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Abstract—In this paper, we investigate the robust transceiver 

design for Multi-Input Multi-Output (MIMO) Interference 

Channel (IC) networks with imperfect Channel State 

Information (CSI). With the assumption of Gaussian CSI 

uncertainty, a probabilistic constraint robust transceiver design 

problem is formulated by maximizing the average received 

signal while constraining the probability of large interference 

plus noise, both in downlink and uplink. To solve the 

formulated design problem, the probabilistic constraints are first 

transformed as Linear Matrix Inequalities (LMIs) using 

Markov’s inequality, and a semidefinite relaxation (SDR) 

technique is then applied to further recast the design problem as 

convex semidefinite programming (SDP) problem, which can 

be solved efficiently. An iterative algorithm based on alternative 

optimizing is proposed for the probabilistic constraint robust 

design. Simulation results verify that the proposed probabilistic 

constraint based robust transceiver design can provide 

robustness against Gaussian CSI errors.  
 
Index Terms—MIMO, interference channel, imperfect CSI, 

probabilistic constraint, robust transceiver design, Semidefinite 

Programming (SDP). 

 

I. INTRODUCTION 

To accommodate the dramatically increasing demand 

of high data rate services, higher frequency reuse factor 

and ultra-dense cell coverage become the candidate 

solutions for the future wireless communication systems 

[1]. Consequently, the future wireless communication 

networks are typically interference limited, wherein users 

suffer from in-neglected co-channel interference 

originating from nearby cells, which severely degenerates 

system performance. On the other hand, Multi-Input 

Multi-Output (MIMO) techniques have gained a 

considerable amount of interest since it possesses 

attractive potential to improve spectral efficiency and 

communication reliability. Therefore, typical future 

wireless communication networks can be modeled as 

MIMO Interference Channel (IC) networks, where 

multiple transceiver pairs share the same frequency 

spectrum and the transmitted signal of a user pair 
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constitutes interference to receivers of other user pairs. 

How to break the limit of interference has been an 

important task for MIMO IC networks. 

Recent information theory advances reveal that the 

interference in MIMO IC networks is possible suppressed 

completely if the transceivers are designed cooperatively 

based on the idea of interference alignment under global 

Channel Sate Information (CSI) [2], [3]. Following these 

work, many efforts have been made to develop 

transceiver designs for MIMO IC network conditioned on 

accuracy CSI [4]-[12]. Among them, the representative 

design schemes are the alternative signal-to-interference-

and-noise ratio maximization (Max-SINR) algorithm [4] 

and the Minimum Mean Squared Error (MMSE) 

algorithm [5]. However, the CSI is inevitably imperfect 

due to finite-energy training and limited feedback in 

practical systems. Theoretical analysis in [13]-[19] 

indicates that transceiver design schemes neglecting the 

impact caused by CSI error will result in severe 

degradation of achievable data rate. Therefore, robust 

transceiver designing for MIMO IC networks that take 

the CSI imperfection into consideration is of great 

importance in practice. 

Related robust transceiver design techniques for 

MIMO IC networks have been proposed in recent 

literature [20]-[24], by optimizing different metrics such 

as Signal-to-Interference-Plus-Noise ratio (SINR), mean-

squared-error (MSE), weighted sum rate and interference 

leakage, etc. In [20], a robust transceiver design scheme 

was proposed by maximizing the worst-case per-stream 

SINR among all the data streams in the network. MSE-

based robust designs were proposed in [21] by optimizing 

the worst-case sum MSE or per-user MSE with respect to 

channel errors. The work of [22] proposed a MSE 

minimization robust transceiver design scheme dedicated 

for MIMO IC networks with limited feedback links. In 

[23] and [24], the weighted sum rate and interference 

leakage are respectively used as the optimization criteria 

to develop robust designs. All the above mentioned 

robust designs were developed for bounded CSI errors. 

For the case of unbounded CSI errors, several robust 

design schemes have been proposed in [5] and [25] 

assuming Gaussian distributed CSI errors. All these 

schemes focusing on optimizing MSE criterion, while 

robust designs by optimizing other criteria for unbounded 

CSI errors are rarely available in literature so far. 
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Although these traditional robust designs can provide 

performance improvement compared with the non-robust 

design schemes, they may gain conservative performance. 

That is because the worst-case condition or the statistics 

of errors are usually considered in order to provide 

robustness to CSI errors, but the worst-case operation 

condition may rarely emerge and the statistics cannot 

well reflect the influence of extreme errors [26]. Recently, 

probabilistic constraint based robust transceiver design 

schemes have been investigated in [26]-[29] to achieve 

further performance improvement compared to traditional 

designs. The work in [27] and [28] proposed robust 

beamforming designs for Multiple-Input Single-Output 

(MISO) Broadcasting Channel (BC) networks by 

considering probabilistic SINR constraints. Reference [29] 

proposed probabilistic constraints based robust 

beamforming design for point-to-point MIMO systems 

with Maximum Ratio Combining (MRC) receiver. The 

work of [26] generalized the work of [29] into MIMO 

Broadcasting Channel (BC) networks. However, none of 

them was designed for MIMO IC networks. 

