routing is based on CSR, though

there are often many constraints and optimization

objectives in QoS flows, we will propose a general

centralized routing mechanism based on blocking island

theory, since multiple objective optimization is not the

focus of this paper.

A. Centralized Single Controller Routing (CSR)

We propose centralized routing as a Constraint

Shortest Path (CSP) problem. Blocking Island (BI) [19]

theory is used to reduce the searching space for CSR

algorithms. The key idea of BI is transforming the

original network into clusters which contain available

resources information. For a CSP problem, it is crucial to

find out the QoS constraints and the optimization objects.

For example, the typical QoS constraints are bandwidth,

packet loss, delay, delay variation, etc., and the

optimization objects can be least hops, lowest energy

costs, load balancing or other concerned parameters. For

simplicity, we take bandwidth as the only QoS constraint

and hop-count the only optimization object into account,

but note that the conclusions can be generalized to other

QoS requirements or cost metrics.

50M 50M

200M

100M

50M

50M

200M
200M

50M

50M
100M

150M

150M

200M
h1

h3

h4

h2

Fig. 2. BI clusters of network

The network we present is denoted as a directed graph

G(N,A), where N is the set of nodes and A is the set of

links. A routing request is defined by a three tuple

d=(S,T,C), where S and T represent the source and

destination respectively, and C represents the bandwidth

required, R(S,T) represents the set of all routes from S to

T. The main idea of BI is to abstract the available

network resources (e.g., bandwidth) into a hierarchy tree,

the C-BI for a node S is the set of all nodes in the network

that can be reached from S with constraint C. The C-BI

graph of a network is a graph which divides the network

into clusters according to the available bandwidth. Four

key properties of BI used in this paper are listed as

follows:

1) Route existence: For a given request d=(S,T,C), there

are routes existing if and only if S and T are in the

same C-BI.

2) Uniqueness: There is only one C-BI for a given node

S.

3) Inclusion: If Cm<Cn, Cn-BI is the subset of Cm-BI for

a given node.

4) Partition: The whole network is partitioned into

clusters.

Assuming that the C1-BI graph of node S1 has been

constructed, the graph contains N nodes, numbered

S1,S2,…,SN. For a routing request d=(S1,Sn,Bmin), where

n=1,2,...,N and Bmin<C1, then the algorithm will return

"route exist", because S1 and Sn are in the same C1-BI.

For a routing request d=(S1,T,C1) where T is not in C1-BI,

the algorithm will return “route does not exist”, and for

d=(S1,Sn,Bmin) where n=1,2,...,N but Bmin>C1, then the

algorithm will try to construct C2-BI where C2>Bmin. A

blocking island cluster graph is shown in Fig. 2. If given

a request d=(h1,h3,100), we immediately know that the

route does not exist, because h1 and h3 are not in the same

100M-BI; if given d=(h1,h2,150), the algorithm will

return “route exist” immediately since h1 and h2 are in the

same 150M-BI. Assume that we set the cost metric as the

least hops on the route, then we can use CSP algorithms

to compute the optimal route on the 150M-BI of h1, the

nodes not in 150M-BI of h1 will not be taken into

consideration, obviously in this way, the searching space

of routing algorithms has been greatly reduced with

bandwidth guarantee.

According to the definition of BI, BI graph of a

network can be constructed using greedy algorithm

shown in Algorithm 1. The average time complexity of

constructing and updating BI graph of a node is O(A
2
),

while the complexity of judging route existence problem

for a given request is only O(1). After the BI graph is

constructed, CSP algorithms will be executed on it, for a

route r, we define the cost as

 (,)
(,)

r i j
i j r

C C

 (1)

and the bandwidth as

 (,)
(,)

arg min{ | (,) }r i j
i j

B B i j r (2)

where C (i,j) is the cost and B(i,j) the bandwidth of link (i, j).

