

 Manuscript received July 6, 2015; revised November 17, 2015.

Corresponding author email: justice1200@126.com

doi:10.12720/jcm.10.11.859-863

Journal of Communications Vol. 10, No. 11, November 2015

859©2015 Journal of Communications

Optimization of Waiting Time in Complex RIA by

Combined Pseudo-Hierarchical-Lazy-Loading Algorithm

Yun Chen, Ai Zheng, Shi Jing, and Qi Huang
School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu

611731, China

Email: justice1200@126.com; {812807433, 835995993}@qq.com; huangqi@uestc.edu.cn

Abstract—In complex RIA (Rich Internet Application)

environment, the browser may have to load and process very

large amount of data, which may result in long waiting time and

bad waiting experience. This may even cause to lose customers

for commercial sites. To avoid such problems, it is necessary to

replace the natural logic algorithms with some optimization

algorithms. In this paper, a combined algorithm, which

combines pseudo-hierarchical algorithm and lazy loading

algorithm, is proposed. The theoretical analysis is performed.

Then a test is designed and the performance of the combined

algorithm is compared with that of natural logic algorithm. The

results shows that the combined algorithm can give users a

better waiting experience by rebalancing loading time and

operation response time, matching the analysis very well.

Index Terms—RIA, pseudo-hierarchy, lazy loading, waiting

experience

I. INTRODUCTION

Rich Internet Application (RIA) is one product of the

modern Internet which is characterized by having a rich

data model and rich interface elements and it can give

users a highly interactive user experience [1]. As RIA

technology becomes more mature, there have been many

huge-scale RIAs. And with more extensive applications,

RIA is involving many disciplines and fields [2]. A large

3D visualization online management system and 3D

online web games are the most typical complex RIA and

are able to demonstrate the complexity and the difficulty

of RIA. When an instance of RIA becomes more and

more complex, especially accompanied by loading large

graphic resources and processing a lot of data, the

problems of loading time and operation response time

will come out and have a negative influence on waiting

experience directly of users. For commercial companies,

this may means incalculable customer loss and economic

loss [3].

Fortunately, with the development of RIA optimization

theory and technology, various optimization algorithms

have been proposed [4] and involved in RIA system

architecture, RIA server, RIA browser-side code, RIA

internal communication and so on [5]. But with the

emergence of 3D visualized RIA which has ultra large

and complex data structures, RIA optimization still

requires more effort. In this paper, the algorithm

proposed based on combining pseudo-hierarchical

algorithm and lazy loading algorithm is a rebalancing

optimization of RIA for browser-side code. The lazy

loading algorithm is a classical algorithm proposed

decades ago [6], its core idea is to quickly load some

basic data to complete starting application, which can

accelerate the application starts, thus reducing the waiting

time to start, and until now it’s still widely used [7].

Pseudo-hierarchy algorithm is a solution by decoupling

and managing the logic data structure of applications,

which is widely used in data management for applications

with complex data structures [8]. The algorithm rewrite

the dependency of data nodes, so that each logical node

can no longer be tightly coupled to their parents, children

or siblings, thus the nodes can be individually loaded and

managed thus forming a pseudo-hierarchy structure.

In short, the algorithm proposed in this paper is an

attempt to optimize the algorithm of browser-side code,

and the final goal is to optimize the waiting experience of

users for complex RIA.

II. ANALYSIS OF EXISTING ALGORITHMS

For complex RIA, each data node require a certain load

time that cannot be ignored, and because RIA is running

in browsers, the time for processing node cannot be

ignored neither in general [9]. Under the precondition of

the above, suppose there is a parent-child hierarchical

RIA, and the logic layer of the RIA is K, each layer has

i nodes, then assume that the expected time (,)t i j for

loading and processing each node can be represented by

the follow formula:

 (,) (,)load processt i j t t i j  . (1)

In the above equation, i and j represent the j-th node in

i-level, the total initial load time is sT . In order to

characterize the efficiency of response speed in RIA,

assuming that the nodes of last level have siblings, then

the expected time for accessing the nodes in the same

level is uT [10]. Then to some extent, the startup time of

RIA can be defined as sT , and the operation response

time of RIA can represent by uT . Therefore the key of

optimizing user waiting experience converted to

optimization of sT and uT .

Journal of Communications Vol. 10, No. 11, November 2015

860©2015 Journal of Communications

A. Analysis of Natural Logic Algorithm

Under the above premise，assume that the system uses

a doubly linked list to store the relationship between

nodes, the RIA need to load all nodes to finish

initialization, then
sT of the system is ：

1 1

(,)
iK

s sys
i j

T t i j T


 

  (2)

where sysT is the time for system basic start which is

indispensable and it is determined by the realization

method of RIA and machine environment for RIA [11].