In this paper, we investigate robust transceiver design 

schemes for MIMO IC networks undergoing Gaussian 

channel errors. We propose a probabilistic constraint 

based robust design by maximizing the average received 

signal while keeping low probability for large 

interference plus noise with imperfect CSI in both the 

downlink and uplink. With the help of Markov’s 

inequality, the probabilistic constraints are transformed 

into Linear Matrix Inequality (LMI), and the transceiver 

design problems are recast as semidefinite programming 

(SDP) problems with rank constraints. By applying 

semidefinite relaxation (SDR), the non-convex rank 

constraint SDP problems are further relaxed as convex 

SDP and thus can be solved efficiently. A robust 

transceiver design algorithm is then proposed to 

alternatively optimize the transmitters and receivers. 

Numerical simulations show the effectiveness of the 

proposed probabilistic constraint robust transceiver 

design scheme. 

The remaining sections are organized as follows. 

Section II discusses the system model and the channel 

error model. The probabilistic constraint based robust 

design is proposed in Section III. Simulation results are 

presented in Section IV. Finally, Section V concludes the 

paper. 

Notations: represent the complex field. Bold 

uppercase and lowercase letters represent matrix and 

column vectors, respectively. Non-bold italic letters 

represent scalar values. NI  is an N N  identity matrix. 

H
A , T

A  and 1
A  represent the Hermitian transpose, 

transpose and inverse of A , respectively. ( )tr A  and 

( )rank A  are the trace and rank of matrix A , 

respectively. [ ]  denotes the statistical expectation. 2·‖‖  

denote the 2-norm. Pr{ }A  denotes the probability of the 

event A . 

 
Fig. 1. MIMO interference channel network. The solid arrow headed 

lines are signal links, and the dotted arrow headed lines are interference 

links. 

II. SYSTEM MODEL 

Consider a MIMO IC network consisting of K  users 

as shown in Fig. 1, where each user consists of one pair 

of transmitter and receiver both with multiple antennas. 

Assume the number of transmit and receive antennas of 

the k th user are kM  and kN , respectively.  The channel 

propagation matrix from transmitter j  to receiver k  is 

denoted by 


 k jN M

kjH , , {1, , }  i j K . We assume 

the elements of kjH are independent identically 

distributed (i.i.d.) Zero-Mean Circularly Symmetrical 

Complex Gaussian (ZMCSCG) random variables. We 

also assume a block fading model in which the channels 

kjH  remain unchanged for the duration of a transmission 

but may change randomly between successive 

transmissions. The channel kkH  describes the desired 

direct link between the k th user pair, and the channel 

, kj j kH  constitutes interference link from the j th 

transmitter to the k th receiver. 

We assume the system operates in Time-Division-

Duplex (TDD) mode, such that the reciprocity of the 

wireless propagation channel holds. Under such 

assumption, the transceivers can obtain the CSI of 

downlink through backward training. It is also assumed 

that the transmitters can exchange CSI between each 

other, such that the global CSI is available for all 

transmitters. 

We assume the transmitter of user k  sends kd  data 

streams to its paired receiver per channel use. We denote 

the data vector of transmitter k  as 
1

 kd

ks  with 

H[ ] 
k

k
k k d

k

P

d
s s I , where kP  is the transmit power of user 

k . At the transmit sides, before being sent out, the data 

streams are precoded by transmit precoding matrix kV , 

while at the receive sides, the received signals are 

processed by the interference suppressing matrix kU . 

At the receive side, the received signals are processed 

accordingly by the designed interference suppressing 
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matrices. The recovered signal vector at receiver k  can 

be written as 

 H H H

1,

ˆ
 

  
K

k k kk k k k kj j j k k
j j k

s U H V s U H V s U n  (1) 

where 2~ ( , )kn 0 I  denotes the noise vector at the 

k th receiver. The l th element of the recovered signal 

vector (1) can be further expressed as 

 

H H

1,

Intra-user stream interference

H H

1,

Inter-user stream interference

ˆ
 

 

 

 





d

kl kl kk kl kl kl kk km km
m m l

K

kl kj j j kl k
j j k

s s su H v u H v

u H V s u n

 (2) 

where kls  denotes the l th element of ks , klu  and klv  

denote the l th column vector of kU  and kV , 

respectively. In (2), the first term on the right hand side is 

the desired signal for the l th data stream of the k th user, 

the second term represents the intra-user interference, the 

third term quantifies the inter-user interference and the 

last term represents the noise. 

