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Abstract—It is challenging to estimate the wireless channel of 

the Orthogonal Frequency-Division Multiplexing (OFDM) 

broadband system under a changing communication 

environment. The difficulty is mainly attributed to this wireless 

channel’s Non Wide Sense Stationary Uncorrelated Scattering 

(Non-WSSUS) which has an implication that the delay and 

Doppler shift of such a channel are non-stationary and 

correlated. A Non-WSSUS channel is very different from the 

classical time-varying channel with constant delay and Doppler 

shift. In this paper, we propose an estimation method for the 

Non-WSSUS Channel Impulse Response (CIR) of the OFDM 

system. Based on the sparsity property of the delay-Doppler 

spread function, the delay and Doppler shift of Non-WSSUS 

channel can be extracted through a Compressive Sensing (CS) 

approach. Then a novel CS algorithm referred as Pre-Re L1 is 

proposed. The proposed CS algorithm exploits the correlations 

of the sparse supports to obtain adaptive weights for 
1L  

minimization. Numerical Simulation results show that the 

proposed CS method improves the performance of the Non-

WSSUS wireless channel estimation. 
 
Index Terms—OFDM, Non-WSSUS channel estimation, 

Compressive Sensing (CS), adaptive weighed 
1L  minimization 

 

I. INTRODUCTION 

Applying the Compressive Sensing (CS) idea to the 

estimation of wireless channel has been gaining wide 

interests in recent years [1]-[4]. In practice, the wireless 

channels in several scenarios have the property of 

intrinsic sparsity, i.e., only a few channel gains are 

dominant. CS algorithms have been proposed to improve 

the estimation performance for wireless channels with 

specific characteristics, such as block fading, time 

varying, and shallow-water acoustic channels. In this 

work, we explore the CS approach for estimating and 

tracking the Non-WSSUS channel.  
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Non-WSSUS wireless channel can be observed in 

many modern commutation scenarios, such as vehicle to 

vehicle (V2V) communications [5], and 5G massive 

MIMO channels [6]. The essential cause of the Non-

WSSUS channel is the dynamic change of the 

communication environment, especially the movement of 

the transmitter and receiver [7]. This dynamic condition 

gives rise to that the channel scatterers change over time 

in the sense that the delay, and Doppler shift of each 

scatterer all change dynamically and follow some certain 

statistical characteristics, which leads to the Non-WSSUS 

channel. OFDM as an outstanding technique of the 

modern wireless communication system has been widely 

used in 3G and 4G. But the Non-WSSUS characteristic 

affects each OFDM symbol at the physical layer, which 

greatly impacts the performance of OFDM system. So the 

estimation of the channel variation for each OFDM 

symbol is very crucial [8]. Typically, the delay-Doppler 

spread function follows a sparse structure [9] due to the 

large bandwidths of an OFDM broadband system. 

Moreover, the sparse delay-Doppler spread function of 

Non-WSSUS channel exhibits non-stationary support 

transitions due to the movement of the transmitter and 

receiver. Luckily, this non-stationary transition is 

somewhat predictable. Because the support of the delay-

Doppler spread function is correlated in this scenario. 

Combing the sparsity with the Non-WSSUS 

characteristic, the Non-WSSUS channel estimation for 

the OFDM system becomes a problem of recovering the 

non-stationary sparse vector with correlated support 

transitions. 

The work presented here mainly focus on the 

formulation of an adaptive weighted 
1L  minimization 

algorithm for Non-WSSUS CIR estimation in the OFDM 

system, which exploits the correlations of the support 

transitions in the sparse delay-Doppler domain. The 

major contributions are summarized as follows: 

1) Estimation of the CIR of Non-WSSUS channel 

The problem of estimating the CIR of Non-WSSUS 

channel is solved by utilizing the sparse delay-Doppler 

delay-Doppler-spread function. While the in work of 

[10]-[11], only the basic definition of Non-WSSUS 
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channel was proposed, and [11] only suggested that the 

wireless channel can be analyzed by a time-frequency 

approach. The works in [7], [12], [13] mainly focused on 

modeling the Non-WSSUS channel from measurement.  