As all nodes in the system have been loaded, the time

for accessing the related nodes in the same level is

negligible, as follow:

 0uT  (3)

B. Analysis of Lazy Loading Algorithm

Under the same premise, using lazy loading algorithm

as initial loading algorithm, when all nodes in the first

level are loaded and processed, the results can be display

to users. So sT can be expressed as

1

1

(1,)s sys
j

T t j T




  (4)

At this time, the nodes in last level are neither be

loaded or processed. Because the structure of the RIA is

parent-child hierarchy, for the nodes in last level, if a

node wants to visit another node in the same level, it will

be completed until the whole family of the target node is

loaded, so the operation time can be expressed as

1

() (,)
iK

u
i j i

T f t i j



 

  (5)

where ()f  is a random variable that indicates the

percentage of related nodes need be loaded to finish

operation, where 1 2(, ,)k    . So it’s predicted that

if system uses conventional lazy loading algorithm

separately, the initial load time will be decreased greatly

[12], but because the hierarchy of system uses the natural

logic, it will take much time for nodes in last level to visit

the nodes in the same level. Moreover the system is more

complex, the value of ()f  is closer to 1 and the value

of uT will be larger.

C. Analysis of Pseudo-Hierarchical Algorithm

Pseudo-hierarchical algorithm has been proposed for

many years, and was used in network optimization widely

[13].

Fig. 1. natural logic structure of RIA nodes

For natural hierarchical logic RIA, the data structure of

a simple RIA is a traditional binary tree which can be

represented in Fig. 1.

The characteristic of the structure is that child nodes

cannot exist without parent nodes. So in the case of lazy

loading algorithm, a complete branch in a tree has been

loaded and processed completely. But if one leaf node

attempts to access the related nodes in the same level,

operation response time will follow the rules mentioned

in B , because another tree have to be loaded.

To solve this problem, pseudo-hierarchical algorithm

packages the structure of RIA once more. Each node in

one level will be set as a new combination of variables to

generating another data structure, then the structure of the

RIA is shown in Fig. 2.

Fig. 2. structure of pseudo-hierarchical algorithm

In this case the relationship between nodes is no longer

hierarchy only, thereby every node can exist

independently without considering the relationship of

parents or siblings, so that each node can ignore the

parent-child relationship and exist in isolation, and this is

generalized pseudo-hierarchical algorithms. The RIA can

get rid of the strict logic relationship [14], [15], and the

structure of the RIA transverse from the broad into a

generalized longitudinal.

Therefore, in the context of the above, if the RIA uses

the pseudo-hierarchical algorithm individually, the

system's initial loading will be almost unchanged [16]. So

Ts satisfies the equation (2), and expected time for

accessing nodes in the last level the RIA uT will

basically remain unchanged too, as satisfying the

equation (3).

Thus it can be concluded that if taking an implantation

of a separate pseudo-hierarchical optimize algorithm only,

the RIA will not be substantially optimized [17].

Browser Request RIA

Load basic frame

Load fist level data

Initialize pseudo-hierarchical
data manager

Waiting operation

If target node is loaded

Visit and handle

Request from pseudo-
hierarchical data manager

Yes

No

Get target node and
its pseudo family

Lazy loading algorithm

Pseudo-hierarchical
algorithm

Fig. 3 Flow chart of combined algorithm

Journal of Communications Vol. 10, No. 11, November 2015

861©2015 Journal of Communications

III. ANALYSIS ON COMBINED ALGORITHM

Under the same background, it will be analyzed what’s

different if using pseudo-hierarchical algorithm combined

with lazy loading algorithm to replace natural logic

algorithm. At first the flow chart of the combined

algorithm is shown in Fig. 3.

Unlike common RIA, for a RIA implanted combined

algorithm, it will initialize the pseudo-hierarchical data

manager and load first level data of the RIA for startup.

When a operation comes, the RIA will request data from

pseudo-hierarchical data manager installed of analyzing

the whole data structure of the RIA as using lazy loading

algorithm only, and the pseudo-hierarchical data manager

will response for quickly returning the target node

without analyzing the whole family of the target node.

So it can be assumed that when RIA initializes, the

processing time (,)processt i j for each node in a minor will

increase a little because the initialization of pseudo-

hierarchical data manager comparing to equation (1), but

contrasted with the load time (,)loadt i j , its influence is

negligible, because node resources are generally larger in

complex RIA, so the node loading time often occupies a

major time. The results of the following experiment will

also support this view. Therefore:

 ' (,) (,)t i j t i j (6)

At this time, the initial load time of the system sT

meets with the initial load time by lazy loading algorithm

in the II-B, i.e., sT satisfies the (4).