Obviously, the CSP problem can be formulated as

 (,)arg min{ | , }r S T r min
r

r C r R B B (3)

Journal of Communications Vol. 11, No. 10, October 2016

912©2016 Journal of Communications

Yet we know that the CSP shown in (3) is NP-

complete and heuristic algorithm is needed, we propose

to use Lagrangian Relaxation Based Aggregated Cost

(LARAC) because it can find a good route within average

time complexity 2

2((log))VO A N . Since we only

consider bandwidth as example, the solution of (3) can be

represented as

 (,)(, (,),)N A minr CSR G S T B (4)

In the following we will apply (4) to represent the

optimal route of centralized routing.

ALGORITHM 1: BI GRAPH CONSTRUCTION ALGORITHM
__

ConstructBIGraph(, ,)

1. : { }

2.for all in do

3. if notVisited() then

4. : (, , ,)

5. : . ()

6. end if

7.end for

8.return

N A C

V

v N

v

I ConstructBIByTraverse N A C v

V L add I

ConstructBIByTraverse(, , ,)

9. : { }

10. : {links|incident to and weight }

11.while S { } do

12. : ()

13. : {point|end of }

14. if and () then

15. : { }

16. : {lin

V

N A C v

I v

S v C

e pop S

p e

p I weight e C

I I p

S S

 ks|incident to and weight }

17. end if

18.end while

19.return

__

p C

I

B. Network Aggregation in HawkFlow

The complexity of routing calculation and the

communication overhead are proportional to the network

size, which is determined by the number of switches in

the network, so network aggregation of cost metric and

QoS parameters is essential. To construct aggregated

network topology which only contains border switches,

and each virtual link between border switches represents

all physical links, virtual link parameters need to be

generated from physical parameters. This paper considers

only cost and bandwidth as aggregated parameters, but

the method used is also suitable for other QoS parameters.

In order to improve the accuracy of topology

aggregation, we introduce the concept of Representing

Node (RN) to eliminate partial physical routes. Assuming

that R(S,T) represents the set of routes from S to T, for

any route ri in R(S,T), if there exists a route rj in R(S,T)

satisfying that
i jr rC C and

i jr rB B , then ri should be

eliminated, because its parameters cannot provide higher

guaranteed QoS service, the routes remained are denoted

as RN. If we map the parameters of all RNs on a

rectangular coordinate system, in which the horizontal

axis represents the cost and the vertical axis represents

the bandwidth, then the corresponding ladder diagram

divide the axis area into two parts, one of the parts

contains the optimal parameter for the virtual link. In this

paper, we propose the fitting algorithm for ladder

diagram parameters based on RNs to compress the

number of effective RNs and reduce the distortion of

network aggregation.

B
an

d
w

id
th

Cost

max

mid

min

Original Ladder

Fitting Ladder

Fig. 3. Parabolic ladder fitting

Since the knee points of RNs often cannot form a

straight line, and straight line fitting algorithm may cause

large distortion, so we use parabolic based ladder fitting

algorithm to solve the problem, the rectangular

coordinate system for parabolic ladder fitting is shown in

Fig. 3. Assume that the original staircase is denoted as Q,

we first generate a parabolic fq approving all knee points

using the least square method, and then fq is used to

generate the fitting ladder diagram Sq. The details are

shown in the following steps:

1) The least square method is used to generate the

parabolic fq, and three points (,)q q q

min min minP C B ,

(,)q q q

mid mid midP C B , (,)q q q

max max maxP C B are used to

represent fq,

()

()

()

q s q q

min min min q min

q s q q

mid mid mid q mid

q s q q

max max max q max

C C B f C

C C B f C

C C B f C

 (5)

in which
s

minC ,
s

midC and
s

maxC represent the RN points

with least cost, middle cost and largest cost

respectively.

2) Two intermediate parameters are defined,

1

2

() / (1)

() / (1)

q q

mid min

q q

max mid

b B B mid

b B B m mid

 (6)

in which min, mid and max represent the least point,

the middle point and the max point of parabolic fq

respectively, and m represents the number of RN

points.