2) Algorithm designs to exploit correlated support 

transitions of the sparse channel 

In this work, a novel adaptive weighted 1L  

minimization approach is proposed to estimate the sparse 

Non-WSSUS channel by exploiting the correlated 

support transitions. By utilizing the correlation of the 

supports, the weights of 
1L  minimization at time t  are 

predicted by the information of supports at time 1t  . In 

the work of [1], [2], channel is assumed to be constant. In 

the work of [3], the time-varying channel estimation was 

performed by using the joint PDF of the K  received 

OFDM signals, and the block-sparsity channel was 

recovered by exploiting inner-correlations. In [14], the 

dynamic sparse signal is estimated by approximate 

message passing, and the model parameters are learned 

by using the available prior knowledge. However, in our 

scenario, the channel at next time 1t   is unknown to the 

estimator, which implies that the previous approaches in 

[3], [14] are inapplicable here. In [4], the correlated 

change of the channel is not concerned.  

3) Adaptive designs to add algorithm robust 

While the 
1L  minimization algorithm proposed here is 

related to [15]-[20], it capitalizes the bias of predicted 

supports to obtain the appropriate weights over time. 

Then the appropriate weights are assigned to the 

predicted supports, followed by a decision step to make 

the weights be adaptive to the estimation result. The re-

estimation is then performed with the adaptive weights. 

The proposed algorithm formulates a predict-re-estimate 

1L  minimization framework. By introducing the Re-

estimation phase, robust is added to the estimation result 

with the adaptive weights. This is a new approach, and it 

has not been considered at earlier studies.   

Important notations used in this paper include: 
1

x  

and 
2

x  denote the 
1L  and 

2L  norm of vector x , 

respectively. Bold symbols are reserved for vectors and 

matrices. Particularly, LI  denotes the identity matrix with 

the size L L . Term vec( )x  denotes the vector of x , †
x  

is the pseudo inverse of x , for a vector x , its thi  

coordinate is denoted by 
ix . The support of x , ( )T x  is 

the set of indices at which x  is nonzero. For a subset 

{1,2, }T n , T  denotes its cardinality, and cT  

denotes its complement. The symbols , , and \  

denote set union, set intersection, and set difference 

respectively (recall 
1 2 1 2\ : cT T T T ).   denotes the 

Kronecker product. ( | 1)x t t   means the predicted ( )x t , 

given the measurement at time 1t  . While, ( | )x t t  

stands for ( )x t , given the measurement at time t . 

II. PROBLEM FORMULATION 

A. A sparse Channel Model for OFDM 

The orthogonal short-time Fourier (STF) basis 

waveforms of OFDM signaling to counteract the time 

selectivity of doubly-selective channels are used in the 

OFDM system, and L  delays, K  (one-sided) Doppler 

shifts are considered here. With these considerations, the 

corresponding discrete OFDM channel via “virtual 

representation” [9] can be written as:  
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2
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 , 
0N  is the total number of STF basis 

waveforms, 
tN  is the number of the time separation of 

the STF basis, and 
fN  is the number of the frequency 

separation of the STF basis. Readers are referred to [21, 

Section Ⅳ] for the details. 

According to (1), the sparse delay-Doppler-spread 

function ( , )H l k  can be written in the matrix form as 

H  [21]: 

0, 0, 1 0,

1, 1, 1 1,

1, 1, 1 1,

K K K

K K K

L K L K L K

h h h

h h h

h h h



  

  

     

 
 
 
 
 
  

H           (2) 

Remark 1: H  is the key to double-selective channel. 

The knowledge of the channel delays and Doppler shifts 

is completely determined by this matrix. The value of the 

entry of matrix H  is the channel gain at discrete delay 

l  and Doppler shift k . The support of this matrix is the 

“position” of the discrete channel delays and Doppler 

shifts with a dominant (or non-zero) channel gain.  

Remark 2: Note that H  is obtained by uniformly 

sampling the delay-Doppler space at the Nyquist rate [9]. 