Meanwhile, uT of RIA is affected by pseudo hierarchy

and no unnecessary loading phenomenon occurs, so that

the expected time for loading and processing the nodes in

the last level end of the layer satisfies the formula:

1

(,) /
k

u k
j

T t K j





 . (7)

Since the magnitude of one single (,)t i j is nearly

millisecond, it is general that uT is also in this range, so

users will not wait long as like II-B.

If we only use natural logic algorithms, the initial load

time is so long that users cannot accept; Using lazy

loading algorithm can solve the problem that the initial

load is slowly, but in logic tightly coupled RIA it prone to

emerge unnecessary loading issues, so that user may wait

too long to operate; Using pseudo-hierarchical algorithm

only is of no practical significance, and it will increase

the size of RIA. By combining pseudo-hierarchical

algorithm and lazy loading algorithm, we can realize

generalized longitudinal structure of RIA which can

reduce the initial loading time relative to the natural logic

algorithm compared with the results of the pure lazy

loading algorithm. It also can speed up the response time

for user operation. In summary, combining of pseudo-

hierarchical algorithm and lazy loading algorithm is a re-

balancing optimization for sT and uT .

IV. ALGORITHM VALIDATION AND RESULTS ANALYSIS

A. Algorithm test Environment

Algorithm was tested and verified in a typical RIA

realized with Flex and J2EE which is established based

on Adobe Flex technology. A series of hierarchies and

nodes are loaded, and the number of levels and nodes are

manageable. The node includes 3DS data and many other

types of data. The volume of the node is huge, it has 4

levels, and thereby we can simulate the real RIA system

approximately. In the realization of RIA, the structure of

this system is show in Fig. 4.

Fig. 4. Technology architecture of test RIA

Fig. 5. Data levels of the test RIA

The test RIA is a typical 3D visualized data

management system for datacenters. The main function

of the RIA is to simulate a real datacenter in a 3D scene

and manage the data visually. The data of the RIA are

individuated into 4 levels as Fig. 5. So the startup time sT

of the RIA can be described by finishing the show of the

datacenters. The operation response time uT can be

simulated by the time of a data port getting the

information of the peer port which stands by the max

Journal of Communications Vol. 10, No. 11, November 2015

862©2015 Journal of Communications

operation waiting time, because for lazy loading

algorithm only, the operation must load the whole peer

cabinet, devices and ports to finish the operation.

During the experiment, the database server and J2EE

servers were placed on two standard servers. CPU of the

server is 12-core at 2.4 GHz, Memory of the server is

8GB. Server and client are in the same 100-M network.

Experiments were carried out. We deployed natural

algorithm code the lazy loading algorithm, pseudo-

hierarchical algorithm code and combine algorithm code

on the server respectively. We add a timer in the code to

record the start time and operation response time of

different nodes in the system.

Fig. 6. Result of tests on startup time of RIA

Fig. 7. Result of tests on operation response time of RIA

B. Analysis of Results

Timer in RIA server records the time of different

algorithm. The load time is from the average of 20 times

start experiment, every experiment was conducted in

response to unrelated operation more than 30 times,

taking the average as load time. The result of the

experiment is shown in Fig. 6 and Fig. 7.

As can be seen from Fig. 6, using natural logic

algorithms, the startup time of RIA will proportional

increase as the number of nodes at a higher speed. The

relationship is in keeping with equation (2). Lazy loading

algorithm and combined algorithm will grow at a

relatively lower rate of growth comparing to the speed of

natural logic algorithms. The ratio is related with the

level of logical node, satisfying the equation (4). Average

operation time of three above-mentioned algorithms is

shown in Fig. 7. It can be seen that as lazy loading

algorithm logic tightly coupled constraints, the growth of

operating time is rapid, the relationship between the

number of nodes and operation is linear approximately,

proving equation (5) is reasonable. However, the natural

algorithm, the response time of operation is near zero, in

line with forecast by equation (3). The response time of

combine algorithm is stable and nearby constant, that is

consistent with the results of equation (6).

In summary, the experimental results show that

combination algorithm, as expected, improves the initial

loading speed by the expense of part of the response

speed. It is proved that combination algorithm is

optimization for a typical complex RIA. Experimental

analysis of the final data is consistent with the

mathematical model, which proves the effectiveness of

combination algorithm.

V. CONCLUSION

Pseudo-hierarchical algorithm combined with lazy

loading algorithm can effectively rebalance the initial

load time and operation time through internet analysis

and experiments. The initial load time is greatly reduced

while response operation time within an acceptable range.

In a word, the overall waiting time of RIA is improved

greatly. This algorithm is an optimization for RIA

browser-side code, and is suitable for typical complex

RIA such as 3D visualization management applications

and 3D online web games. The findings may offer some

new references for future research on optimization of

RIA.