3) The cost of RNs on fitting ladder diagram Sq can be

updated as

Journal of Communications Vol. 11, No. 10, October 2016

913©2016 Journal of Communications

1

2

(1) ,1

(1) ,

q

minq

i q

mid

C i b i mid
C

C i mid b mid i max

 (7)

4) The bandwidth of RNs can be updated using fq,

 (),1q q

i q iB f C i max (8)

The fitting ladder can be calculated using (5), (6), (7)

and (8), and the ladder can be represented using seven

key fields (, , , , , ,)q q q q q q

min min mid mid max maxC B C B C B m . In this way,

the parameters of the virtual link can be represented

simply, so the storage of physical routes can be

compressed effectively.

After generating the fitting ladder diagram Sq, we first

calculate K-disjoint minimum cost routes r1,r2,…,rK from

Sq using Dijkstra algorithm, when calculating route rk

(k=1,2,…,K) , links in route r1 to route rk-1 are removed

from the network, then the average cost and QoS

parameters of routes r1,r2,…,rK will be assigned to the

virtual link (S,T). Take bandwidth for example, suppose

that the cost of virtual link is C(S,T) and the bandwidth of

virtual link is B(S,T), (1) and (2) can be used to calculate

the cost Cr and the bandwidth Br of route r, then the cost

of virtual link (S,T) is

 (,)
1

1
i

K

S T r
i

C C
K

 (9)

The bandwidth of virtual link (S,T) is

 (,)
1

1
i

K

S T r
i

B B
K

 (10)

It is worth noting that in the method we determine the

cost and bandwidth of the virtual link mentioned above,

we have to calculate K-disjoint routes, which may unable

to reach the ideal efficiency. Actually, we also can simply

use the parameters of minimum cost route or maximum

cost route as the parameters of virtual link, which method

to be adopted should be decided according to the specific

circumstances. The essence of topology aggregation of

LA is to transfer part of upper-layer control plane

computation tasks to the lower-layer control plane.

C. Three Levels of Routing in HawkFlow

The performance of distributed control plane cannot

increase linearly with the number of controllers, one of

reasons is that information transmission and network

status synchronization between controllers will bring

extra overhead, but a more important reason is that the

complexity of distributed routing is much higher than

CSR. As we know, there exists a large amount of local

traffic in networks like data centers, these local traffic

routing requests should not be treated as distributed

routing generally. To make full use of the advantage of

CSR, the routing requests in HawkFlow are divided into

three levels. In addition, this paper proposes a distributed

routing algorithm based on CSR. Routing requests in

HawkFlow can be divided into three levels because:

1) Through judging the header fields such as IP address

and VLAN id, OpenFlow is capable of differentiating

service flows into three types or network levels, then

“divide and conquer” strategy can be used to handle

these different types of traffic.

2) The CSR algorithm discussed in Section III-A is

suitable for local routing in a LA or an aggregated UA,

because the network size of them is relatively small.

On the contrary, inter-UA routing may involves a

large number of switches, so distributed routing with

two or more UAs , which is more complicated than

CSR is needed.

Notations will be used in later discussions are listed in

Table I.

TABLE I: NOTATIONS TO BE USED

Notation Description

Gg Global network

Ga Aggregated global network

Gli LA, where i=1,2,…,L, L is the number of LAs

Gali Aggregated LA

Gui UA, where i=1,2,…,U, U is the number of UAs

Gaui Aggregated UA

Gagi
 Aggregated global network, except UAi and

destnation LA, where UAi represents source UA in

the ith step of global distributed routing

Sbs Set of border switches

1) Intra-LA routing (level-1 routing)

When a routing request packet is reported to a LC, the

header fields will be analyzed and the source IP and

destination IP will be extracted to determine the network

level of the service flow. If the source IP and destination

IP are judged to be in the same LA, then LC will initiate a

process of intra-LA routing, otherwise the packet will be

forwarded to its UC for further analysis. As mentioned

above, we take intra-LA routing as CSR problem to take

advantage of the low complexity of centralized routing

algorithms. Assuming that the source switch is S, the

destination switch is T, and the bandwidth required is Bmin,

then intra-LA routing can be formulated as

r=CSR(Gli,(S,T),Bmin), where i=1,2,…,L, L is the number

of LAs, and S and T are in LAi, the expression is the

centralized routing discussed in Section III-A.