From (2), the downlink SINR of the l th data stream of 

the k th user is defined as 

 
H

H
SINR  kl kl kl

kl

kl kl kl

u A u

u B u
 (3) 

where  
H Hkl kk kl kl kkA H v v H , 

H H

1


K

kl kj j j kj
j

B H V V H
H H 1


 

rkk kl kl kk n

k

H v v H I  

and 
2




 k
k

k

P

d
 is defined as the per-stream SNR. The 

SINR expression in (3) is a generalized Rayleigh quotient 

with respect to klu . 

In order to design transceivers, we utilize the 

reciprocity of interference channel [4]. The SINR along 

the reciprocal link of the data transmission direction can 

be constructed as  

 
H

H
SINR 

klkl kl
kl

klkl kl

v A v

v B v
 (4) 

where  
H Hkl kk kl kl kkA H u u H , 

H H

1

 
K

kl jk j j jk
j

B H U U H
H H 1

̂
 

rkk kl kl kk n

k

H u u H I  

and 
2




 k

k

P

d
 is defined as the per-stream SNR in the 

reversed link. P  is the transmit power of the reversed 

transmitter. 

If perfect CSI is given, fixing the transmit precoders 

and according to the property of Rayleigh quotient, the 

optimal receiver to maximize SINR is given by 

 
1

1

2‖ ‖




 kl kl kl

kl

kl kl kl

B H v
u

B H v
 (5) 

Similarly, given perfect CSI and with fixed receivers, 

the optimal precoder is given by 

 

1 H

1 H

2‖ ‖






kl kl kl
kl

kl kl kl

B H u
v

B H u
 (6) 

The classical Max-SINR algorithm proposed in [4] is 

then constructed by alternatively optimizing the transmit 

precoders according to (6) and the receive filters 

according to (5). 

In practical communication systems, obtaining perfect 

CSI is always a demanding work due to either the 

feedback error or the channel estimation error. Our goal 

is to develop the robust counterparts of the transceiver 

design for the MIMO IC network. To model the channel 

uncertainty, the real CSI, kjH , can be expressed as a sum 

of the imperfect CSI and the channel uncertainty 

 ˆ kj kj kjH H   (7) 

where ˆ
kjH  and kj  represent the imperfect CSI and 

channel uncertainty, respectively. Specifically, we 

assume the elements of kj  are i.i.d. complex Gaussian 

random variables with zero mean and variance 2  . 

Assume the imperfect CSI is available both at the 

transmitters and receivers, a straightforward way to 

design the transceivers is to apply the standard algorithms, 

e.g., the Max-SINR algorithm, with the obtained 

imperfect CSI. However, the system performance will 

definitely be degenerated if the impact of channel error is 

ignored in the transceiver design. To explicitly show the 

impact of channel error on the quality and also to 

facilitate transceiver optimizing, the receive SINR 

associated with channel error is rewritten as 

 
H 2ˆ( )

SINR
‖ ‖
 kl kk kk kl

kl

klZ

u H v
 (8) 

where klZ  is the received power of interference plus 

noise of the l th data stream of the k th user, which is 

written as 

 

H H 2

1

H 2 2

ˆ( )

1ˆ        ( )

‖ ‖

‖ ‖ ‖ ‖




 

  


K

kl j kj kj kl
j

kl kk kk kl kl

k

Z V H u

u H v u





 (9) 

Accordingly, the SINR along the reciprocal link is 

denoted by 

 
H 2ˆ( )

SINR
‖ ‖
 kl kk kk kl

kl

klZ

u H v
 (10) 
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where the interference leakage from the l th data stream 

of the k th user is defined as 

 

H 2

1

H 2 2

ˆ( )

1ˆ        ( ) .

‖ ‖

‖ ‖ ‖ ‖




 

  


K

kl j jk jk kl
j

kl kk kk kl kl

k

Z U H v

u H v v





 (11) 

It is noted that a straightforward robust counterpart of 

the traditional Max-SINR algorithm can be derived by 

optimizing the average SINR with respect to the channel 

error. Specifically, under the channel error model (7), a 

method to provide robust in designing the transceivers is 

to maximize the average SINR with respect to channel 

errors, i.e, max [SINR ]
kl klu  and max [SINR ]

kl
klv . 

With the help of Jensen's inequality [ ( )] [ ( )]f x f x  

and following the method proposed in [20], the lower 

bounds of the average SINRs can be obtained. By further 

using the property of Rayleigh-Ritz quotient, the 

transceivers to maximize the lower bounds of average 

SINRs can be obtained. By alternatively optimizing the 

transmitters and receivers, an average SINR 

maximization (Max-ASINR) algorithm is then obtained. 

However, the performance of this Max-ASINR algorithm 

is conservative, because the impact of extreme errors is 

not well reflected in the average SINR. With the aim to 

further improve robust performance, in the following 

section, we propose an probabilistic constraint based 

robust design by maximizing the average signal power 

while keeping the probability of the worst interference 

low. 

