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Abstract—Compressive Sensing (CS) is a novel signal 

sampling theory under the condition that the signal is sparse or 

compressible. It has the ability of compressing a signal during 

the process of sampling. Reconstruction algorithm is one of the 

key parts in compressive sensing. We propose a novel iterative 

greedy algorithm for reconstructing sparse signals, called 

Modified Regularized Adaptive Matching Pursuit (MRAMP). 

Compared with other state-of-the-art greedy algorithms, 

MRAMP has the characteristics of several approaches: the 

speed and transparency of Orthogonal Matching Pursuit (OMP), 

the strong uniform guarantees of l1-minimization and the most 

innovative feature is its capability of signal reconstruction 

without prior information of the sparsity as Sparsity Adaptive 

Matching Pursuit (SAMP). Recently, the idea of CS has been 

used in radar system, and the concept of Compressive Sensing 

Radar (CSR) has been proposed in which the target scene can 

be sparsely represented in the range domain. CS plays an 

important role in the detection of Linear Frequency Modulated 

(LFM) signal. A sparse dictionary which could match LFM 

signal is constructed, and with the dictionary we can get access 

to a more effective sparse signal, then LFM signal can be 

calculated according to classical least square solution. 

Simulation results show that by using the method this paper 

proposed, it outperforms many existing iterative algorithms, 

especially for compressible signals.  

Index Terms—Compressive sensing, MRAMP, LFM 

 

I. INTRODUCTION 

Compressive sensing has attracted a great deal of 

attentions recently. It has been successfully applied in a 

multitude of scientific fields, ranging from image 

processing tasks to radar to coding theory, making the 

potential impact of advancements in theory and practice 

rather large. Compressive sensing methods rely on the 

notion of sparsity, which is primarily approximated via 

the l1 norm [1], [2]. The nature and limitations of this 

relaxation have been well-studied [3]-[8], as well as 

some alternative relaxations, such as the lp quasi norm 

[9], [10]. The nonconvex lp quasi norm approaches 

present a tradeoff: closer approximation of sparsity for 
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harder analysis and computation. Recent work has 

introduced generalized nonconvex penalties [11], [12] 

that have thus far demonstrated strong empirical 

performance [13]-[15]. 

The reconstruction of CS requires some non-linear 

algorithms to find the sparsest signal from the 

measurements. Finding fast reconstruction algorithm 

with reliable accuracy and (nearly) optimal theoretical 

performance is a challenging question in the CS research. 

So far there are about three categories of existing 

reconstruction algorithm; one is the famous basis pursuit 

with the l1 minimization using Linear Programming (LP). 

It is the high computational complexity that restricts the 

practical applications into reality. And the convex 

relaxation algorithms, such as gradient projection method, 

have been proposed. Anther recovery algorithms based 

on the idea of iterative greedy pursuit are also quite 

popular. The Matching Pursuit (MP) and OMP are 

proposed early time. Their successors include the 

stagewise OMP (StOMP) [16] and the regularized OMP 

(ROMP) [17]. One notable contribution is the lower 

reconstruction complexity for reconstruction. However, 

they require more measurements for perfect 

reconstruction and they lack provable reconstruction 

quality. More recently, greedy algorithms such as the 

Subspace Pursuit (SP) [18] and the compressive 

sampling matching pursuit (CoSaMP) [19] have been 

proposed by incorporating the idea of backtracking. They 

offer comparable theoretical reconstruction quality as 

that of the LP methods and low reconstruction 

complexity. However, the common of SP and CoSAMP 

is that the sparsity K is known; generally K may not be 

available in many practical applications. And later, 

SAMP for blind signal recovery when K is unknown is 

proposed. It follows the “divide and conquer” principle 

through stage by stage estimation of the sparsity level 

and the true support set of the target signals. Both OMP 

and SP can be viewed as SAMP’s special cases [20].  

In this paper, we propose a new greedy algorithm 

called modified regularized adaptive matching pursuit 

based on SAMP and ROMP, the specification of filtering 

atoms is based on regularization theory. The top-down 
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methods are likely to identify the true support set more 

accurately, and SAMP with the most innovative feature 

is its capability of signal reconstruction without any prior 

information of the sparsity K. Its numerical results are 

even more attractive as it outperforms all of the 

above-mentioned algorithms in extensive simulations. 