2) Intra-UA routing (level-2 routing)

Similarly, when a UC receives a routing request packet

from one of its LCs, it will judge whether the destination

node T is in its UA, if S and T are in the same UA, then

UC will initiate a process of intra-UA routing, otherwise

the packet will be published to other UCs. Intra-UA

routing is also designed to be CSR problem, the

difference is that intra-UA routing involves the

aggregated UA topology and UC also participates in

global distributed routing. Each LC uploads both original

topology and aggregated topology to its UC, and then UC

can calculate the aggregated UA topology by combining

these topologies. The optimal path of intra-UA routing

can be given as r=CSR(Gaui,(S,T),Bmin), where i=1,2,...,U,

U is the number of UAs, the source S and the destination

Journal of Communications Vol. 11, No. 10, October 2016

914©2016 Journal of Communications

T are in the same UA but not in the same LA. The virtual

links in the routing will be replaced by LCs with real

links stored when the aggregated versions of LAs are

obtained.

3) Global fully distributed routing (level-3 routing)

Intra-LA and intra-UA routing are designed to be CSR,

which can reduce the average routing complexity. When

UC receives a routing request packet and determines that

the destination T is not in its UA, it will launch a process

of global fully distributed routing. Global distributed

routing is designed as an ordered list of CSR based on

aggregated global topology from source S to destination T.

Assuming that it needs I steps of CSR for a particular

routing request d=(S,T,Bmin), Si is the source node of step

i (S1=S), and UAi is the UA where Si lies, each step i

(i=1,2,…,I) will determine four elements of the final

route: the links inside UAi, the outgoing node of UAi, the

incoming node of UAi+1 and the inter-UA route between

UAi and UAi+1. The last step only determines the final

route inside UAi, and the incoming node of UAi+1 is also

the source node of step i+1.

The optimal route of step i can be formulated as,

ri=CSR(Gagi,(Si,T),Bmin), where i=1,2,…,I, Gagi is the

global aggregated network except UAi and the destination

LA, Si is the source node in UAi of step i, T is the

destination node and Bmin is the required bandwidth. For

step i, the route inside UAi is

iUA i ir r UA (11)

The outgoing node of UAi is

i iUA UA bsOut r S (12)

The source node of Step i+1 is

 1 { | (,) }
i i ii UA UA UA iS In Out In r (13)

The link between UAi and UAi+1 is

 1(,)
ii UA iLink Out S (14)

and the distributed optimal route can be formulated as

1

1
1

()

 (,) ()

i

I

i IA
i

I

i i bs i i i
i

r Link r

r UA S S r UA

 (15)

ad
c

b

2

3

1

14

12

10

11

8

13

9

20

20 30

15

20
20

2020
25

20

20

4

7

6

5

25

15
20

15

l
m 3040

50

30T

S1=S80

100

90

100

100

Step1
15

15

2

3

1

14

12

10

11

8

13

9

15

20

20
20

2020
25

15

20

l

m
3040

50

30T

S2

80

100

90

100

100

f
g

e 4

7
6

5

15

15

20

30

20

25

Step2

2

3

1

14

12

13

15

20

15
l

m
3040

50

30T
S3

80

100

90

100

100

k i

j

h

10

11

8

9

25

20

20

25
20

25

40

Step3

4

7

6

5

25

15
20 15

15

15

2

3

1

14

12

13

15

20

15
l

m
3040

50

30T

80

100

90

100

100

4

7

6

5

25

15
20

15

15

15

10

11

8

920
20

2020
25

20

S4

Step4

Gag1

Gag4

Gag2

Gag3

Fig. 4. Example of global distributed routing

Take the simple topology in Fig. 4 as an example,

assume that the routing request is d=(S,T,20), it will take

4 steps of CSR in total for the fully distributed routing, in

which step 1 is based on Gag1 with UC1 and

r1=((b,c,3),(3,4),4), step 2 compute CSR based on Gag2

with UC2 and r2=((4,e,6),(6,8),8), step 3 compute CSR

based on Gag3 with UC3 and r3=((8,h,k,11),(11,12),12),

and step 4 is based on Gag4 with UC4, r4=(12,l,m). Then

the final distributed optimal route can be obtained easily

by combining the results of these steps.