III. ROBUST TRANSCEIVER DESIGN BASED ON 

PROBABILITY CONSTRAINTS APPROACH 

To optimize the SINR (8) or (10) directly is difficult, 

since there are no closed-form expressions for these 

SINRs. Instead of optimizing the SINR directly, we 

introduce a probabilistic constraint approach into the 

transceiver design in this section. Specifically, we 

develop a probabilistic approach to design robust 

transceivers for MIMO IC networks by maximizing the 

average received signal while keeping the probabilistic of 

serious interference plus noise low. The formulated 

transceiver design problems are non-convex, and a SDR 

technique is used to relax the non-convex problems as 

convex SDP. The optimality of the SDR problems is 

investigated, and it is proved that the solutions for the 

related SDP problems are also the optimal solutions for 

the original problems. 

A. Receiver Design 

In order to design the receivers, the basic idea of the 

probabilistic method is to maximize the average signal 

power of a user while keeping the probability of large 

receive interference power plus noise low. The 

optimization problem is then mathematically expressed as 

 

H 2

2

ˆmax [ ( ) ]

s.t. : Pr ,

1,

{ }

‖ ‖

‖ ‖





 



kl

kl kk kk kl

kl kl kl

kl

Z p

u
u H v

u



 (12) 

where  kl  is a pre-specified threshold for the power of 

interference plus noise and 0 1 klp  is a given 

probability. 
The objective in (12), i.e., the average signal power of 

the l th data steam for the k th user, is derived as 

  

 

H 2

H H H 2 2

H H 2 2

ˆ[ ( ) ]

ˆ ˆ

ˆ ˆ

‖ ‖

‖ ‖

‖ ‖







 

 
  



k

k

kl kk kk kl

kl kk kl kl kk kl N kl

kk kl kl kk kl N kltr

u H v

u H v v H v I u

H v v H v I X







 (13) 

where Hkl kl klX u u , ( ) 1klrank X and ( ) 1kltr X . 

The probabilistic constraint in (12) is introduced to 

guarantee there is a low probability for the power of 

interference plus noise higher than a threshold. However, 

the probabilistic constraint has no closed-form expression, 

which poses challenge to solve the problem. As an 

alternative, we relax the probabilistic constraint to a 

deterministic constraint with the help of Markov’s 

inequality, which says 
[ ]

Pr{ }


 
X

X , if X is a 

nonnegative variable and 0  [26]. The relaxed 

problem of (12) is then formulated as the following 

semidefinite programming (SDP) problem with rank 

constraint 

 

 H H 2 2

     

                    

ˆ ˆmax   

 

 

s.t. :     [ ]

( ) 1 ( ) 1

k
kl

kk kl kl kk kl N kl

kl kl kl kl

kl kl

tr

t

Z

a

p

r nk r





 
  



 

X
H v v H v I X

X 0

X X

，

‖ ‖

，



 (14) 

where 

 

 

H H 2 H

1

H H 2 2

ˆ ˆ[ ] ( )

1ˆ ˆ .‖ ‖








 










  

 


k

k k

K

kl kj j j kj j j N
j

kk kl kl kk kl N N kl

k

tr trZ H V V H V V I

H v v H v I I X





 (15) 

The problem (14) is not convex since there exists rank 

constraint. By dropping the rank constraint, we further 

relax problem (14) as the following SDP problem 

 

 H H 2 2ˆ ˆmax

s.t. : [ ] ,

,

( )

 

.

 

1

‖ ‖



 
  





k
kl

kk kl kl kk kl N kl

kl kl kl

kl

kl

Z p

tr

tr

X
H v v H v I X

X 0

X



 (16) 

Problem (16) is known as a semidefinite relaxation 

(SDR) of problem (14) [30], which can be solved by 

standard convex optimization tools such as CVX [31]. 

Note that the optimized receive vector klu  can be 

343

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



recovered from the principal eigenvector of the optimal 

solution *

klX . 

Since the rank constraint in the original noncovex 

problem (14) is relaxed to formulate the convex problem 

(16), the rank of the solution of (16) could be not limited 

to one. If *( 1) klrank X , the rank constraint is 

intrinsically satisfied, and *

klX  is also optimal for (14). 

Our simulations show that the rank of the optimal 

solution to the SDR problem could always be one. 

B. Transmitter Design 

In order to design the transmitters, we optimize the 

average signal power while keeping the probability of 

large leakage power low for the reversed link by the 

following problem 

 

H 2

2

ˆmax [ ( ) ]

s.t. : Pr ,

1.

{ }

‖ ‖

‖ ‖





 



kl

kl kk kk kl

kl kl kl

kl

Z p

v
u H v

v



 (17) 

With the similar procedure as the receiver design, the 

problem (17) can be reformulated as the following SDP 

optimization problem with rank constraint 

 

 H H 2 2ˆ ˆmax

s.t. :

 

[ ] ,

,

( ) 1,

)

 

( 1,

‖ ‖



 
  







k
kl

kk kl kl kk kl M kl

kl kl kl

kl

kl

kl

Z

tr

rank

tr

p

W
H u u H u I W

W 0

W

W



 (18) 

where Hkl kl klW v v , ( ) 1klrank W  and ( ) 1kltr W . 