However, one popular applications of CS is in radar, 

LFM signal is widely used for their excellent 

characteristics in pulse radar to increase the range of 

detecting targets and get accurate resolution, which has 

the advantages of reducing temporal samples as well as 

reducing spatial samples. In the literature some papers on 

radar with CS can be found.  

State of the art radar systems apply a large bandwidth 

and an increasing number of channels produce huge 

amount of data. Often the data handling is the most 

crucial matter of design. In traditional radar system, radar 

transmits the pulse of very short period, characterized by 

its very high bandwidth, to digitize a chirp signal, a very 

high sampling rate is required according to 

Shannon-Nyquist sampling theorem [21], but it is 

difficult to implement with a single Analog-to-Digital 

Converter (ADC) chip. Some parallel ADCs are 

developed. But it is still difficult to use the systems in 

practice, owing to high hardware cost (the use of 

multi-ADCs) and resulting unwieldy amount of sample 

data [22]. 

One approach to reduce this imbalance is that the 

remarkable and quite new research field is compressive 

sensing proposing sparse sampling for sparse scenes. 

Considering that LFM signal is sparse in time-frequency 

plane, CS technique [23], [24] is used to ease the 

pressure of sampling. CS provides an efficient way to 

sample sparse or compressible signals. The main idea of 

CS is that discrete-time sparse signals can be completely 

described and perfectly reconstructed by a number of 

projections over random basis. One of the main 

algorithms developed in this field is the conditioned 

minimization of l1 norm of the vector describing the 

amplitude distribution of the scene under the condition 

that the measurements are compatible with the signal 

model. This theory is applicable for temporal as well as 

for spatial sampling. And the results of MRAMP for 

LFM signal recovery and echo detection are simulated. 

II. OVERVIEW OF COMPRESSIVE SENSING 

Compressive sensing seeks to represent a signal from 

a small number of linear measurements. Suppose x is an 

unknown N-dimensional signal with at most 

K N nonzero components, meaning that it has few 

nonzero entries 

dx R , supp( ) K Nx           (1) 

We call such signals K-sparse. According to the CS 

theory, such a signal can be acquired through the 

following linear random projections, and the linear 

measurements are the result of an application of the short 

and fat measurement matrix A, 

 y Ax z                 (2) 

In which y is the measurement vector with 

M N data points, A represents an M × N random 

projection matrix and z is the additive noise. The CS 

framework is attractive as it implies that x can be 

faithfully recovered from only M samples, suggesting the 

potential of significant cost reduction in digital data 

acquisition.  

The key idea of compressive sensing is to recover a 

sparse signal from very few non-adaptive, linear 

measurements by convex optimization. Taking a 

different viewpoint, it concerns the exact recovery of a 

high-dimensional sparse vector after a dimension 

reduction step [25]. 

From a yet another standpoint, we can regard the 

problem as computing a sparse coefficient vector for a 

signal with respect to an overcomplete system. The 

theoretical foundation of compressive sensing has links 

with and also explores methodologies from various other 

fields such as applied harmonic analysis, frame theory, 

geometric functional analysis, numerical linear algebra, 

optimization theory, and random matrix theory [26]. 

However CS states that ‘M’ can be far less than ‘N’ 

provided signal is sparse (accurate reconstruction) or 

nearly sparse/compressible (approximate reconstruction) 

in original or some transform domains. Lower values for 

‘M’ are allowed for sensing matrices that are more 

incoherent within the domain (original or transform) in 

which signal is sparse. This explains why CS is more 

concerned with sensing matrices based on random 

functions as opposed to Dirac delta functions under 

conventional sensing. Although, Dirac impulses are 

maximally incoherent with sinusoids in all dimensions 

[14], however data of interest might not be sparse in 

sinusoids and a sparse basis (original or transform) 

incoherent with Dirac impulses might not exist. On the 

other hand, random measurements can be used for 

signals K-sparse in any basis as long as A obeys the 

following condition [17]: 

log( / )M K N K               (3) 

As per available literature, A can be a Gaussian [18], 

Bernoulli [19], Fourier or incoherent measurement 

matrix [20]. Equation (3) quantifies ‘M’ with respect to 

incoherence between sensing matrix and sparse basis. 