IV. EVALUATION

In this section, we will test the efficiency of the

scheme proposed through simulations. The experiment

topology is emulated by Mininet 2.2.1 [20] and connected

to a remote control plane implemented using Floodlight

1.1.0 [21]. The major network topology used is consisted

of 7 LAs and 3 UAs, in which LA1 to LA2 belong to UA1,

LA3 to LA5 belong to UA2 and LA6 to LA7 belong to UA3,

each LA includes 20 switches. Border switches are

selected randomly, the bandwidth of intra-LA links are

set to be 400Mbps and other links 800Mbps. Mausezahn

0.38.1[22], an open-source network traffic generator, is

used to generate data flows which can be customized

freely. The whole network is designed using GI-ITM

tools [23], and then Python API provided by Mininet is

used to generate the network.

90M-BI 60M-BI 30M-BI 10M-BI
0

5

10

15

20

25

30

35

40

45

50

BI Graphs

R
o

u
ti
n

g
 T

im
e

(m
s
)

Direct CSR Routing Time

BI Graph Based CSR Routing Time

Fig. 5. Latency of direct and BI based CSR routing

We first test the delay under different network loads

and different proportions of local network traffic. Four

different proportions of local network traffic are selected

for comparison: a) all routing requests are regarded as

level-3 routing, b) 10% level-1 routing and 10% level-2

routing, c) 20% level-1 routing and 20% level-2 routing,

d) 30% level-1 routing and 30% level-2 routing.

Experiment result show that the average delay increases

with the routing request rate, but level-1 and level-2

routing make a great difference to the average delay of

HawkFlow. Generally speaking, if both level-1 and level-

2 routing account for 30% of total routing requests, the

average delay will be reduced by 40% compared to the

case with no local network traffic. The experiment result

shows that dividing routing requests into three levels can

indeed improve the processing efficiency and capability

of the control plane.

Journal of Communications Vol. 11, No. 10, October 2016

915©2016 Journal of Communications

In the discussion of CSR routing, BI is used to reduce

the searching space for CSP algorithm, especially in a

large network. To compare the delay of direct CSR

routing with BI graph based CSR routing proposed in this

paper, a network with 1K switches is constructed for

extensive experiments. The bandwidth of each link is

randomly allocated from 50M to 100M. Four types of

routing requests are designed for 90M-BI, 60M-BI, 30M-

BI and 5-BI respectively. The comparison results are

shown in Fig. 5. The BI graphs used in the simulation can

be constructed in about 2 seconds, they are calculated

when the whole system is initiated, BI graph based

routing have higher efficiency in most cases because they

can shrinks the searching space significantly, except for

the 5M-BI graph whose network size is very close to the

whole graph. Since constructing BI graphs may need a

short time, this may bring a little influence on the CSR

computing time in the initial stage of the system, but this

influence can be ignored with the increase of routing

requests.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Time(s)

L
a

te
n

cy
(m

s)

QoS Flow1

QoS Flow2

QoS Flow3

Fig. 6. Latency before/after network aggregation

In order to estimate the influence of network

aggregation, three QoS flows are specified: a) QoS flow1

is a cross-UA traffic from LA1 to LA7 with bandwidth

100Mbps required, b) QoS flow2 is a cross-LA traffic

from LA3 to LA5, the bandwidth required is 50Mbps, c)