By dropping the rank constraint, the non-convex 

problem (18) is relaxed as a convex SDP problem, which 

is written as 

 

 H H 2 2ˆ ˆmax

s.t. : [ ] ,

,

( ) 1,

‖ ‖



 
  





k
kl

kk kl kl kk kl M kl

kl kl kl

kl

kl

Z p

tr

tr

W
H u u H u I W

W 0

W



 (19) 

where Hkl kl klW v v  and  

 

 

 

H H 2 H

1

H H 2 2

ˆ ˆ[ ] ( )

1ˆ ˆ

k

k k

K

kl jk j j jk j j M
j

kk kl kl kk kl M M kl

k

tr rZ t







 




 


 

 


 H U U H U U I

H u u H u I I W‖ ‖





(20) 

Similar with the receiver design, klv  can be recovered 

from the optimal solution of problem (19), which is 

always of rank one in our simulations. 

C. Algorithm 

Iteratively updating the transmit precoders based on 

(16) and the receive filters based on (19), we obtain a 

probabilistic constraint approach for robust transceiver 

design given in Table I. 

TABLE I: THE PROPOSED ALGORITHM 

Probabilistic constraint (Prob-Cons) approach for robust design 

1: Initialize the precoders 
1, ,k k lv . 

2: Optimize the receive filters , ,kl k lu  by solving the SDP 

problem (16). 

3: Optimize the transmit precoders 
1, ,k k lv  by solving the SDP 

problem (19). 

4: Repeat 2 to 3 until convergence or the maximum number of 

iterations is reached. 

 

Similar with the Max-SINR algorithm, the 

convergence of the proposed Prob-Cons algorithm cannot 

be proved straightforwardly, because different objective 

functions are optimized for the transmit precoders and 

receive filters. However, the divergence of the algorithm 

never happens in our simulations. Moreover, only local 

CSI is required by the proposed approach. 

Note that under the TDD mode, the proposed Prob-

Cons algorithm can be applied in distributed manner. It 

can be also applied for a frequency-division-duplex (FDD) 

system in a centralized way. 

IV. SIMULATION RESULTS 

In this section, we evaluate the proposed robust 

transceiver design algorithms via computer simulations. 

The proposed algorithm is compared to the classical 

Max-SINR algorithm [4], the Max-ASINR robust 

algorithm, the robust and non-robust MMSE algorithms 

proposed in [5]. Without loss of generality, we consider a 

symmetric MIMO IC network with 3K , 4 k kM N , 

2kd  and , kP P k . For each channel realization, the 

elements of imperfect channel matrices ˆ{ , , }kj j kH  are 

generated following 2(0,1 )  . The elements of 

channel error matrices , ,kj j k  are generated following 

2(0, ) . For the classical Max-SINR algorithm and 

the non-robust MMSE algorithm, the transceivers are 

designed from the imperfect CSI with the impact of CSI 

errors neglected. We set , , klp p k l  and , ,  kl k l  

for the proposed Prob-Cons algorithm in the simulations. 

The SDP problems are solved using the CVX [31]. 

A. Convergence 

In Fig. 2, we show the convergence behavior of the 

proposed algorithms, where the achievable sum rate is 

plotted against the iteration number for SNR 30 dB.  

The standard deviation of the elements of channel error 

matrices is set as {0.1,0.2}  . For the Prob-Cons 

algorithm, the probability and interference threshold are 

set as 0.05p  and 0.01  , respectively. The sum rate 

is averaged over 100 channel realizations. Under the 

given parameter configuration, it is observed that the 
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performance of the Max-SINR algorithm will reach a 

peak in the initial several iterations and then turns down 

with iteration number increase, after which the 

performance will increase again slowly when iteration 

number is greater than 40. This phenomenon indicates 

that the conventional Max-SINR algorithm is not robust 

to channel errors. By contrast, the average sum rate 

achieved by the proposed robust Max-ASINR and Prob-

Cons algorithms and the referenced robust MMSE 

scheme increase monotonously along with iteration 

number increasing at any of the investigated SNR values. 

It is also observed that all the robust algorithms can 

provide significant performance gain compared to the 

non-robust Max-SINR algorithm when the iterations 

excess 10. Moreover, simulation results show that the 

proposed Prob-Cons robust design scheme has similar 

convergence rate as the robust MMSE scheme, which has 

been proved to be convergent. 
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Fig. 2. Sum rate versus iteration number. 

B. Sum Rate 

Fig. 3 shows the average sum rate of the proposed 

Prob-Cons algorithm under CSI with different accuracies. 