Other important consideration for robust compressive 

sampling is that measurement matrix well preserves the 

important information pieces in signal of interest [27].  

For subsequent derivations, we need two results 

summarized in the lemmas below. 

Lemma 2.1 (Consequences of the Restricted Isometry 

Property (RIP)) 

1) (Monotonicity of δK) For any two integers K≤K′ 

'K K
                   (4) 
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(Near-orthogonality of columns) Let  , 1, ,I J N , 

be two disjoint sets. I J  . Suppose that
I + J

1  . 

For arbitrary vectors aR
|I|

 and bR
|J|

, 

2 2
,I J I J

A a A b a b        (5) 

and  

2I J I J
 A A b b            (6) 

Both (5) and (6) represent sufficient conditions for 

exact reconstruction. 

In order to describe the main steps of iterative greedy 

algorithm, we introduce next the notion of the projection 

of a vector and its residue. 

Definition (Projection and Residue): Let y  R
m
 

and
m I

I


A R . Suppose that *

I IA A is invertible. The 

projection of y onto span (AI) is defined as: 

      †( , )p I I Iproj y y A A A y            (7) 

where † * 1 *( )I I I I

A A A A denotes the pseudo-inverse of 

the matrix IA , and *

IA stands for matrix transposition. 

The residue vector of the projection equals 

     ( , ) -r I presid y y A y y           (8) 

We find the following properties of projections and 

residues of vectors useful for our subsequent derivations. 

Lemma 2.2 (Projection and Residue): 

1) (Orthogonality of the residue) For an arbitrary 

vector yRm, and a sampling matrix AIR
m×K

 of full 

column rank, let ( , )r Iresidy y  . Then 

0I ry A                 (9) 

2) (Approximation of the projection residue) Consider 

a matrix AR
m×N

 . Let  , 1, ,I J N be two 

disjoint sets, I J  , and suppose that 1
I J

 . 

Furthermore, let ( )Ispany A , 

( , )p Jprojy y A and ( , )r Jresidy y  . Then 

22
max( , )

1

I J

p

I J





y y




       (10) 

and 

2 2 2

max( , )

1
1

I J

r

I J


 
   
 
 

y y y



    (11) 

One would like to find the sparsest vector xRn 

whose measurements are y, which suggests the following 

optimization problem: 

   
0

x

            (12) 

Unfortunately, this problem is known to be NP-hard 

(Non-deterministic Polynomial-time hard) in general. In 

other words, without making further assumptions on A 

and x, an algorithm solving this problem would be 

computationally intractable. For this reason, one relaxes 

the problem, replacing the l0 penalty with other penalties. 

III. MODIFIED REGULARIZED ADAPTIVE MATCHING 

PURSUIT 

A. Algorithm Description 

The proposed method of modified regularized 

adaptive matching pursuit algorithm for sparse recovery 

will perform more correctly than regularized adaptive 

matching pursuit algorithm for all measurement matrices 

A satisfying the RIP, and for all sparse or compressible 

signals. When we are trying to recover the signal x from 

its measurements y=Ax, we can use the observation 

vector = T θ A y as a good local approximation to the 

signal x. Namely, the observation vector θ encodes 

correlations of the measurement vector y with the 

columns of A. Note that A is a dictionary, and so since 

the signal x is sparse, y has a sparse representation with 

respect to the dictionary. By the Restricted Isometry 

Condition, every n columns form approximately an 

orthonormal system. Therefore, every n coordinates of 

the observation vector θ look like correlations of the 

measurement vector y with the orthonormal basis and 

therefore are close in the Euclidean norm to the 

corresponding n coefficients of x.  

The local approximation property suggests to making 

use of the L biggest coordinates of the observation vector 

θ, rather than one biggest coordinate as OMP did. We 

thus force the selected coordinates to be more regular by 

selecting only the coordinates with comparable sizes. To 

this end, a new regularization step will be needed to 

ensure that each of these coordinates gets an even share 

of information. This leads to the following algorithm for 

sparse recovery. 