QoS flow3 is a intra-LA flow in LA1, the bandwidth

required is 50Mbps. From Fig. 6, it is easy to note that

before network aggregation is enabled through REST API

(0~15s), the average routing latency is about 20ms, and

the latency of QoS flow1 is much higher than QoS flow2

and QoS flow3. After 15s, when network aggregation is

enabled, the average route computing latency falls to

about 14ms. Although QoS flow3 is not benefit from

network aggregation, because its routing requests belong

to level-1 routing which is based on the original topology,

but the latency of QoS flow1 and QoS flow2, whose

routing requests belong to level-2 and level-3, is reduced

dramatically. Notice that the latency of three flows may

rise after network aggregation is enabled, and QoS flow3

is affected prior to other two QoS flows, because the

computing of aggregated topology and QoS parameters

will consume part of CPU and the bandwidth of

OpenFlow channel, and LCs should first calculate the

aggregated LA, which then be combined by UCs to form

aggregated UA and global aggregated network.

In Fig. 7, we compare HawkFlow with classical HDP

and Kandoo on average routing latency under different

routing request rate. The data flows in network are

randomly generated without customizing the proportion

of local network traffic to simulate the real network

environment. When routing request rate is above 60K/s,

the average latency of HDP shows a sharp rise, and when

routing request rate is above 80K/s, the performance of

Kandoo begin to decline quickly, while HawkFlow

extends the number to 110K/s, and it shows a slowly

rising trend at 120K/s.

1 2 3 4 5 6 7 8 9 10 11 12

x 10
4

0

100

200

300

400

500

600

Routing Request Rate(/s)

L
a

te
n

c
y
(m

s
)

HawkFlow

Kandoo

HDP

Fig. 7. Performance comparison of three schemes

V. CONCLUSION

This paper presents a scheme called HawkFlow to

improve the efficiency of hierarchically distributed

control plane. Blocking island theory and network

aggregation are used to reduce the searching space of

routing algorithms, and routing requests are divided into

three levels to reduce the average time complexity of

routing algorithms. Experiment results show that

HawkFlow scales remarkably than Kandoo and HDP,

especially when local network traffic accounts for a large

proportion, such as in data centers and campus networks,

we also verify the efficiency of CSR based on BI in large

scale networks.

In addition to Floodlight, we plan to apply other open-

source SDN controllers such as NOX for more

experiments, and we will add back-up controllers to

prevent component failures and research for fast-recovery

techniques.

REFERENCES

[2] A. Al-Najjar, S. Layeghy, and M. Portmann, “Pushing

SDN to the end-host, network load balancing using

OpenFlow,” in Proc. IEEE International Conference on

Pervasive Computing and Communication Workshops

(PerCom Workshops), 2016, pp. 1-6.

[3] A. V. Akella and K. Xiong, “Quality of Service (QoS)-

guaranteed network resource allocation via Software

Journal of Communications Vol. 11, No. 10, October 2016

916©2016 Journal of Communications

[1] S. Gorlatch, T. Humernbrum, and F. Glinka, “Improving

QoS in real-time internet applications: From best-effort to

software-defined networks,” in Proc. IEEE International

Conference on Computing, Networking & Communications,

2014, pp. 189-193.

Defined Networking (SDN),” in Proc. IEEE International

Conference on Dependable, 2014, pp. 7-13.

[4] N. Gude, T. Koponen, J. Pettit, B. Pfa, M. Casado, N.

McKeown, and S. Shenker, “NOX: Towards and operating

system for networks,” in Proc. ACM SIGCOMM Computer

Communication Review, Jul. 2008, vol. 38, pp. 105-111.

[5] K. Claffy, D. Andersen, and P. Hick, “The caida

anonymized 2011 internet traces equinix-chicago,” Mar.

2011.

[6] D. Erickson, “The beacon openflow controller,” in Proc.

2nd ACM SIGCOMM Workshop on Hot Topics in

Software Defined Networking, 2013, pp. 13-18.

[7] SNAC: Simple Network Access Control. [Online].

Available: http://www.openflow.org/wp/snac/

[9] M. Yu, J. Rexford, M. J. Freedman, and J. Wang,

“Scalable flow-based networking with difane,” in Proc.

ACM SIGCOMM Computer Communication Review, 2010.