The results are obtained by averaging simulations of 100 

channel realizations. The iteration number is set as 32 for 

all the algorithms. It can be observed that the 

conventional Max-SINR algorithm is more vulnerable to 

CSI uncertainty compared with the non-robust MMSE 

algorithm, and all robust schemes achieve higher sum rate 

than the non-robust Max-SINR algorithms. It is observed 

that the robust Max-ASINR achieves conservative 

performance compared with other robust schemes. The 

Max-ASINR algorithm even performs similar as the non-

robust MMSE algorithm when the standard deviation of 

channel errors is extremely small (e.g., 0.05  ). It is 

also shown that the Prob-Cons algorithm performs the 

best among all algorithms when CSI error is large (e.g., 

0.1  ). 

C. SINR Distribution 

The distribution of per-stream SINR achieved by 

different algorithms is shown in Fig. 3 for 0.1   at 

SNR {20,30} dB. The empirical cumulative density 

function (CDF) is obtained from 10000 numerical 

simulations by fixing the randomly generated imperfect 

CSI matrices ˆ{ , , }kj j kH  and varying the channel error 

matrices { , , }kj j k  in each simulation. It can be 

observed that in SINR [10,15] dB interval, the robust 

algorithms can achieve lower CDF values compared with 

the non-robust schemes. That is to say, for a target SINR 

  in [10 15] dB interval, there is higher probability for 

the robust schemes to achieve the target SINR, i.e., 
SINR  .  
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Fig. 3. Sum rate versus SNR at different channel accuracy. 
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Fig. 4. SINR distribution with 0.1  , SNR {20,30} dB. 

It is also observed that the CDF curve of the Max-

ASINR algorithm locates on the left compared to that of 

the robust MMSE and Prob-Cons algorithms, which 

further embodies that the Max-ASINR algorithm 

achieves conservative robust performance and the Prob-

Cons algorithm outperforms the Max-ASINR algorithm 

with respect to robustness. Moreover, there is a cross 

point between the CDF curves of robust MMSE 

algorithm and the proposed Prob-Cons algorithm. On the 

left side of this cross point, the MMSE algorithm 
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achieves smaller cumulative probability distribution value 

than the Prob-Cons algorithm given the SINR value, 

while this relation will reverse on the right side of the 

cross point. Therefore, the MMSE algorithm can achieve 

larger worst-case SINR in higher probability compared 

with the Prob-Cons algorithm, while the Prob-Cons 

algorithm achieves high SINR in high probability 

compared with the MMSE algorithm. 

When the standard deviation of channel errors 

increases to 0.2 Δ , the simulation results are shown in 

Fig. 5. It is observed that the CDF curves between 

different algorithms behave similar as Fig. 4, but shift 

toward to left. This implies that the achieved SINR will 

deteriorate as the channel accuracy decreases for all 

schemes. 
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Fig. 5. SINR distribution with 0.2 
, SNR {20,30} dB. 
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Fig. 6. Impact of interference threshold on performance of the Prob-

Cons algorithm 

D. Impaction of Interference Threshold 

The performance of Prob-Cons algorithm is obviously 

related with the product of probability p  and interference 

threshold  . Fig. 6 shows the impact of   on the 

achievable rate by the Prob-Cons algorithm with 

fixed 0.05p . The simulation results are obtained 

through averaging 100 channel realizations. It can be 

observed the Prob-Cons algorithm achieves better 

performance when   is taken value between 10
-3

 and 1. 

Moreover, the best performance of the Prob-Cons 

algorithm is almost invariable when   is in that range. 

More simulation results at different SNR settings show 

that a setting of 0.01   can lead to satisfied 

performance in general. 

V. CONCLUSION 

We have studied robust transceiver designs for MIMO 

IC networks with Gaussian channel errors. A probability 

constraint robust transceiver design scheme was proposed 

by maximizing the average received signal while keeping 

low probability for large interference plus noise with 

imperfect CSI, in both the downlink and uplink. With the 

help of Markov’s inequality, the probabilistic constraints 

were recast as LMI, and the transceiver design problems 

were converted to SDP problems with rank constraints. 

The non-convex rank constraint SDP problems were 

further relaxed as convex SDP by relaxing the rank 

constraints, which can be solved efficiently. Simulation 

results have shown that the proposed schemes can 

provide robustness to CSI uncertainty significantly. 

REFERENCES 

[1] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. 

Braun, M. Lossow, M. Sternad, R. Apelfrojd, and T. 

Svensson, “The role of small cells, coordinated multipoint, 

and massive MIMO in 5G,” IEEE Communications 

Magazine, vol. 52, no. 5, pp. 44–51, May 2014. 

[2] V. R. Cadambe and S. A. Jafar, “Interference alignment 

and degrees of freedom of the k-user interference 

channel,” IEEE Trans. on Information Theory, vol. 54, no. 

8, pp. 3425–3441, Aug. 2008. 

[3] M. Maddah-Ali, A. Motahari, and A. Khandani, 

“Communication over MIMO X channels: Interference 

alignment, decomposition, and performance analysis,” 

IEEE Trans. on Information Theory, vol. 54, no. 8, pp. 