REFERENCES

[1] B. Marco and P. Fraternali, “Large-scale model-driven

engineering of web user interaction: The webml and webratio

experience,” Science of Computer Programming, vol. 89, pp. 71-

87, 2014.

[2] Q. Pascale, et al., “Using a rich internet application to teach

histology,” in Proc. 12th European Congress of Digital Pathology,

2014.

[3] N. Rostislav, V. Vožnílek, and M. Balun, “Rich internet

application for crisis management support–case study on Floods in

Olomouc City,” in Proc. Fifth International Conference on

Innovations in Bio-Inspired Com puting and Applications, 2014.

[4] Ali, M. Montaz, “Some modified stochastic global optimization

algorithms with applications,” Loughborough University of

Technology, 1994.
[5] B. Masiar, A. Gallidabino, and C. Pautasso, “Liquid stream

processing across web browsers and web servers,” in Engineering

the Web in the Big Data Era, Springer International Publishing,

2015, pp. 24-33.

[6] L. Sheng and G. Bracha, “Dynamic class loading in the Java

virtual machine,” ACM SIGPLAN Notices, vol. 33, no. 10, pp. 36-

44, 1998.

[7] L. Y. Yuan, et al., “A demonstration of rubato DB: A highly

scalable NewSQL database system for OLTP and big data

applications,” in Proc. ACM SIGMOD International Conference

on Management of Data, 2015.

Journal of Communications Vol. 10, No. 11, November 2015

863©2015 Journal of Communications

[8] J. T. Zhou, et al., “hierarchical model of network planning

capability for the construction method,” Computer Integrated

Manufacturing Systems, vol. 20, no. 8, pp. 1819-1826, 2014.

[9] M, H. Hu and P. Bian, “Human-Machine interface: Design

principles of interactive waiting in Web and App,” in Proc. 2nd

International Conference on Soft Computing in Information

Communication Technology, 2014.

[10] N. F. Fui-Hoon, “A study on tolerable waiting time: How long are

Web users willing to wait?” Behaviour & Information Technology,

vol. 23, no. 3, pp. 153-163, 2004.

[11] P. Pascal and D. Fortin, “An optimal algorithm to recognize

robinsonian dissimilarities,” Journal of Classification, vol. 31, no.

3, pp. 351-385, 2014.

[12] C. Suryakant, et al, “Model-based rich internet applications

crawling: menu and probability models,” Journal of Web

Engineering, vol. 13, no. 3-4, pp. 243-262, 2014.

[13] F. Marcello, N. Bertoldi, and M. Cettolo, “IRSTLM: An open

source toolkit for handling large scale language models,”

Interspeech, 2008.

[14] F. Fouquet, et al., An Eclipse Modelling Framework Alternative to

Meet the Models@ Runtime Requirements, Springer Berlin

Heidelberg, 2012.

[15] B. Mark, et al., “Data Analysis WorkbeNch (DAWN),” Journal of

Synchrotron Radiation, vol. 22, no. 3, 2015.

[16] L. Nabil, B. Dhupia, and S. Rubab, “Review of cross-platforms for

mobile learning application development,” International Journal

of Advanced Computer Science and Applications, vol. 6, no. 1,

2015.

[17] J. R. Alder and S. W. Hostetler, “Web based visualization of large

climate data sets,” Environmental Modelling & Software, vol. 68,

pp. 175-180, 2015.

Yun Chen was born in Chengdu, Sichuan

Province, in 1991. He received the B.S.

degree in College of automation engineering

from UESTC in 2013 and now working on a

M.S. degree in Energy science and

engineering college from UESTC. The main

research direction is smart grid.

Ai Zheng was born in Tangshan, Hebei

province, in1992. She received the B.S.

degree in School of automation engineering

from UESTC in 2014, and now works on a

M.S. degree in Energy Science and

Engineering College from UESTC. The main

research direction is smart grid.

Shi Jing was born in Nanjing, Jiangsu

province. He received the Ph.D. degree in

Energy science and engineering college from

UESTC in 2013. The main research direction

is the smart grid information technology,

automation.

Qi Huang was born in Guizhou Province in

the People’s Republic of China. He received

his BS degree in Electrical Engineering from

Fuzhou University, Fuzhou, Fujian, P.R.

China, in 1996, MS degree from Tsinghua

University, Beijing, China, in 1999, and Ph.D.

degree from Arizona State University, Tempe,

AZ, US, in 2003. He is currently a professor

at University of Electronic Science and

Technology of China (UESTC) and the Deputy Dean of School of

Energy Science and Engineering, UESTC, and the Director of Sichuan

State Provincial Lab of Power System Wide-area Measurement and

Control. His current research and academic interests include power

system high performance computing, power system instrumentation,

power system monitoring and control, and integration of distributed

generation into the existing power system infrastructure.