So though the supports L  and K  are integer, they are 

corresponding to real-valued delay and Doppler shift of 

the double- selective channel. Readers are referred to [9, 

Section Ⅱ.B] for the details   

Let , ( )n my t  is the received pilot signal at time t . By 

uniformly sampling pilot symbols at random (without 

replacement) [9], we can obtain the transmitted pilot 

signal, i.e.,  ' '

, ,/ ( ) : ( , )r t n f m rN n m S  X u u , 

where the total number of pilots is rN , rS  is set of 
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indices of pilots, and   is the system transmit energy 

budget. Finally, the sparse channel delay-Doppler-spread 

function estimation follows equation: 

( ) ( ) tt t y XH W
                      

(3) 

where ( )ty  is obtained by stacking the received training 

symbols 
,{ ( )}n my t  into an 

rN -dimensional vector, 

( ) vec( ( ))t tH H , and 2(0, I )
rt obs NW  is the 

channel observation noise.  

Due to the sparsity of delay-Doppler spread function, 

( )tH  is an ( )s t sparse  vector, which means that the 

number of dominant (or non-zero) elements of ( )tH  is 

( )s t  . Note that though ( )s t  changes over time t , the 

dimension of ( )tH  is bounded by (2 1)L K  . 

B. Non-Stationary Support Transition with Correlation 

As described in [6], the non-stationary process of a 

Non-WSSUS channel is due to the updates of geometry 

relationships of scatterers from t  to t t . Specially in 

[7], the Non-WSSUS characteristic is formed by the two 

scatterers from the same reflection. Within the time 

interval t , the maximum change in delay is given by 

•
v

t
c

   . Assuming that the moving receiver passes by 

a reflecting surface at distance d  , the maximum change 

in Doppler shift is given by 
2

•v

v f
t

cd
    , where c  is 

the speed of light, f  is the carrier frequency, v  is the 

motion velocity. Then the transition of the survived 

scatterers’ delay ( )t  and Doppler shift ( )Df t  can be 

approximated as a first-order model: 

 2 2

2

( ) ( )

( ) ( )

( )

( )

D D

v v

t t t

f t t f t

t t

t t

 

 

 

 

    
   

              
   

    

I I
n

0 I
 (4) 

where n  is the small random change on   and v . It is 

worth noting that the value change of the delay and 

Doppler shift is equivalent to the support change of 

matrix (2), e.g., the dominant (or non-zero) channel gain 

change from discrete delay l  to delay 1l   (or change 

from discrete Doppler shift k  to 1k  ). The newly 

generated scatterers are not concerned here. 

Note that the time interval for the channel estimator is 

constant. Combing this condition with the OFDM sparse 

channel model (3), the corresponding discrete form of (4) 

is: 

( ( )) ( ( 1)

( ) ( 1)

T t T t

t t

   
    

   

H H
A n

V V
             (5) 

where ( ) 1( 1)
l s t

k

t  
   

 

δ
V

δ
 is the vector of the 

maximum change of the discrete delay and Doppler shift, 

related to the speed of motion of the scatterers, at time 

1t  . 
( ) ( )

( )

s t s t

s t

 
  
 

I I
A

0 I
, 2 ( ) 1

( ( 1))

( 1)

s t
T t

t


 

 
 

H

V
. 

 
  
 

0
n

Q
 

is the small random change on V ,  Q  is Gaussian 

distribution with expectation zero and covariance Q  . 

Here we bound the transition of the supports in the size of 

(2 1)L K  .  

Combing equation (5) with equation (3), the sparse 

non-stationary channel model with support transitions for 

OFDM system can be formulated as: 

 

( ) ( )

( ( )) ( ( 1))

( ) ( 1)

tt t

T t T t

t t

 


   
        

y XH W

H H
A n

V V

  (6) 

The upper equation of (6) is the measure model, and 

the lower equation of (6) is the state transition model. In 

the next section, we propose a CS-based algorithm to 

estimate this non-stationary sparse vector by exploiting 

the correlations of support transitions. 