[10] P. Lin, J. Bi, and H. Hu, “Asic: An architecture for scalable

intra-domain control in openflow,” in Proc. 7th IEEE

International Conference on Future Internet Technologies,

2012, pp. 21-26.

[11] J. Zhou, D. Cheng, W. Wang, R. Jin, and X. Wu, “The

deployment of routing protocols in distributed control

plane of SDN,” IEEE Trans. Scientific World Journal, pp.

19–24, 2014.

[12] A. Tootoonchian and Y. Ganjali, “A distributed control

plane for openflow,” in Proc. INM/WREN, 2010, p. 3.

[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L.

Poutievski, et al., “Onix: A distributed control platform for

large-scale production networks,” in Proc. OSDI, 2010, pp.

351-364.

[14] E. S. Spalla, D. R. Mafioletti, A. B. Liberato, C.

Rothenberg, L. Camargos, et al., “Resilient strategies to

SDN: An approach focused on actively replicated

controllers,” in Proc. 33th Brazilian Symposium on

Computer Networks and Distributed Systems, 2015, pp.

246-259.

[15] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R.

Kompella, “Towards an elastic distributed sdn controller,”

in Proc. 2nd ACM SIGCOMM Workshop Hot Topics

Software Defined Network, 2013, pp. 7-12.

[16] H. Yu, K. Li, H. Qi, W. Li, and X. Tao, “Zebra: An east-

west control framework for SDN controllers,” in Proc.

IEEE International Conference on Parallel Processing,

2015, pp. 610-618.

[18] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A.

Ghodsi, and S. Shenker, “Software defined internet

architecture: Decoupling architecture from infrastructure,”

in Proc. 11th ACM Workshop Hot Topics Network, 2012,

pp. 43-48.

[20] Mininet: Open Source Network Emulator. [Online].

Available: http://mininet.org/

[21] Floodlight: Component-based SDN Framework. [Online].

Available: http://www.projectfloodlight.org/floodlight/

[22] Mausezahn: Fast traffic generator. [Online]. Available:

http://www.perihel.at/sec/mz/mzguide.html/

[23] GT-ITM: Georgia Tech Internetwork Topology Mod.

[Online]. Available: http://www.cc.gatech.edu/gtitm/.

Xiangyang Zhu was born in Jiangsu

Province, China, in 1987. He received

the B.S. degree in Automatic from

Nanjing University of Posts and

Telecommunications, Jiangsu Province,

China, in 2010. He is currently working

toward Master's degree at Nanjing

University of Aeronautics and

Astronautics, Jiangsu Province, China. His research interests

include computer networks and Software-defined networking.

Bing Chen, born in 1970, earned B.S.

and M.S. degree from the department of

Computer Science and Technology at

Nanjing University of Aeronautics and

Astronautics (NUAA), Nanjing, Jiangsu

Province, China, in 1992 and 1995,

respectively. He earned Ph.D. degree in

the College of Information Science and

Technology at NUAA in 2008. Now he is a professor in the

College of Information Science and Technology at NUAA. His

main research interests are computer network and embedded

system.

Hongyan Qian was born in 1973. She

received the B.S. and M.S. degrees in

computer engineering and Ph.D. degree

in information science and technology

from the Nanjing University of

Aeronautics and Astronautics (NUAA),

Nanjing, Jiangsu Province, China, in

1995, 1998, and 2010, respectively. Her

main research interests are computer networks and wireless

communications.

Journal of Communications Vol. 11, No. 10, October 2016

917©2016 Journal of Communications

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, and P.

Yalagandula, “Devoflow: Scaling flow management for

high-performance networks,” in Proc. ACM SIGCOMM

Computer Communication Review, 2015, pp. 254-265.

[17] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing

the routing control logic: Better internet routing based on

sdn principles,” in Proc. 11th ACM Workshop Hot Topics

Network, 2012, pp. 55-60.

[19] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “CheetahFlow:

Towards low latency software-defined network,” in Proc.

IEEE International Conference on Communications, 2014,

pp. 3076-3081.