3457–3470, Aug. 2008. 

[4] K. S. Gomadam, V. R. Cadambe, and S. A. Jafar, “A 

distributed numerical approach to interference alignment 

and applications to wireless interference networks,” IEEE 

Trans. on Information Theory, vol. 57, no. 6, pp. 3309–

3322, Jun. 2011. 

[5] H. Shen, B. Li, M. Tao, and X. Wang, “MSE-based 

transceiver designs for the MIMO interference channel,” 

IEEE Trans. on Wireless Communications, vol. 9, no. 11, 

pp. 3480–3489, Nov. 2010. 

[6] M. Razaviyayn, M. Sanjabi, and Z. Q. Luo, “Linear 

transceiver design for interference alignment: Complexity 

and computation,” IEEE Trans. on Information Theory, 

vol. 58, no. 5, pp. 2896–2910, May 2012. 

[7] H. Du, T. Ratnarajah, M. Sellathurai, and C. Papadias, 

“Reweighted nuclear norm approach for interference 

alignment,” IEEE Trans. on Communications, vol. 61, no. 

9, pp. 3754–3765, Sep. 2013. 

346

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



[8] Q. Shi, M. Razaviyayn, Z. Q. Luo, and C. He, “An 

iteratively weighted MMSE approach to distributed sum-

utility maximization for a MIMO interfering broadcast 

channel,” IEEE Trans. on Signal Processing, vol. 59, no. 

9, pp. 4331–4340, Sep. 2011. 

[9] F. Sun and E. De Carvalho, “A leakage-based MMSE 

beamforming design for a MIMO interference channel,” 

IEEE Signal Procesing Letter, vol. 19, no. 6, pp. 368–371, 

Jun. 2012. 

[10] H. H. Lee, M. J. Kim, and Y. C. Ko, “Transceiver design 

based on interference alignment in MIMO interfering 

broadcast channels,” IEEE Trans. on Wireless 

Communications, vol. 13, no. 11, pp. 6474–6483, Nov. 

2014. 

[11] M. Razaviyayn, M. Baligh, A. Callard, and Z. Q. Luo, 

“Joint user grouping and transceiver design in a MIMO 

interfering broadcast channel,” IEEE Trans. on Signal 

Processing, vol. 62, pp. 85–94, Jan. 2014. 

[12] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. 

Utschick, “Comparison of distributed beamforming 

algorithms for MIMO interference networks,” IEEE Trans. 

on Signal Processing, vol. 61, no. 13, pp. 3476–3489, Jul. 

2013. 

[13] B. Nosrat-Makouei, J. G. Andrews, and R. W. Heath, 

“MIMO interference alignment over correlated channels 

with imperfect CSI,” IEEE Trans. on Signal Processing, 

vol. 59, no. 6, pp. 2783–2794, Jun. 2011. 

[14] O. El Ayach, A. Lozano, and R. W. Heath Jr, “On the 

overhead of interference alignment: training, feedback, 

and cooperation,” IEEE Trans. on Wireless 

Communications, vol. 11, no. 11, pp. 4192–4203, Nov. 

2012. 

[15] O. El Ayach and R. W. Heath Jr, “Interference alignment 

with analog channel state feedback,” IEEE Trans. on 

Wireless Communications, vol. 11, no. 2, pp. 626–636, 

Feb. 2012. 

[16] H. Bolcskei and I. Thukral, “Interference alignment with 

limited feedback,” in Proc. ISIT, 2009, pp. 1759–1763. 

[17] M. Rezaee and M. Guillaud, “Limited feedback for 

interference alignment in the K-user MIMO interference 

channel,” in Proc. IEEE Information Theory Workshop, 

2012, pp. 667–671. 

[18] X. Rao, L. Ruan, and V. K. Lau, “Limited feedback 

design for interference alignment on MIMO interference 

networks with heterogeneous path loss and spatial 

correlations,” IEEE Trans. on Signal Processing, vol. 61, 

no. 10, pp. 2598–2607, May 2013. 

[19] J. Schreck, G. Wunder, and P. Jung, “Robust iterative 

interference alignment for cellular networks with limited 

feedback,” IEEE Trans. on Wireless Communications, vol. 

14, no. 2, pp. 882–894, Feb. 2015. 

[20] E. Chiu, V. K. Lau, H. Huang, T. Wu, and S. Liu, “Robust 

transceiver design for K-pairs quasi-static MIMO 

interference channels via semidefinite relaxation,” IEEE 

Trans. on Wireless Communications, vol. 9, no. 12, pp. 

3762–3769, Dec. 2010. 

[21] Q. Li, X. Gu, H. Li, and T. Tang, “Robust transceiver 

design for MIMO interference network with norm 

bounded channel uncertainty,” in Proc. IEEE Wireless 

Communications and Networking Conference , April 2013, 

pp. 3964–3968. 