III. NON-WSSUS CHANNEL ESTIMATION ALGORITHM 

Our goal is to estimate the sparse ( )tH  through a small 

number of observations ( (2 1)rN L k  ). As a method 

to promote sparsity, the weighted 
1L  minimization 

problem can be formulated as: 

1( )
minimize ( ) ( ) s.t. ( ) ( )i iit

w t H t t t
H

XH y      (7) 

where i  is the coordinate. 

It has been recently observed [22], [23]  that the 

Alternating Direction Method of Multipliers (ADMM) is 

a powerful tool to tackle the 
1L  norm problem. In this 

paper, the impact of the weights to the solution of (7) is 

generated through the ADMM method. 

A. Weighted 
1L  Minimization via AMDD 

In ADMM the weighted 
1L  minimization problem can 

be written as: 

1( )
minimize ( ) ( ) ( ( ))

subject to ( ) ( ) 0

i iit
w t Z t f t

t t



 


H

H

H Z               

(8) 

where f  is the indicator of { ( ) ( ) ( )}nt t t H R XH y . 

The augmented Lagrangian
 

[23, Section 5]
 

corresponding to the optimization problem (using the 

scaled dual variable) (8) is given by: 

1

2

2

( ( ), ( ), ( )) ( ) ( )

( ( ))

( / 2) ( ) ( ) ( )

i ii
L t t t w t Z t

f t

t t t









  

H Z u

H

H Z u

  (9) 

To find the minimum of the constrained problem (8), 

the ADMM algorithm uses a sequence of iterations: 

1( ) argmin ( ( ), ( ), ( ))k k kt L t t t

 H H Z u            (10) 
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1 1( ) argmin ( ( ), ( ), ( ))k k kt L t t t

 Z H Z u       (11) 

1 1 1( ) ( ) ( ) ( )k k k kt t t t    u u H Z             (12) 

Until 1 1

2
( ) ( )k k

st t   H Z , and 1

2
( ) ( )k k

st t   Z Z , 

where 310s
  is stopping criterion. 

The rationale behind using ADMM is that we could 

effectively split the original non-differentiable problem 

into a “ H  minimization step” (10) and a 

“ Z minimization step” (11).  

1) H -minimization step  

Completing the squares with respect to ( )tH  in the 

augmented Lagrangian (9), the H minimization step is 

to:  

 2

2

minimize ( ( ))

( / 2) ( ) ( ) ( )k k

f t

t t t  

H

H Z u
 (13) 

The answer to (13) is:  

 

1 1

1

( ) : ( ( ) )( ( ) ( ))

( ) ( )

k T T k k

T T

t t t

t

 



  



H I X XX X Z u

X X X H
 (14) 

2) Z -minimization step 

Completing the squares with respect to Z  in the 

augmented Lagrangian (9), the Z -minimization step is to:  
2

1 2
minimize ( ) ( ) ( / 2) ( ) ( )k

i i i ii
w t Z t Z t V t 

 
(15) 

where 1k k k

i i iV H u  . We note that (11) is 

decomposed into sub-problems expressed in terms of the 

individual element of ( )ktZ  via (15). The unique solution 

to (15) is given by the soft thresholding: 

 
(1 ) ( )

( )

0 ( )

i i

ii

i

a
V V t a

VZ t

V t a




 

 
 

 (16) 

where ( )ia w t   . In particular, ( )iZ t  is set to zero if 

( ) ( )i iV t w t  , implying that a more aggressive 

scheme for driving ( )iZ t  to zero can be obtained by 

increasing ( )iw t , vice versa. 

B. Exploiting Correlations of the Support Transitions by 

Choosing iw   

Through (15), it can be discovered that ( )iw t  is 

essentially the bias towards driving ( )iZ t  to zero in the 

sense that if ( ) 1iw t   , ( )iZ t  are more likely to be zero 

(note that when ( ) 1iw t  , the problem (8) is the 1L  

minimization), if ( ) 0iw t  , ( )iZ t  are more likely to be 

the dominant element (when ( ) 0iw t  , the 
1L  norm 

penalty is not concerned).  

Let the predicted support of ( )tH  at time 1t   be 

( ( | 1))pT t t H , which can be obtained through (5). Here 

we make the assumption that ( ( | 1))pT t t H  is highly 

accurate to the true supports of ( )tH . Since the support 

transitions are correlated here, this assumption is valid. 

Therefore, the proposed predict-re-estimate algorithm, 

referred as Pre-Re L1, mainly includes two phases: 

1) Prediction phase: At time 1t  , given the 

( ( 1))T t H , we first obtain the predicted support of ( )tH , 

i.e., ( ( | 1))pT t t H , through (5). Solve (7) using: 

 
0 ( ( | 1))

( | 1)
1 ( ( | 1))

i P

i

P

w if i T t t
w t t

if i T t t

  
  

 

H

H
  (17) 

Since the predicted support ( ( | 1))pT t t H  is assumed 

to be highly accurate, here we set 0iw  . 

Remark 3: By introducing the prediction phase, the 

correlation of the non-stationary supports are exploited by 

choosing the value of ( | 1)iw t t  . 

2) Add robust by Re-estimation phase with adaptive 

weights: At time t , we solve (7) using ( | 1)iw t t   , and 

obtain the estimate of the support, i.e., ( ( | ))ET t tH . 

Compute the ratio ( )t  by: 

| ( ( | )) ( ( | 1)) |
( )

| ( ( | )) |

E P

E

T t t T t t
t

T t t





H H

H
. As shown in [15], 

if ( ) 0.5t  , i.e., the estimated supports are highly 

accurate, then the weighted 
1L  minimization (7) using 

weights (17) achieves the smallest error bound constants. 

While, if ( ) 0.5t  , [15] proposes to set =0.5iw  to add 

robustness to the 
1L  weighted problem. So if ( ) 0.5t  , 

we re-solve (7) as the way of (18): 

0.5 ( ( | 1))
( | )

1 ( ( | 1))

i P

i

P

w if i T t t
w t t

if i T t t

  
 

 

H

H
     (18) 

Remark 4: By introducing the Re-estimation phase, 

the signal information at time t  is used. The weights are 

adaptive to the estimation result at time t . The adaptive 

weights at time t  change the bias towards the predicted 

support obtained at time 1t  . Since the predicted 

supports are not good enough to be the non-zero supports, 

we should drive them to zero by increasing 
iw , and here 

we propose to set 0.5iw  . 

In [18], a time-varying weight is also used. By using 

the similar idea, we can set 

| ( ( | )) \ ( ( | 1)) |

| ( ( | )) |

E P

i

E

T t t T t t
w

T t t




H H

H
, when ( ) 0.5t  . 

This approach is intuitive, since the more ( ( | ))ET t tH  are 

in the true support, i.e., ( ( | 1))PT t t H , the smaller 
iw  

will be. But this choice is lack of theoretical analysis, and 

it is not robust to the noisy environment, which will be 

shown in Section IV.  

C. Improved Support Estimation 

The estimation of the supports can be improved by the 

Add-LS procedure [16], [18]. The Add-LS procedure first 
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sets a thresh to detect additions to the support, i.e., 

( , )T Thresh  x  which means { : }iT i x   ; then 

compute an Least Squares (LS) estimate on that support, 

i.e., ( , , )LS Tx y A  which means †( ) , 0cT T T
 x A y x . 

The choice of add threshold parameter 
add  in the 

proposed Pre-Re L1 is given by 
2

0.25 / (2 1)r L K H , 

which is also used in [18]. In addition to Add-LS 

procedure, when ( ) 0.5t  , an expansion of supports 

size k  , i.e., ( ( | 1))Pk T t t H  can be implemented 

to make it more likely to take supports in the complement 

of set ( ( | 1))PT t t H  into set ( ( | ))ET t tH . The expansion 

procedure is denoted as ( , )T Expend k x  which means 

T  contains the k  largest magnitude element of x , as a 

result, the number of support of x  is expanded to k . 

Since a small increase is good enough, a (1,1.5]   is 

suggested ( 1.4   in our experiment). We note that the 

expansion step also utilizes the correlation of the supports 

by taking  ( ( | 1))PT t t H  as a reference support to the 

true support at time t  . 

This predict-re-estimate 
1L  minimization referred as 

Pre-Re L1 for the sparse Non-WSSUS channel by 

exploiting its support correlation is detailed in Algorithm 

1.  

Algorithm 1: Pre-Re L1 

Input: ( )ty , X  ;Output: ( )tH  

Definition: ( , ) means { : }iT Thresh T i x   x   

( , ) means contains

the largest magnitude 

elements of

T Expend k T

k

 x

x

    

†( , , ) means ( ) , 0cT T T
LS T  x y A x A y x   

1. Initialization:  

1.1. Solve (8) with ( ) 1iw t   at time 1t  . 

1.2. Add-LS procedure: 

(a) (1) (( (1)) , )E addT Thresh  H   

(b) (1) ( ( ), , ( (1)) )r r ELS t TH H U H   

For 2,3...t   do 

2. Prediction:  
2.1 Use (5) to get the predicted supports 

( ( | 1))PT t t H   

2.2 
0 ( ( | 1))

( | 1)
1 ( ( | 1))

i P

i

P

w if i T t t
w t t

if i T t t

  
  

 

H

H
  

3. Re-estimation:  

3.1 solve (7) using ( | 1)iw t t   to obtain ( | )t tH  

3.2 calculate 
| ( ( | )) ( ( | 1)) |

( )
| ( ( | )) |

E P

E

T t t T t t
t

T t t





H H

H
 

3.3 If ( ) 0.5t    

(a) ( ( )) ( ( ), )E r addT t Thresh t H H   

(b) ( ) ( ( ), , ( ( )) )r r Et LS t T tH H U H   

Else If ( ) 0.5t    

(a) Re-solve (7) using 

0.5 ( ( | 1))
( | )

1 ( ( | 1))

i P

i

P

w if i T t t
w t t

if i T t t

  
 

 

H

H

, to obtain ( | )t tH   

(b) ( ( | )) ( ( | )) , ( ( | )) )E E PT t t Expend t t T t tH H H   

(c) ( ) ( ( ), , ( ( | )) )r r Et LS t T t tH H U H   

(d) ( | ) ( ( ), )addt t Thresh t H H   

End If 
End for 

IV. SIMULATION RESULTS 

Our experimental results are obtained by applying the 

proposed Pre-Re L1 algorithm to the estimation of the 

sparse Non-WSSUS wireless channel. To assess the 

estimation performance of the Pre-Re L1 algorithm, a 

comparison against a number of popular sparse 

optimization techniques for time-varying systems has 

been conducted. These techniques include Kalman 

filtering by compressive sensing (KF-CS) [19], 

Compressive Sensing on the least squares residual (LS-

CS) [20], ADMM-based L1 minimization algorithm 

without knowing the prior information of supports (L1-

with no prior), and a modified Compressive Sensing 

with partially known support (modified-CS) [16].  

We consider a sparse wireless channel vector of 180 

dimensions. Only 12 elements are dominant (non-zero), 

having arbitrary support sets. The number of pilots is 45. 

We assume that the maximum change of the discrete 

delay and Doppler shift is 0.25 , and the covariance of the 

small random change is 31 10 . The time length is 50. 

Gaussian noise is added to the channel, whose variance is 

adjusted according to the SNR level of each experiment. 

Here, 
signal

SNR=10log10( )
noise

. The estimation 

performance of the algorithms is measured in terms of the 

Normalized Mean Square Error (NMSE), and its unit is 

dB. When come across the non-integer value of supports, 

we make them to their nearest integer. 

0 5 10 15 20 25 30 35 40 45 50
-25

-20

-15

-10

-5

0

5

10

Time(t)

N
M

S
E

(d
B

)

 

 

KF-CS

LS-CS

L1-no prior

proposed Pre-Re L1

 
Fig. 1. NMSE of recovering ( )tH . 
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The first experiment is used to demonstrate the 

estimation performance of the Pre-Re L1 algorithm. The 

SNR is set to 20dB. As illustrated in Fig. 1, it can be seen 

that the proposed algorithm has the smallest error, and it 

is stable. KF-CS and LS-CS give larger errors in this 

scenario. This may be caused by the relatively quick 

support change of ( )tH . The comparison between Pre-

Re L1 and L1-with no prior illustrates that the proposed 

algorithm which exploits the correlation of the support 

transition indeed increases the performance of sparse 

non-stationary correlated vector estimation. 
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Fig. 2. NMSE of different weight schemes, SNR=20dB . 
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Fig. 3. NMSE of different weight schemes, SNR=16dB . 