Correlation

Test

Correlation

Test RegularizeRegularize Candidate 
Ck

Candidate 
Ck

Final 

Test

Final 

Test
Update 

Fk

Update 
Fk

Update
residual  rk 

Update
residual  rk 

|Ck| adaptive

Fk-1
rk-1

|Fk| adaptive

 
(a) 

Correlation

Test

Correlation

Test
Modified

Regularize

Modified

Regularize
Candidate 

Ck

Candidate 
Ck

Final 

Test

Final 

Test
Update 

Fk

Update 
Fk

Update
residual  rk 

Update
residual  rk 

|Ck| adaptive

Fk-1
rk-1

|Fk| adaptive

(b) 

Fig. 1. Conceptual diagrams of (a) the RAMP; (b) the proposed 

MRAMP. 

Fig. 1(a) shows the conceptual diagram of the RAMP 

in the k
th

 iteration. One can see that it is the combination 

of the ROMP algorithm and the SAMP algorithm. For 

the RAMP, it applies a preliminary test and a final test to 

build the finalist. The preliminary test is extremely 

similar to that of StOMP, and the final test is designed to 

keep the largest subset of those coordinates whose 

atoms’ correlation differ in magnitude by at most a factor 

of two. This key innovation enables the RAMP to 

conduct blind recovery without prior information of K. 

And the innovation of the proposed algorithm is that we 
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modify the process of regularization. Fig.1 (b) shows the 

conceptual diagram of the proposed MRAMP. It 

improves the accuracy of reconstruction. For simplicity, 

we divide the recovery process into several stages, each 

of which contains several iterations. |Fk| is kept fixed for 

iterations in the same stage and increased by a step size 

s<K between two consecutive stages. Also, just as in the 

subspace pursuit (SP), the candidate set is chosen as 

|Ck| = 2|Fk|. 

What’s new in the proposed algorithm is that the 

principle of selecting group atoms is different from 

RAMP. In RAMP, selecting the maximal energy is the 

principle, and in MRAMP, we add another new 

screening criterion that selects the maximal mean energy 

to improve the performance of reconstruction.  

u = abs[ATrk-1]
Choose product value 
u, make subset Jval

u = abs[ATrk-1]
Choose product value 
u, make subset Jval

Initialize 

k = 1, AverE = -1

Initialize 

k = 1, AverE = -1

k = k+1k = k+1

Based on Jval(k),
initialize   

m = k, i = 1,
Et = Jval(k)2

Based on Jval(k),
initialize   

m = k, i = 1,
Et = Jval(k)2

m = m+1m = m+1

Judge
Jval(k)≤2Jval(m)

Judge
Jval(k)≤2Jval(m)

Judge
Et/i≥AverE

Judge
Et/i≥AverE

AverE = Et/i,
J0=J(1:m)

AverE = Et/i,
J0=J(1:m)

Halting 
conditions

Halting 
conditions

Et=Et+
Jval(m)2

,

i = i+1

Et=Et+
Jval(m)2

,

i = i+1

Yes

No

Output J0Output J0
No

Yes

Yes

 
Fig. 2. Conceptual diagrams of modified regularization 

B. Procedure of Modified Regularization 

Fig. 2 shows the modified procedure of regularization 

based on the ROMP algorithm. Normal regularization is 

depicted in [17]. 

Let u be any vector in R
m
, m>1. Then there exists a 

subset J {1,…,m} with comparable coordinates: 

| ( ) | 2 | ( ) |  ,i j i j  u u J          (13) 

and with big energy: 

2 2

1
|

2.5 log
A

m
y y          (14) 

We will construct at most O(logm) subsets Jk with 

comparable coordinates and such that at least one of 

these sets will have large energy. It is the regularization 

of RAMP algorithm. 

The modified RAMP algorithm is selecting maximal 

mean energy. 