[22] K. Anand, E. Gunawan, and Y. L. Guan, “Beamformer 

design for the MIMO interference channels under limited 

channel feedback,” IEEE Trans. on Communications, vol. 

61, no. 8, pp. 3246–3258, Aug. 2013. 

[23] J. Jose, N. Prasad, M. Khojastepour, and S. Rangarajan, 

“On robust weighted-sum rate maximization in mimo 

interference networks,” in Proc. IEEE International 

Conference on Communications, 2011, pp. 1–6. 

[24] H. Du, T. Ratnarajah, M. Sellathurai, and C. B. Papadias, 

“A robust interference alignment technique for the MIMO 

interference channel with uncertainties,” in Proc. IEEE 

International Conference on Communications Workshops, 

2013, pp. 154–158. 

[25] S. Razavi and T. Ratnarajah, “Adaptive LS and MMSE 

based beamformer design for multiuser MIMO 

interference channels,” IEEE Trans. on Vehicular 

Technology, no. 99, pp. 1–14, 2015. 

[26] H. Du and P. J. Chung, “A probabilistic approach for 

robust leakagebased MU-MIMO downlink beamforming 

with imperfect channel state information,” IEEE Trans. on 

Wireless Communications, vol. 11, no. 3, pp. 1239–1247, 

Mar. 2012. 

[27] K. Y. Wang, T. H. Chang, W. K. Ma, and C. Y. Chi, “A 

semidefinite relaxation based conservative approach to 

robust transmit beamforming with probabilistic sinr 

constraints,” in Proc. 18th European Signal Processing 

Conference, Aug. 2010, pp. 407–411. 

[28] K. Y. Wang, T. H. Chang, W. K. Ma, A. C. So, and C. Y. 

Chi, “Probabilistic SINR constrained robust transmit 

beamforming: A bernstein-type inequality based 

conservative approach,” in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing, 

May 2011, pp. 3080–3083. 

[29] P. J. Chung, H. Du, and J. Gondzio, “A probabilistic 

constraint approach for robust transmit beamforming with 

imperfect channel information,” IEEE Trans. on Signal 

Processing, vol. 59, no. 6, pp. 2773–2782, Jun. 2011. 

[30] Z. Q. Luo, W. K. Ma, A. C. So, Y. Ye, and S. Zhang, 

“Semidefinite relaxation of quadratic optimization 

problems,” IEEE Signal Processing Magazine, vol. 27, no. 

3, pp. 20–34, May 2010. 

[31] M. Grant and S. Boyd. CVX: Matlab Software for 

Disciplined Convex Programming, Version 2.0. [Online]. 

Available: http://cvxr.com/cvx, Aug. 2012. 

 

Anming Dong received the BE degree in 

electronic information science and 

technology from Liaocheng University, 

China, in 2004, and the M.E. degree in 

communication and information systems 

from Lanzhou University, China, in 2007. 

He is currently a Ph.D. student at the 

School of Information Science and 

Engineering, Shandong University, China. His research interests 

include wireless MIMO communications, signal processing for 

communications and interference mitigation techniques. 

 

 

 

347

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



Haixia Zhang received the B.E. degree 

from the Department of Communication 

and Information Engineering, Guilin 

University of Electronic Technology, 

China, in 2001, and received the M.Eng. 

and Ph.D. degrees in communication and 

information systems from the School of 

Information Science and Engineering, 

Shandong University, China, in 2004 and 2008. From 2006 to 

2008, she was with the Institute for Circuit and Signal 

Processing, Munich University of Technology as an academic 

assistant. Currently, she works as full professor at Shandong 

University. She has been actively participating in many 

academic events, serving as TPC members, session chairs, and 

giving invited talks for conferences, and serving as reviewers 

for numerous journals. She is the associate editor for the 

International Journal of Communication Systems. Her current 

research interests include cognitive radio systems, cooperative 

(relay) communications, cross-layer design of wireless 

communication networks, space–time process techniques, 

precoding/beamforming, and 5G wireless communications. 

Dongfeng Yuan received the MS degree 

from the Department of Electrical 

Engineering, Shandong University, 

China, 1988, and obtained the PhD 

degree from the Department of Electrical 

Engineering, Tsinghua University, China 

in January 2000. Currently, he is a full 

professor in the School of Information 

Science and Engineering, Shandong University, China. From 

1993 to 1994, he was with the Electrical and Computer 

Department at the University of Calgary, Alberta, Canada. He 

was with the Department of Electrical Engineering in the 

University of Erlangen, Germany, from 1998 to 1999; with the 

Department of Electrical Engineering and Computer Science in 

the University of Michigan, Ann Arbor, USA, from 2001 to 

2002; with the Department of Electrical Engineering in Munich 

University of Technology, Germany, in 2005; and with the 

Department of Electrical Engineering Heriot-Watt University, 

UK, in 2006. His current research interests include cognitive 

radio systems, cooperative (relay) communications, and 5G 

wireless communications. 

 

348

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications




