
Frequency Estimation of 2-D Harmonics in Multiplicative 

and Additive Noise Based on ESPRIT 
 

Shiyong Yang and Jinlong Jiang 
 
School of Electronic Engineering, Jiujiang University, Jiujiang 332005, China 

Email: {ysydc, jljiang8}@163.com 

 

 

Abstract—This paper studies the frequency estimation of two-

dimensional (2-D) harmonics in presence of multiplicative and 

additive noise. We construct a cyclic covariance matrix using a 

class of cyclic covariance of the 2-D harmonics. Exploiting the 

shift-invariance structure of the signal subspace, we extend 

ESPRIT to estimate the frequency pairs of 2-D harmonics in 

multiplicative and additive noise. The proposed method has 

high-resolution and can directly estimate the frequency pairs of 

2-D harmonics without frequency pairing operation. Simulation 

results demonstrate the effectiveness of the proposed method. 
 
Index Terms—Frequency estimation, multiplicative noise, 

ESPRIT, two-dimensional harmonic 

 

I. INTRODUCTION 

The parameter estimation of two-dimensional (2-D) 

harmonic has applications in many areas such as wireless 

communications, radio astronomy, nuclear magnetic 

resonance, sonar, and radar [1]-[7]. Many efficient 

methods have been proposed for the 2-D harmonic 

retrieval on constant amplitude harmonics observed only 

in additive noise [2]-[7]. However, the multiplicative 

noise often occurs in a variety of applications [8]. For 

example, the effects on acoustic waves due to fluctuations 

caused by the medium, changing orientation, and 

interference from scatterers of the target can be described 

as the multiplicative noise [8].  

The authors in [9] and [10] presented the parameter 

estimation method based on the cyclic statistics to 

estimate frequency pair of 2-D harmonic in the presence 

of the multiplicative and additive noise. The cyclic 

statistics method [9], [10] developed that some statistics 

of that the 2-D harmonics in multiplicative and additive 

noise have peaks at corresponding parameters and zeros 

at the other, and then estimated the harmonic parameters 

by peak searching. However, due to affection by the 

pseudo peaks and the Rayleigh limit, the cyclic statistics 

method is low-resolution and cannot meet the requests of 

the high-resolution for the given observed data. This 

paper considers the high-resolution frequency estimation 
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method of 2-D harmonics in multiplicative and additive 

noise. 

It is well-known that ESPRIT is a high-resolution 

parameter estimation method and had been applied to 

many signal processing fields [11]-[14]. In this paper, we 

first apply ESPRIT to estimate the frequency of the 2-D 

harmonics in multiplicative and additive noise. We 

construct a cyclic covariance matrix using a class of 

cyclic covariance of 2-D harmonic signal, and then 

exploit the shift-invariance structure of the signal 

subspace and derive the inherent relation between the 

first and second dimensional frequencies. Based on the 

derived relations, we extend ESPRIT for the frequency 

estimation of 2-D harmonics in multiplicative and 

additive noise. The proposed method has high-resolution 

and can directly estimate the frequency without frequency 

pairing operation.  

This paper is organized as follows. The signal model is 

given in Section II. Section III presents the ESPRIT-

based frequency estimation of 2-D harmonics in 

multiplicative and additive noise. Section IV conducts 

simulations show the effectiveness of the proposed 

method. Finally, the conclusion is drawn in Section V. 

II. SIGNAL MODEL 

We consider the following signal model of 2-D 

harmonics in presence of multiplicative and additive 

noise. 

1 2( )

1

( , ) ( , ) ( , )k k k

P
j m n

k
k

x m n s m n e v m n
   



        (1) 

where 0,1, , 1, 0,1, , 1m M n N    , P  is the 

number of sinusoidal components, 1 2( , )k k   and k  are 

the frequency pair and phase of the kth sinusoidal 

component, ( , )ks m n  and ( , )v m n  are the multiplicative 

noise and additive noise, respectively. For the model (1), 
we make the following assumptions: 

1) The frequency pairs 1 2( , )k k   are distinct in 

( / 2, / 2] ( / 2, / 2] {(0,0)}       . 