Let u = (u1, u2, …, um), and consider a partition of 

{1,…,m} using sets with comparable coordinates: 

1

2 2
: { i : 2 2 },       = 1,2,...k k

k iu k    U u u  (15) 

Let k0 = [log m]+1, so that 
2

1
iu

m
 u for all iJk, 

k>k0, Then the set
0k k kU J contains most of the 

energy of u: 

2 1/2

2 2 22

1 1 1
| ( ( ) )

2
CU

m
m m

  u u u u  (16) 

Thus 

0

1/2
2

2 2

22

2 22

1

2
C

k U
k k

U



 
 

 

    
 

 u J u

u u u

  (17) 

Therefore there exists k≤k0 such that 

2 22
0

1 1
|

2 2.5 log
k

k m
 Ju u u      (18) 

The energy in magnitude of the selected group atoms 

is 

2 2 2

1 2( ) ( ) ( )     iEt j j j i m    u u u    (19) 

Sometimes selecting maximal energy group atoms will 

cause an error result or even when the sparsity is rising 

we couldn’t reconstruct the original signal. 

Analysis of above, we propose a new strategy for 

selecting the proper group, which is that select the 

maximal mean energy instead of the maximal energy, it 

can be written in formula: 

 1k kAverE AverE              (20) 

here AverE denotes the mean energy. It is expressed by  

 = 
Et

AverE
i

               (21) 

here AverEk denotes the k
th

 mean value of energy, 

AverEk+1 denotes next mean value of energy after the k
th

. 

In the final procedure of regularization, return the 

sequence number of the selected group atoms in the 

vector u to subset J0 and take the union of Fk and J0 as 

candidate for next stage. 

On account of their backtracking strategy, SP and 

ROMP of the top-down methods are likely to identify the 

true support set more accurately. On the other hand, the 
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OMP of the bottom-up approaches provided a possible 

solution to estimate the value of K by moving forward 

step by step. The SAMP with the most innovative feature 

is its capability of signal reconstruction without any prior 

information of the sparsity K. Following these 

observations, our MRAMP is designed to take 

advantages of all mentioned above: bottom-up, top-down 

and for blind signal recovery when K is unknown. 

Algorithm I presents the procedure of the MRAMP. 

Here, L=|Fk| represents the size of finalist and for a 

vector u, the function Max(u,I) returns I indices 

corresponding to the largest absolute values of u. Also, 

for a set Λ{1,…,N}, ΦΛ is the submatrix of Φ with 

indices iΛ. At the thk iteration, Sk ,Ck ,Fk ,rk stand for 

the short list, the candidate list, the finalist and the 

observation residual, respectively. 

ALGORITHMⅠ 

The Proposed MRAMP Algorithm 

Input: Sampling matrix A, Sampled vector y, step size s; 

Output: A K-sparse approximation θ' of the input signal; 

Initialization 
θ' = 0   { Trivial initialization} 

r0 = y   { Initial residue} 

F0 = ∅  { Empty finalist} 
L = s   { Size of the finalist in the first stage} 
k = 1   { Iteration index} 

j = 1    { Stage index} 

repeat 
Choose a set J of the L biggest coordinates in magnitude of 

the observation vector u = AT*rk-1, or all of its nonzero 

coordinates, whichever set is smaller. 

Among all subsets J0 J with comparable coordinates: 

|u(i)|≤2*|u(j)| for all i, jJ0, 

AverEk ≥AverEk+1, 

choose J0 with the maximal mean energy AverEk 

Add the set J0 to the index set: 

Ck = Fk−1∪J0 {Make Candidate List} 

F = Max(|ACk
† y|, L) {Final Test} 

r = y − AF AF
† y {Compute Residue} 

if halting condition true then quit the iteration; 

else if ||rk||2≥||rk-1||2 then {stage switching} 
j = j + 1 {Update the stage index} 

L = j × s {Update the size of finalist} 

else 
Fk = F {Update the finalist} 

rk = r {Update the residue} 

k = k + 1 
end if 

until halting condition true; 
Output: The estimated signal θ' = AF

†y{ Prediction 

of non-zero coefficients} 

 

The halting conditions that the residual’s norm |r|2 is 

smaller than a certain threshold ε, MRAMP stops 

repeating, generally in which threshold ε should be set to 

0. It is complex for compressible signals to stop halting. 

In this case, there is no known optimal way to stop the 

algorithm, even with convex relaxation algorithms. One 

common approach is to halt when a relative residue 

improvement between two consecutive iterations is 

smaller than a certain threshold. The underlying intuition 

is that it would not worth to take more costly iterations if 

the resulting improvement is too small. Based on this 

principle, we suggest that the MRAMP halts when the 

relative change of reconstructed signal’s energy between 

two consecutive stages is smaller than a certain 

threshold. 

