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Abstract—Chebyshev polynomials based public key 

cryptosystem (CPPKC), proposed by L. Kocarev in 2003, has 

emerged as a new research field in cryptography and attracted a 

lot of attentions in recent years. Although provable security in 

traditional public key cryptosystem has already been developed 

about twenty years, no relevant security proof research has been 

found about CPPKC. Aiming at the disability of CPPKC to 

resist against the adaptive chosen ciphertext attack, we construct 

a provably secure CPPKC, namely PS-CPPKC, which is 

designed utilizing the benefits of hash function and its security 

proof is completed under the Cheybshev Diffie-Hellman 

problem (CDHP) assumption by probabilistic analyses and 

computation in random oracle model. This is our primary 

exploration and it shows that provable security theory can 

combine well with CPPKC. 
 
Index Terms—Chebyshev polynomials,  public key crypto-

system, chosen ciphertext attack, provable security 

 

I. INTRODUCTION 

In 1976, the publication of the paper “New directions 

in cryptography” by Diffie and Hellman [1] opened the 

new exploration filed of public key cryptosystem. Since 

then, numerous public key algorithms have been 

proposed utilizing the one way trapdoor function. The 

most widely used traditional public key cryptosystems 

include RSA, Elgamal cryptosytem and elliptic curve 

cryptosystem. Besides, there are also knapsack based 

public key cryptosystem [2], lattice based public key 

cryptosystem [3], algebraic coding based public key 

cryptography [4] and so on. In this paper, we will focus 

on a kind of chaos based public key cryptosystem, which 

is constructed by Chebyshev polynomials [5], [6].  

Security is the basic principle of designing public key 

cryptosystem. Previous work mainly relies on the 

analyses of cryptanalyst to guarantee the security of 

cryptosystem, which is recurrence of analyses-

improvement process. But this method is not complete 

and reliable. With the further research, formal security 

proof is quite necessary. The proof can be accomplished 
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by the reduction of public key cryptosystem security to 

the mathematical hard problem security. If the security of 

cryptosystem can be reduced to the mathematical hard 

problem without any other assumption, then the 

cryptosystem is called provably secure in standard model 

[7]. But security proof in standard model is very difficult. 

So random oracle, usually regarded as ideal hash function, 

is introduced to prove the security [8]. In this situation, 

provably secure public key cryptosystem is called secure 

in random oracle model. Even if provably secure 

cryptosystem cannot guarantee the security completely in 

random oracle model, it is still a widely accepted method 

to measure the security of public key cryptosystem.   

Since Rackoff and Simon [9] introduced the notion 

called indistinguishability under adaptive chosen 

ciphertext attack (IND-CCA2), which is equivalent to 

non-malleability [10], IND-CCA2 security has become a 

standard security goal for public key encryption. In 1994, 

Bellare and Rogaway proposed the Optimal Asymmetric 

Encryption Padding (OAEP) scheme [8], which was 

proved to provide semantic security against adaptive 

chosen-ciphertext attack in the random oracle model. 

[13]

proposed in the random oracle model.  

Chebyshev polynomials based public key cryptosystem 

(CPPKC), as a kind of chaos based cryptography, 

, [6], [14]-

[17]

key of CPPKC can guarantee the security even for small 

integer, so there is no need to look for very large numbers; 

for the Chebyshev chaotic maps, x and ( )rT x  are 

independent random variables, which also enhance the 

security.  As far as we know, there is no relevant research 

about security proof of CPPKC. Since CPPKC is not 

secure against IND-CCA2, our main contribution is to 

construct provably secure CPPKC, called PS-CPPKC, 

which is the primary exploration to combine CPPKC with 

security proof theory. Our scheme, constructed by hash 

function, is provably secure under the Cheybshev Diffie-

Hellman problem (CDHP) in random oracle model. We 

will present the detailed proof procedure in this paper. 

This paper is organized as follows. Section II 

introduces the preliminaries about CPPKC, relevant 

mathematical hard problem about CPPKC and the 

definition of IND-CCA2. Then the constructed PS-
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attracted a lot of attentions in recent years [5]

. Compared to traditional cryptosystem, the private 

Then many provably secure schemes [11]-  have been 



CPPKC, with explicit security proof, is described in 

Section III. Brief implementation of the PS-CPPKC is 

given in Section IV. Then the last section presents the 

conclusions. 

II. PRELIMINARIES 

A. Chebyshev Polynomial 

Definition 1 (Chebyshev polynomial [5]). Let n Z   

and [ 1,1]x  , the Chebyshev polynomial of order n , 

( ) :[ 1,1] [ 1,1]nT x    , is defined as algebraic expression: 

 ( ) cos( arccos( ))nT x n x                         (1) 

Its equivalent recurrence definition is:  

1 2( ) 2 ( ) ( ), 2n n nT x xT x T x n                         (2) 

where 0 ( ) 1T x   and 1( )T x x . 

The Chebyshev polynomials exhibit the following 

important properties: the semi-group property and the 

chaotic property. 

The semi-group property  

( ( )) ( ) ( ( ))r s sr s rT T x T x T T x                  (3) 

where r and s are positive integer numbers and [ 1,1]x  . 

(1) The chaotic property 

When the degree 1n  , the Chebyshev polynomial 

map ( ) :[ 1,1]nT x   [ 1,1]  is a chaotic map with its 

invariant density * 2( ) 1/ ( 1 )f x x  , and positive 

Lyapunov exponent ln 0n   . 

TABLE I: THE CPPKC  

Public parameters: select a large prime P and a random positive 

number Px F , 1x  . 

Key generation: Randomly generate a large integer s and compute 

( )sT x . The public key is ( )sT x
 
and private key is s . 

Message encryption: To encrypt the message Pm Z , 

1). randomly select a positive integer Pr Z  

2). compute 1 ( )rc T x and 2 ( ( ))r sc m T T x   

Output the ciphertext 1 2( , )c c c . 

Message decryption: To decrypt the ciphertext c , 

1). use the private key to compute 1( ) ( ( ))s s rT T c T T x   

2). recover the plaintext by computing 1

2m c T    

Remark: The modular symbol “ mod P ” is omitted for the simple 

description. 

 

The semi-group property is very useful to construct 

public key cryptosystem [5]. When [ 1,1]x  , the explicit 

algebraic expression of ( )nT x can lead to security 

loophole in the public-key cryptosystem [18]. To resist 

this attack, Kocarev et al. extended the definition of 

( )nT x  to the finite field PF (see the equation(4)) and 

improved the public key cryptosystem [6], as shown in 

the Table I.  

 1 2( ) 2 ( ) ( )modn n nT x xT x T x P                (4) 

where 2n   and P is a large prime. 

It is obvious that the CPPKC is not secure against 

IND-CCA2 attack. Specifically, suppose the adversary 

wants to decrypt the ciphertext 1 2( , )c c c   

( ( ), ( ))r rsT x m T x . The adversary can select an integer k  

and construct the ciphertext 1 2 1 2( , ) ( , )c c c c k c     .  

Then he request to decrypt c and get 
1

2' ( )rsm T x c km   . So the adversary can recover the 

plaintext of c  by computing 1m k m  . In this paper, we 

construct a secure scheme based on CPPKC and prove its 

security in rand oracle model.   

B. Mathematical Hard Problem 

This part introduces some basic mathematical hard 

problems about Chebyshev polynomials. They are not 

only the basic intractable problems to construct public 

key cryptosystem, but also the key points to prove the 

security. 

Definition 2. Chebyshev discrete logarithm problem 

(CDLP): given the element ( , )x y , it is computationally 

infeasible to find the integer s , such that ( )sT x y . 

Definition 3. Chebyshev Diffie-Hellman problem 

(CDHP): given the element ( , ( ), ( ))r sx T x T x , it is 

computationally infeasible to get ( )rsT x . 

The two problems are both conjectured to be hard and 

can be used as assumptions to prove the security of 

CPPKC. There are obvious polynomial-time reductions 

from CDHP to CDLP, but the reductions in the reverse 

direction are unknown. Moreover, CDHP assumption is 

stronger than CDLP. 

C. Security Against IND-CCA2 

According to Rackoff and Simon’s definition [9], 

security against IND-CCA2 is defined via a game played 

between the adversary and simulator. The game consists 

of two stages: find stage and guess stage. In the find stage, 

the adversary makes arbitrary decryption query from the 

simulator, decrypting the ciphertext of his choice. Next in 

the guess stage, the adversary chooses two 

messages 1 2( , )m m , and sends them to the simulator. The 

simulator randomly chooses a bit {0,1}b , and returns 

the ciphertext c  of bm to the adversary. After receiving 

the ciphertext c , the adversary can continue to ask for 

decryption query with the restriction that the query 

ciphertext c is different from c . In the end, adversary 

outputs {0,1}b , as the guess value of b . The 

adversary’s advantage is defined as follows:   

1
( ) Pr[ ]

2
Adv A b b                        (5) 

where Pr[ ]b b denotes the probability of b b  . 

The public key cryptosystem is said to be secure 

against IND-CCA2 if the advantage  of any-polynomial 

time adversary is negligible. 
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III. T PS-CPPKC 

A. Description of PS-CPPKC 

As mentioned above, the CPPCK is not secure against 

IND-CCA2 attack. To enhance its security, we make use 

of the one-way hash function to construct the provably 

secure CPPKC, as shown in Table II, and will prove its 

security in random oracle.  

TABLE II. DESCRIPTION OF PS-CPPKC 

Public parameters: select a large prime P , a random positive number 

Px F , 1x  and a one-way hash function H : *{0,1} {0,1}k . 

Key generation: Randomly generate a large integers s and compute 

( )sy T x . The public key is y and private key is s . 

Message encryption: To encrypt the message Pm Z  with the length of 

l  bits 

1). randomly selects two positive integers 1 2, Pr r Z  

2). compute 
11 ( )rc T x and 

22 ( )rc T x
 

3). compute 
11 ( )rh T y and 

22 ( )rh T y
 

4). Let 1 2||t h h , = ( )H t  and 2( || )M m h   

5). compute 3 1 modc Mh P   

Output the ciphertext 1 2 3( , , )c c c c . 

Message decryption: To decrypt the ciphertext c with the private 

key s , 

1). compute 1 1( )sh T c , 2 2( )sh T c and 1

1 3M h c  

2). compute 2 1[ ] lm M h   and 2 1, ,[ ]l l kM h      

If 1 2( || )H h h  , m is the legitimate plaintext; otherwise, output  . 

Remark: “ || ” denotes the concatenation of binary string; “ [ ]i j ” 

denotes extracting the bits from position i to j . 

B. Security Proof in Random Oracle Model 

In this section, we prove the security PS-CPPKC 

referring to the method in [8], [19]. We show that it is 

secure against IND-CCA2 in random oracle model. 

Namely, the following theorem holds. 

Theorem. The PS-CPKC is indistinguishable against 

adaptive chosen-ciphertext attack under the CDHP 

assumption in random oracle model.  

Suppose the adversary A has the advantage e
 
in IND-

CCA2 attack, then there exists a polynomial time 

algorithm, which has the advantage e in breaking the 

CDHP assumption, where 

2 2 k

De e n                                 (6) 

where Dn is the query number of decryption oracle ( )D Q , 

k is the bit length of hash value. 