2) The phase k  are deterministic in ( , ]  . 

3) The multiplicative noise ( , )ks m n  and additive noise 

( , )v m n  are mutually independent 2-D real zero-mean 

Gaussian white noise with variances 
2

ks  and 2

v , 

respectively. 

411

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



The purpose of parameter estimation in 2-D harmonic 

is to estimate the frequency pair 1 2( , )k k   and the 

number of sinusoidal component P  from the observed 

data { ( , ), 0,1, , 1, 0,1, , 1}x m n m M n N    . In this 

paper, we focus on the estimation of the frequency pair 

1 2( , )k k   and assume that the number of the sinusoidal 

component P  is known. The estimation of number the 

sinusoidal component can be found in reference [2].  

III. FREQUENCY ESTIMATION OF 2-D HARMONICS IN 

MULTIPLICATIVE AND ADDITIVE NOISE 

To obtain high-resolution frequency pair estimation 

method, we will apply ESPRIT to estimate the frequency 

pair of the 2-D harmonics in multiplicative and additive 

noise. We construct a cyclic covariance matrix and 

exploit the shift-invariance structure of the signal 

subspace. Then, we derive an inherent relation between 

the first and second dimensional frequencies. Based on 

the derived relations, we extend ESPRIT for the 

frequency pair estimation of 2-D harmonics in 

multiplicative and additive noise.  

First, we define a cyclic covariance ( , )c    of 

( , )x m n  as 

2 2*

2 2*

( , ) { ( , ) ( , )}

                { ( , )} { ( , )}

c E x m n x m n

E x m n E x m n

   

 

  

  
      (2) 

where *( )  denotes complex conjugate, and {}E   

represents the cyclic mean [7] which is defined as 

1 1

, 0 0

1
{ ( , )} lim { ( , )}

M N

M N m n

E y m n E y m n
MN

 

  

           (3) 

Substituting (1) into (2), we have 

1 2(2 2 )2 2

1

( , ) ( ) ( ) ( )k k

k

P
j

s
k

c e
          



        (4) 

where 

2 2 2 2

1

1
2 2 2 2

1 1 1

2( ) 2( )

        4 4

k

k l k

P

v s
k

P P P

s s s v
k l k k

  

   





   

 

 



  

             (5) 

and ( )   denotes the Kronecker delta function 

1,   0,
( )

0,   otherwise


 


 
 .

 

The detailed derivation of (4) is given in Appendix. 

Then, we construct a cyclic covariance matrix using 

the cyclic covariance ( , )c    as follows 

0 1 1

1 0 2

1 2 0

K

K

K K

 



 

 
 
 
 
 
 

D D D

D D D
G

D D D

                 (6) 

where 

( ,0) ( , 1) ( ,1 )

( ,1) ( ,0) ( , 2 )

( , 1) ( , 2) ( ,0)

k

c k c k c k L

c k c k c k L

c k L c k L c k

  
 


 
 
 

  

D     (7) 

K  and L  are positive integer greater than ( 1)P  . 

Substituting ( , )c    into (6), G  can be decomposed as 

H

KL G ASA I                           (8) 

where 

1

1 1

1

1 1

K 

 
 
 
 
 
 

Q

Q F
A

Q F

                                 (9) 

21 22 2

21 22 2

2 2 2

1

2 (1 ) 2 (1 ) 2 (1 )

1 1 1

P

P

j j j

j L j L j L

e e e

e e e

  

  

  

  

 
 
 
 
 
 

Q     (10) 

11

12

1

2

2

1

2

0 0

0 0

0 0 P

j

j

j

e

e

e







 
 
 
 
 
  

F               (11) 

1

2

2 2

2 2

2 2

( ) 0 0

0 ( ) 0

0 0 ( )
P

s

s

s







 
 
 

  
 
 
 

S               (12) 

( )H  represents conjugate transposition, and KLI  denotes 

the KL KL  identity matrix. 