And the step size s is the same as SAMP. It only 

requires s K . To avoid overestimation, the safest 

choice is certainly s = 1 if K is unknown. However, there 

is a trade-off between s and the recovery speed as smaller 

s requires more iterations. Also, the choice of s also 

depends on the magnitude distribution of the input signal. 

Empirical results suggest that small s is preferable for 

signal with exponentially decayed magnitude, while 

large s is advantageous for binary sparse signal. The 

derivation of the optimal value for s remains as an open 

question. 

IV. MODEL OF LFM 

A. LFM Signal 

Frequency modulated waveforms can be used to 

achieve much wider operating bandwidths. Linear 

Frequency Modulation is commonly used in radar 

system. 

A typical LFM waveform can be expressed by 

2
02

2( ) ( )
j f t tt

s t A Rect e

 
 

  





           (22) 

in which Rect(t/τ) denotes a rectangular pulse of width τ, 

A is amplitude of the signal, f0 is carrier-frequency, Tp is 

pulse width, μ= B/Tp is chirp rate, B is bandwidth, 

 
1  - / 2 / 2

( / )
0  

p p

p

T t T
Rect t T

elsewise

 
 


       (23) 

The echo signal of scattering center can be expressed 

by: 

1

2

0

2 /
( )

2 21
exp 2 ( ) ( )

2

N
n

r n
n p

n n

t R c
s t Rect

T

R R
f t t

c c



 



 
  

 
 

 
    

 



  (24) 

where N denotes the number of the scattering points, σn 

denotes the radar cross section, c is the velocity of 

electromagnetic wave, Rn denotes the range from 

scattering point to the beginning of the signal [28].  

According to CS theory, the disorganized echo signal 

of LFM can be decomposed under sparse basis. We are 

interested in constructing the sparse dictionary to 

complete sparse representation of the signal more 

effectively. For completing the detection of LFM echo 

signal based on CS, overcomplete atom dictionary need 

to be constructed first. The atom among dictionary 

should be constructed depends on the form of LFM 

signal and the purpose is we could complete sparse 

representation of LFM signal through atoms of 

dictionary. The atom dictionary D is a set of atoms: 

D=[d1, d2,…, dn]. We could achieve the sparse 

representation of LFM signal based on the dictionary, 

namely: D
T
x=θ. The θ is sparse coefficient vector of 
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projection which signal x cast on the atom database. 

There is only one valid sparse vector in θ when x is 

single component signal or the same amount of valid 

sparse vectors as the signal components when x is a 

multicomponent signal. 

B. Construction of Dictionary D 

The atom dictionary D can be constructed by the 

following two steps. 

First step: construct the diagonal matrix, the element 

of matrix should satisfy: 

        0
0 ,     

m n


 


         (25)

 

        0
           

s 
 
 
 
 
 

Φ        (26) 

here s(n) denotes the discrete sampling sequence of echo 

signal s(t), and it can be expressed by 

s(n)=exp(j2πf0t(n)+jπμt(n)
2
), m,n, are the indexes of cell 

in matrix respectively and 1≤m,n≤N,m,nN 

Second step: compute the dictionary for sparse signal 

in frequency domain with (Fast Fourier Transformation) 

FFT: 

0 0 1 -1

1
= ( , , , )N

N
Ψ ψ ψ ψ          (27) 

where  
( ) ( ) ( )

0 1 -1=( , , , )n n n T

n Nψ φ φ φ  

 ( ) exp 2 / ,1 , , ,n

m j nm N m n N m n N    φ   

So, the dictionary is 0 0= D Φ Ψ  

From the construction of Ψ0, it can be proved easily 

that 0 0

H Ψ Ψ E is true, in which E is N × N identity 

matrix. Then, Ψ0 is invertible and -1

0 0

HΨ Ψ .From x=Dθ, 

it can be deduced that: x=Φ0Ψ0θ, the θ is sparse vector. 

So x is sparse in the matrix Φ0Ψ0. This completes the 

proof. 

The dictionary D is orthogonal 

Proof: From the construction for dictionary Ψ0 by FFT, 

it can be proved that 0 0

H Φ Φ E is true, so 

0 0 0 0 0 0 0 0 0 0= ( ) ( )H H H H H D D Φ Ψ Φ Ψ =Ψ Φ Φ Ψ Ψ EΨ E  

Then the dictionary D is orthogonal. This completes 

the proof. 

Because of the orthogonality of D, from x=Dθ, the 

calculation formula for sparse coefficient is: θ=D
H
x. It 

means that it is convenient to obtain sparse coefficient 

and complex algorithm for sparse representation is 

needless. Furthermore, the orthogonality also lessens the 

restrict on the sensing matrix for compression when the 

dictionary is integrated into compressive sensing theory. 

As analysis mentioned above, processing compressive 

sensing samples based on sparse dictionary could 

decompose the echo signal more accurately to obtain 

LFM signal’s sparse coefficient representation in 

dictionary, and further achieve better detection. 

V. SIMULATION RESULTS 

A. Experiment 1 

In this experiment, for many values of the ambient 

dimension N, the number of measurements M, the 

sparsity K, and step size s, we reconstruct random signals 

using MRAMP. The signals of interests are Gaussian 

sparse signals with length of N = 256. The partial FFT 

sensing operator is used with a fixed number of 

measurements M = 128. Our aim is to investigate the 

probability of exact reconstruction vs. the signal sparsity 

K for a given M. Different sparsitys are chosen from K= 

5 to K=80 and for each K, 1000 simulations were 

conducted to calculate the probabilities of exact 

reconstruction for different algorithms. Fig.3 

demonstrates the results for Gaussian sparse signals. The 

numerical values on x-axis denote the level of sparsity K 

and those on y-axis represent probability of exact 

recovery. 
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Fig. 3. Prob. of exact recovery vs. the signal sparsity K. Here, the test 

signal is of length N = 256 and the number of measurements is fixed as 
M = 128. 

As can be seen, for Gaussian sparse signals, 

performance of the MRAMP far exceeds that of all other 

algorithms. While ROMP algorithm starts to fail when 

sparsity K≥15, and RAMP is slightly better. But 

MRAMP has changed a lot. MRAMP and SAMP still 

can afford until sparsity K≥50. When M is fixed, the 

probabilities of exact reconstruction of SAMP and 

MRAMP are quite similar with a small difference. 

B. Experiment 2 

This experiment investigates the probability of exact 

recovery vs. the number of measurements, given a fixed 

signal sparsity K. We use the same setups of experiment 

above and choose K=20, M (50, 60, 70, 80, 90, 100). 

For each value of M, we generate a signal x of sparsity K 

and its measurements y=Ax. Then we use above 

algorithms to recover x. This procedure is repeated 1000 

times for each value of M. We then calculate the 
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probabilities of exact reconstruction. Fig.4 depicts these 

probability curves of Gaussian sparse signals. The 

numerical values on x-axis denote the number of 

measurements M and those on y-axis represent 

probability of exact recovery. 
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Fig. 4. The percentage of Gaussian sparse signal exactly recovered by 

MRAMP as a function of the number of measurements M in dimension 
N = 256 for various levels of sparsity K. 

Again, we see that MRAMP is the best algorithm for 

recovering Gaussian sparse signals. And MRAMP will 

outperform better than SAMP in experiment 3. It is also 

interesting to observe that when the number of 

measurements is insufficient for guarantee of exact 

recovery, the probability of exact recovery of MRAMP 

depends on its step size and signal types. In particular, 

for Gaussian sparse signals, MRAMP with a smaller step 

size gets a higher chance of recovering signals exactly, 

given the same number of measurements. Although these 

observations could not be justified by theorems of 

sufficient conditions, they may be heuristically justified 

as follows. 

C. Experiment 3 

In this experiment, the performance of MRAMP of 

signal reconstruction and echo detection are verified in a 

LFM radar system. Simulation conditions; the carrier 

frequency is set to 3GHz. A maximum of 1024 samples 

for the testing signal is considered at the receive node. 

Assume that this echo signal includes three targets, 

whose positions are at 9km, 10km and 10.2km away 

from the beginning of the signal. This echo signal is 

sparse where with respect to the waveform-matched 

dictionary constructed by the method. The received 

signal is corrupted by zero mean Gaussian noise. The 

Signal-to-Noise Ratio (SNR) is set to 0 dB. 

From Fig. 5(a), the numerical values on x-axis denote 

the number of time in us and those on y-axis represent 

amplitude of the echo signals. Legend original denotes 

the echo signal without any processing, and successively 

the next four figures in Fig. 5(a) represent the recovery 

signal with SAMP, ROMP, RAMP and MRAMP 

algorithms respectively. Fig. 5(b) denotes targets 

detection in the range domain with algorithms above. 

SAMP is completely not suitable for reconstruction of 

LFM signal because it is not sparse strictly in frequency 

domain. The known sparsity K is the premise of ROMP 

and the sparsity K of echo is often unknown in practical 

applications. It is often rejected in LFM detection like 

OMP, SP, and CoSaMP. They are related to the sparsity. 

At 9km, MRAMP performs better than RAMP, and with 

the sparsity rising from Fig. 3, MRAMP has a good 

performance in reconstructing echo signals. Compared 

with traditional FFT, below Nyquist rate MRAMP can 

reconstruct original signal accurately and also save 

storage space. Above all the algorithms mentioned, 

MRAMP has the superiority for reconstructing and 

detecting LFM echo signals. 
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(b) 

Fig. 5. Amplitude vs. the echo signal in time domain and range domain 

respectively. Here, the echo signal is of length N = 1024 and the 

number of measurements is fixed as M = 512. And SNR = 0.(a) time 
domain signal (b) range domain signal. 

Furthermore, consider more practical situations that 

LFM signal is often corrupted by noise, and 

consequently the amplitude loss of reconstructed 

coefficients is hard to avoid. The threshold is used for 

echo detection in noisy environment. Although the 

environment noise of practical radar system is complex, 

in general, we describe the noise by Gaussian 

distribution in simulations. We choose an appropriate δ 

as the threshold. For noisy signal, we care about the 

exact position detection of target echoes.  
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For the case of the Gaussian distributed noise in echo 

signals Fig. 6 shows the detection probability for signals 

vs. SNR dB in this system. 

From the results, we find that the tendency of 

detection probability varying with parameter SNR is 

similar for Gaussian distributed noise model.  

Sparsity is chosen from SNR = -10 to K = 25 and for 

each K, 1000 simulations were conducted to calculate the 

probabilities of exact reconstruction. As can be seen, 

while MRAMP starts to fail when SNR≤5, and when 

SNR≤0, the probabilities steep drop. Compared with 

RAMP except ROMP, MRAMP has good performance 

in LFM detection with low SNR for practical 

applications. 
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Fig. 6. Probability of echo detection of noisy signal 

VI. CONCLUSIONS 

In this paper, a novel iterative greedy algorithm, called 

modified regularization adaptive matching pursuit, is 

proposed and analyzed for reconstruction applications in 

compressive sensing. This reconstruction algorithm is 

most featured of not requiring information of sparsity of 

target signals as a prior and bottom-up, top-down 

approaches are also distinctive. It not only releases a 

common limitation of existing greedy pursuit algorithms 

but also keeps performance comparable with that of 

strongest algorithms such as ROMP, SAMP. As a result, 

we sampled and detected LFM echo signals which are 

sparse in a pre-construction matched dictionary in the 

framework of CS theory. This study indicates that the 

low-dimensional random measurement method based on 

the CS theory can be used to sample ultra wideband 

signal. The simulation results showed that the noise-free 

ultra wideband LFM echo signal can be exactly 

reconstructed and detected even in low SNR. For noisy 

signal, increasing the amount of samples still can 

guarantee overwhelming detection probability. This 

study suggests that in some special applications, such as 

radar system, construction of a basis or a dictionary to 

obtain very sparse representation of signal is possible. 

The radar signal can be sampled at a rate much lower 

than Nyquist rate, but still can be reconstructed with high 

probability. 

The CS theory has remarkable advantages of reducing 

sampling rate and computation, which is believed to 

resolve the difficult that traditional methods facing in 

radar applications. The new MRAMP method based on 

CS in this paper is significant in theory and in practice. 

The article is still limited in theoretical analysis and 

simulating experiments, realizing it in engineering field 

should be studied further. 
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