The next experiments are used to illustrate that the 

proposed Pre-Re L1 adds robustness to the 
1L  weighted 

problem. We compare the NMSE of recovering ( )tH  

with different schemes of choosing weight ( | )iw t t . The 

experiments are under SNR=20dB  , SNR 16dB , and 

SNR 15dB . The simulation result is shown in Fig. 2, 

Fig. 3, and Fig. 4. Note that the weighted L1 

minimization with ( | ) 0iw t t   is essentially the 

modified-CS [17]. The intuitive weight scheme 

mentioned in end of section III.B is denoted as Intuitive 

ratio. It can be seen that our proposed Pre-Re L1 with 

adaptive weights averagely achieves the best performance, 

and the other weight schemes fail to track the sparse Non-

WSSUS vector as time increasing. This simulation results 

is consistent with the discussion provided above. 
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Fig. 4. NMSE of different weight schemes, SNR=15dB . 

To show that when ( ) 0.5t  , 0iw   gain better 

performance than 0.5iw  . NMSE under deferent SNR 

are shown in Table I. It can be seen that in the case that 

when ( ) 0.5t  , 0iw   outperformed 0.5iw  . So just 

set 0.5iw   without justifying ( )t  will decrease the 

estimaiton performance. This result shows the 

effectiveness of the proposed adaptive weights approach.  

TABLE I: NMSE OF WEIGHTS=0 AND WEIGHTS=0.5 WHEN ( ) 0.5t   

Weights 
SNR 

        20    18            16 

0iw   0.0206 0.0199             0.0451 

0.5iw                             0.0206 0.0371        0.0836 

V. DISCUSSION 

In this section, we mainly discuss the issue of using 

previous time instants to decrease the computational 

burden. In our proposed algorithm, if ( ) 0.5t   then a 

re-estimation is needed, which increases the 

computational burden. It is seems that the first estimation 

to obtain ( ( | ))ET t tH  can be replaced by using previous 

two instants, i.e., 1t  , 2t  , which is used in [18]. 

However, we find that this method has poorer 

performance than our proposed Pre-Re L1. This is mainly 

because the change of support is assumed to be slow in 

[18], while in our scenario the change of support is 

relatively quick. Using the method in [18] leads to the 

result that the threshold is often below 0.5 , as a result, 

( | ) 0.5i iw t t w   is used. However the true situation 

may be that ( ) 0.5t  , and when ( ) 0.5t  , 0iw   

outperforms 0.5iw   [15]. In fact, the meaning of the 

threshold in [18] is very different from our ( )t . The 

threshold defined in [18] is used to check whether 

previous support estimate is a good predictor of the 

current support, while in our proposed Pre-Re L1 the 
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( )t  is used to measure the difference between the true 

support of ( )tH  and the estimated support of ( )tH . 

Moreover, since an accurate estimation of CIR in the 

OFDM system is crucial [8], it is worthy to trade some 

computational burden for accuracy.  

VI. CONCLUSION 

In this paper a weighted 
1L  minimization algorithm is 

presented to estimate the sparse Non-WSSUS channel 

vector. By exploiting the correlation of the non-stationary 

supports, a prediction-re-estimation procedure is 

established in the proposed algorithm. Compared with 

other CS techniques for wireless channel estimation, the 

proposed Pre-Re L1 exploits the correlation of the non-

stationary supports. Furthermore, its weights are adapted 

to the result which is estimated by the aid of prediction. 

Simulation results have shown that the proposed 

prediction-re-estimation 
1L  minimization technique 

improves the estimation performance for the non-

stationary correlated vector, and the adaptive weights add 

robustness to the 
1L  minimization technique. 
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