The rank of matrix A  is equal to P , thus, the rank of  

matrix H
ASA  is equal to P [15]. Computing the 

eigenvalue decomposition of G  leads to a factorization 

of G  such as 

H H H

S S S N N N  G UDU U D U U D U         (13) 

where SU  and SD  contain the P  principal components, 

i.e., the eigenvalues and the eigenvectors related to the 

signal subspace. NU  and ND  contain the remaining 

components. Due to A  and SU  span the same signal 

subspace, there must exist a P P  nonsingular matrix T  

such that 

SAT U                                (14) 

Throughout this paper, we will use the notation M  to 

denote the first ( 1)K L  rows of matrix M , and M  to 

denote the last ( 1)K L  rows of M , respectively.  

From (9), we have 

1 AF A                                 (15) 
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The rank of the matrices A  and A  is equal to P  

since K  and L  are greater than ( 1)P   [15]. Thus, the 

least squares solution of (15) is given by 

†

1 F A A                              (16) 

where †( )  denotes the pseudo-inverse matrix, i.e., 

† C
1( )H H

C C C . 

Substituting (14) into (16), 1F  can be rewritten as 

   
†

†1 1 1

1 S S S S

   F U T U T TU U T         (17) 

Equation (16) shows that the first frequencies 
1k  can 

be estimated from 1F , i.e., from the eigenvalues of 
†

1 S SH U U : 

11

12

1

2

2
1

1 1

2

0 0

0 0

0 0 P

j

j

j

e

e

e









 
 
  
 
 
  

F TH T      (18) 

Now, we consider the estimation of second frequencies 

2k . We define a permutation matrix J  [4] as 

, ,
1 1

K L
K L L K

k l l k
k l

 

 

 J E E                     (19) 

where   denotes the Kronecker product and ,

K L

k l


E  

denotes a K L  elementary matrix with 1 for the ( , )k l  

element and 0 elsewhere. One can easily prove that the 

matrix J  has the following relations: 

H H

KL J J JJ I                           (20) 

H J A B                                    (21) 

where 

2

2 2

1

2 2

K 

 
 
 
 
 
 

Q

Q F
B

Q F

                              (22) 

11 12 1

11 12 1

2 2 2

2

2 ( 1) 2 ( 1) 2 ( 1)

1 1 1

P

P

j j j

j L j L j L

e e e

e e e

  

    

 
 
 
 
 
 

Q      (23) 

21

22

2

2

2

2

2

0 0

0 0

0 0 P

j

j

j

e

e

e













 
 
 
 
 
  

F            (24) 

Let HY JGJ . Combining with (8), (20), and (21), 

we have 
H H

KL  Y JGJ BSB I                  (25) 

The rank of matrix B  is equal to P , thus, the rank of  

matrix H
BSB  is equal to P [15]. Computing the 

eigenvalue decomposition of Y  leads to 

H H H

S S S N N N  Y VQV V Q V V Q V         (26) 

SV  and SQ  contain the P  principal components related 

to the signal subspace, NV  and NQ  contain the 

remaining components. Due to B  and SV  span the same 

signal subspace, there must exist a P P  nonsingular 
matrix Z  such that 

SBZ V                                 (27) 

From (22), we have 

2 BF B                                  (28) 

The rank of the matrices B  and B  is equal to P  since 

K  and L  are greater than ( 1)P  [15]. Then, the least 

squares solution of (28) is given by 

†

2 F B B                                (29) 

Substituting (27) into (29), 2F  can be rewritten as 

   
†

†1 1 1

2 S S S S

   F V Z V Z ZV V Z          (30) 

Equation (30) shows that the second frequencies 2k  

can be estimated from the matrix 2F , i.e., from the 

eigenvalues of the matrix 
†

2 S SH V V : 

21

22

2

2

2
1

2 2

2

0 0

0 0

0 0 P

j

j

j

e

e

e














 
 