The explicit procedure of reduction proof is as follows: 

The proof is conducted by an IND-CCA2 attacking 

game between the adversary A and simulator M . M is 

given a random target ciphertext 
*c and tries to decrypt it 

without private key. If M can decrypt 
*c , this can help to 

solve the CDHP assumption. A can only communicates 

with M according to the game rules.  

The reduction proof is divided into the following two 

stages.   

1) Find stage: M simulates the random oracle 

( )H Q and decryption oracle ( )D Q  to the adversary A . 

This helps A learn some valuable knowledge about PS-

CPKC. The precise simulation is necessary to guarantee 

that it seems like a real attack for adversary A rather than 

playing a game. In this stage, A can construct any 

ciphertext by his choice. But A needs to request the 

service of random oracle ( )H Q ; otherwise, A can only 

construct the legitimate ciphertext with negligible 

probability.  

2) Guess stage: A sends M a pair of plaintext 

0 1( , )m m with equal length. M chooses a random bit 

{0,1}b and regards the target 
*c as the ciphertext of 

bm . 

It is almost impossible for A to find that he is tricked by 

M , which will be explained explicitly below. In the 

IND-CCA2 attack, A can still get the random oracle 

( )H Q  and decryption oracle ( )D Q service from M . But 

A cannot request to decrypt 
*c , which is the target 

ciphertext M needs to decrypt in the simulation game. 

According to the knowledge learnt from the procedure, 

A guesses b as the value of b and finishes the game. 

In the procedure, M needs to conduct two kinds of 

simulation: random oracle ( )H Q and decryption oracle 

( )D Q . Let us explain the details. 

1) Simulation of random oracle ( )H Q   

The simulation of ( )H Q is simple. M firstly initializes 

an empty table T . When A requests an random oracle 

query t , M searches the table list to see whether t exists. 

If it exists, M  returns the corresponding value 

( )H t  to A ; otherwise, M provides A with a random 

hash value, and adds ( , )t  to the table list.  

If the query happens in the guess stage, M will try to 

decrypt * * * *

1 2 3=( , , )c c c c by ( , )t  ,
1 2||t h h , ( )H t  . 

Then M computes: 

* 1 *

1 3 modM h c P ,
 

* *

2 1[ ] lm M h   , 

* *

2 1, ,[ ]l l kM h     , 

Then M checks whether *   holds. If so, M can get 
*m as the plaintext of target ciphertext 

*c . Then M can 

obtain 
11 ( )r sh T x  with ( )sy T x and 

1

*

1 ( )rc T x . That is 

to say, M can break CDHP assumption and win the game.  

2) Simulation of decryption oracle ( )D Q   

When receiving the ciphertext 1 2 3( , , )c c c c     for 

decryption from A , M will search whether there is 

( )H t   in the table T . For each pair ( , )t  , 

M computes 
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1

1 3 modM h c P 
 

2 1[ ] lm M h 
   , 

2 1, ,[ ]l l kM h   
   ,  

If   , M returns m to A as the plaintext of c ; 

otherwise, M returns  . 

The decryption simulation procedure is also very 
precise. A cannot realize that he is tricked by M even 
with a legitimate ciphertext except with a negligible 
probability. If A wants to construct a legitimate 

ciphertext 1 2 3( , , )c c c c , he first needs to request the 

random oracle service. If  has been queried, then 

M can perform the decryption procedure accurately; 
otherwise, M  rejects the decryption request, which is 

almost correct except with negligible probability 2 k .  

Then let us analyze the advantage e of the simulator 

M . For the simple description, we define some 

probabilistic events. Let the bad event 1E
 
denotes 

that M mistakenly rejects a legitimate ciphertext in the 
decryption query, then 

1Pr[ ] 2 k

DE n                             (7) 

Another bad event for M is that A discovers the target 

ciphertext *c has nothing to do with the chosen plaintexts 

0 1{ , }m m . This is almost impossible except 

when *  is in the table T . We denote this event by 2E .   

Let BadE denotes the union of 1E and 2E , 

namely, 1 2BadE E E  . Let AwinE
 
denotes the event 

when A finally can guess the bit b
 
and win the game. Let 

MwinE  denotes M can decrypt the ciphertext *c  without 

the private key at last. Only when 2E
 
happens, M can 

decrypt *c and win the game, so   

2Pr[ ] Pr[ ]MwinE E                            (8) 

For the adversary A , if the event BadE  does not appear, 

then bit b and the target ciphertext *c are independent 

with each other because of the uniform distribution of 
random oracle, namely: 

 
1

Pr[ | ]
2

Awin BadE E                          (9) 

According to the conditional probability formula, we 

can get  

Pr[ ] Pr[ | ]Pr[ ]

1 1
Pr[ ] (1 Pr[ ])

2 2

Awin Bad Awin Bad Bad

Bad Bad

E E E E E

E E

 

    
(10) 

The attack advantage of A can be defined as : 

               
1

( ) Pr[ ]
2

Adv A b b e                     (11) 

So     

1
Pr[ ]

2
AwinE e                               (12) 

According to the law of total probability, 

Pr[ ] Pr[ ] Pr[ ]Awin Awin Bad Awin BadE E E E E   
 
     (13)

 

Since  

Pr[ ] Pr[ ]Awin Bad BadE E E                    (14) 

Then 

        
1

Pr[ ] Pr[ ]
2

Awin Bad BadE E E e          (15) 

According to the above result, 

           
1 1

(1 Pr[ ]) Pr[ ]
2 2

Bad BadE E e   
    

(16) 

                       Pr[ ] 2BadE e
                         

(17) 

Since  

1 2BadE E E                       (18) 

So 

        

1 2

1 2

1

Pr[ ] Pr[ ]

Pr[ ] Pr[ ]

Pr[ ] Pr[ ]

Bad

Mwin

E E E

E E

E E

 

 

 

              (19) 

So   

      1Pr[ ] Pr[ ] Pr[ ] 2 2 k

Mwin Bad DE E E e n          (20) 

             2 2 k

De e n   
                                 

(21) 

Since under the CDHP assumption and in the random 

oracle , e and 2 k

Dn  are both  negligible, so e  is 

negligible. This completes the proof of the theorem. 

IV. THE IMPLEMENTATION OF PS-CPPKC 

In PS-CPPKC, the hash function can be instantiated by 

the one based on coupled chaotic map lattices [20], which 

has the extreme sensitivity of chaotic system. With the 

properties of one-way, good confusion, diffusion and 

approximate uniform distribution, it can approach an 

ideal hash function to be the random oracle. What is more, 

the hash function is also flexible and efficient to satisfy 

the requirement of PS-CPPKC.  

The computation of Chebyshev polynomials is the key 

point to influence the efficiency of PS-CPPKC. There are 

two common methods to compute them. The first one [5] 

utilizes the semi-group property of Cheybshev 

polynomials. It can reach high efficiency but with limited 

application. The second one [18], making use of matrix 

exponentiation, is a universal method with computational 

complexity of ( )O log n . Recently, a new method [21] 

has also been proposed to further improve the efficiency 

of Chebyshev polynomials computation, which will make 

PS-CPPKC more practical. 

V. CONCLUSIONS 

In order to guarantee the security of Chebyshve 

polynomials based public key cryptosystem against 
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adaptive chosen ciphertext attack, we propose a new 

scheme and prove their security explicitly. The 

constructed scheme, PS-CPPKC, relies on the random 

oracle, which is an effective technique to evaluate the 

security of CPPKC. This is the primary exploration to 

combine provably secure theory with CPPKC. However, 

provable security in random oracle may be controversial 

in cryptography and more investigations are still needed 

to construct secure and efficient cryptosystem in standard 

model for real applications. This will be our future 

research work. Provably secure digital signature and key 

agreement protocol based on Cheybyshev polynomials, 

are also very interesting topics worth further research. 
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