  
 
 
  

F ZH Z    (31) 

Now, we derive the connection between the first and 

second dimensions which will be used to form the 

frequency pairs 1 2( , )k k  . Combining with (13), (15), 

and (26), we have 

H H H

S S S S S SJU D U J V Q V               (32) 

Thus, we can introduce a P P  nonsingular matrix R  

such that 

,S SJU R V                                (33) 

.H

S SRQ R D                              (34) 

The matrix R  has two important properties. First, 

from the facts that H

S S PU U I  and H

S S PV V I  since U  

and V  containing eigenvectors are unitary matrix, we 

obtain 

( )H H H

S S S S P  V V JU R JU R R R I        (35) 

This implies 1 H R R  because R  is nonsingular 

square matrix. Second, substituting (14) and (27) into (21) 

leads to 
1 1

S S

 JU T V Z                            (36) 
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Comparing (36) with (33), we obtain an important 

relation among R , T , and Z  

1T ZR                                (37) 

Substituting (33) into (30), 
2F  can be rewritten as 

 
†

1 1 1

2 S S

   F ZR JU JU RZ TWT           (38) 

where †( )S SW JU JU . 

Combining with (18) and (38), we find an important 

result: the same transformation T  diagonalizes both 1H  

and W . However, the relations 1

1 1

F TH T  and 

1

2

F TWT  cannot be directly exploited to estimate the 

frequency pairs. This is because that, when an eigenvalue 

has a multiplicity greater than 1, its eigenvectors are not 

uniquely defined, as it is for the transformation T . 

To avoid eigenvalues of multiplicity greater than 1, we 

can use the proposed method in [4] to find a unique 

transformation N  to diagonalize both 1H  and W . The 

unique transformation N  is computed from the 

eigenvalue decomposition of a linear combination of the 

matrices 1H  and W : 

1

1 (1 )    H W N CN                (38) 

where the parameter   is scalar. The purpose of   is to 

avoid eigenvalues of multiplicity greater than 1. 

Therefore, the frequency pairs 1 2( , )k k   can be directly 

estimated from 1

1


NH N  and 1

NWN . 

It is worth noting that the computation of ( , )c    in (2) 

needs ,M N  . However, in practice, we have only 

the single record ( , ),  0,1, , 1,x m n m M   

0,1, , 1n N  . Thus, it need to calculate the estimation 

of ( , )c   . In practice, we can use the natural single 

record estimator ˆ( , )c    given in (40) at the bottom of 

this page to estimate cyclic covariance ( , )c   . 

The estimator ˆ( , )c    is consistent and asymptotically 

unbiased [16]. 

Finally, we summarize the key steps of the ESPRIT-

based method to estimate the frequency pair of 2-D 

harmonics in multiplicative and additive noise as follows. 

Step 1: Calculate the sample cyclic covariance ˆ( , )c    

using (40) from the observed data ( , ),x m n  

0,1, , 1, 0,1, , 1m M n N    . Construct G  using 

ˆ( , )c   according to (6). 

Step 2: Calculate the eigenvalue decomposition of G  

and obtain the eigenvector matrix U . Construct the 

matrices U , U , JU  and JU , respectively. 

Step 3: Calculate 
†

1 S SH U U  and †( )S SW JU JU . 

Calculate the eigenvalue decomposition of matrix 

1 (1 )  H W  to obtain eigenvector matrix N . 

Step 4: Calculate 1

1


NH N  and 1

NWN . Extract the 

main diagonal elements of 1

1


NH N  and label as 

11 12 1, , , P    in sequence. Extract the main diagonal 

elements of 1
NWN  and label as 21 22 2, , , P    in 

sequence. Then, estimate frequency pairs as follows: 

（
1

ˆ
k ,

2
ˆ

k ） 1 2( , ),  1,2, ,
2 2

k k k P
  

         (41) 

where   represents calculation of phase angle. 

IV. SIMULATION RESULTS 

To demonstrate the effectiveness of proposed ESPRIT-

based method for frequency estimation of 2-D harmonics 

in multiplicative and additive noise, we conduct 

numerical Monte Carlo study in this section. In the 

following two examples, the 2-D harmonic signal are 

generated by 

1 2

3
( )

1

( , ) ( , ) ( , )k k kj m n

k
k

x m n s m n e v m n
   



         (42) 

where 0,1, ,99; 0,1, ,99m n  . The multiplicative 

and additive noise are 2-D real zero-mean white Gaussian 

noise with the variances 
1 2 3

2 2 2 2 1s s s v       .  

Example 1: The frequency pairs are 

11 21( , ) (0.36, 1.45)    , 12 22( , ) ( 0.12,1.23)    , and 

13 23( , ) (0.14,0.85)   . The phases are 1 0.43  , 

2 1.84  , and 3 2.45   . We choose 0.8   and   

15K L   in the proposed method. To compare the 

performance of proposed method, we also estimate the 

frequency pairs using the cyclic statistic method 

presented in [9], [10]. Table I lists the mean and standard 

deviation (std) of frequency estimations from 1000 

independent realizations of two estimation methods. 

Table I shows that the proposed method can estimate 

effectively the frequency pairs. 

Example 2: In this example, we test the frequency 

resolution of the proposed the ESPRIT-based method. 

The frequency pairs are very close. The frequency pairs 

are 11 21( , ) (0.82,0.82)   , 12 22( , ) (0.82,0.88)   , and 

13 23( , ) (0.88,0.88)   . The phases are 1 1.39   , 

2 0.45  , and 3 2.17  . We choose 0.8   in the 

proposed method. Table II lists the mean and std of 

frequency estimations from 1000 independent realizations 

using the cyclic statistic method [9], [10] and the 

proposed 

1 | | 1 | |
2 2*

0 0

1 | | 1 | | 1 | | 1 | |
2 2*

2 2
0 0 0 0

1
ˆ( , ) ( , ) ( , )

( | |)( | |)

1
                 ( , ) ( , )

( | |) ( | |)

M N

m n

M N M N

m n m n

c x m n x m n
M N

x m n x m n
M N

 

   

   
 

 
 

   

 

       

   

  
 

  
    

    

 

   

         (40) 
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method with 34K L  . Due to the frequency pairs are 

very closed and the distance of frequency pairs is less 

than the Rayleigh limit, the cyclic statistic method can 

only estimate one frequency pair. However, the proposed 

method can estimate effectively the three frequency pairs. 

Thus, the proposed method has high frequency resolution. 

V. CONCLUSIONS 

This paper investigated the frequency estimation of 2-

D harmonics in multiplicative and additive noise. We 

extended the ESPRIT method to estimate the frequency 

pairs of 2-D harmonics in multiplicative and additive 

noise. The proposed method has high-resolution and can 

directly estimate the frequency pairs of 2-D harmonics 

without frequency pairing operation. Simulation results 

clearly showed the effectiveness of the proposed method. 

APPENDIX:  DERIVATION OF (4) 

For convenience to deduce, let 1, 1 2, 1( , ) (0,0)P P    , 

1 0P   , and 1( , ) ( , )Ps m n v m n  , (1) can be rewritten as 

1 2

1
( )

1

( , ) ( , ) k k k

P
j m n

k
k

x m n s m n e
  


 



          (44) 

Therefore, we can calculate 
2 2*{ ( , ) ( , )}E x m n x m n    that is given in (45) at the 

bottom of this page. 

 

 

In the derivation of (45), we have used that, for 2-D 
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and all the fourth-order cumulants of 2-D Gaussian noise 

is equal to zero. 

Then, the cyclic means are 
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In the derivations of (47)-(49), we have used the fact that 
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Therefore, we have 
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