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Abstract—Prediction of spectrum sensing and access is one of 

the keys in cognitive radio (CR). It is necessary to know the 

channel state transition probabilities to predict the spectrum. By 

the use of the model of partially observable Markov decision 

process (POMDP), this paper addressed the spectrum sensing 

and access in cognitive radio and proposed an estimation 

algorithm of channel state transition probabilities. In this 

algorithm, the historical statistics information of channel is used 

to estimate the channel state transition probabilities, and the 

Least Square (LS) criterion is used to minimize the fitting error. 

It is showed that the channel state transition process is a special 

Markov chain, in which the channel state has only one state 

within each slot. The relationship between estimation precision 

and the number of converging observation samples is derived. 

The more the historical statistics information is, the higher the 

estimation accuracy is. Simulation results showed the estimated 

error of the LS algorithm is smaller than the linear estimation 

algorithm. 
 
Index Terms—Cognitive radio, POMDP, channel state 

transition probability, least Square estimation 

 

I. INTRODUCTION 

With the development of wireless communication 

technology and the increase of wireless communication 

applications, the demand for spectrum is growing. The 

radio spectrum is becoming increasingly scarce as non-

renewable resources. On other hand, the traditional fixed 

spectrum allocation and the authorized spectrum 

management lead to the imbalance of spectrum utilizing. 

Some spectrum bands withstand a large volume of 

business, such as personal wireless communication 

spectrum bands. While other spectrum bands are often 

not in use, such as wireless TV broadcast spectrum bands. 

The two-dimensional space-time statistics show that the 

utilization of the allocated spectrum resource is only 15% 

to 85% in the current allocation scheme [1]. Another 

survey reports that the licensed spectrum utilization is 

only 6% in most periods [2]. Cognitive radio (CR) 

technology can effectively improve the utilization of 

spectrum resources to alleviate the contradiction between 

the spectrum allocation and utilization, and has become a 

focus in wireless communication field [3]-[5].  
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A key technology in CR is spectrum sensing strategy 

of cognitive user (CU). It is difficult for CU to sense all 

channel states in a short period due to the hardware 

restraints. When primary user’s (PU’s) channel state is 

formulated as a Markov model, the spectrum sensing 

strategy may be designed by a partially observable 

Markov decision process (POMDP) [6], [7]. But, it is 

supposed that the channel state transition probabilities are 

known [8]. However, the channel state transition 

probabilities will change as PU’s behavior change, and 

are unknown in practical situations.  

In this paper, we proposed an algorithm to estimate the 

channel state transition probabilities by the use of the 

channel historical information, which is based on the 

Markov channel model and Least Square criterion. We 

derived and analyzed the relationship between the 

estimation accuracy and sample size. 

The rest of the paper is arranged as follows. Section II 

presents the Markov channel model. Section III describes 

the CR spectrum sensing and access strategy. In Section 

IV, we proposed the estimation algorithm of the channel 

state transition probabilities and derived the relationship 

between the estimation accuracy and sample size. 

Simulation results are given and analyzed in Section V. 

Finally, some conclusions are drawn in Section VI. 

II. MARKOV CHANNEL MODEL 

Assuming that the primary users (PUs) in the cognitive 

network carry out synchronously [9], each channel works 

in the frequency division multiplexing manner, such as 

Orthogonal frequency division multiplexing (OFDM) 

system, and the cognitive network system has tracked the 

multiplexed clock. There are N independent and 

identically distributed sub-channels in the primary 

network, each with bandwidth Bi, i = 1, 2,…, N. In each 

slot, the state of every channel is represented by “0” 

(busy) or “1” (idle), as showed in Fig. 1. Busy state 

indicates that the channel is occupied by PU in the 

current slot. Idle state indicates the channel may be used 

by CU. 

The transition of each channel state can be modeled as 

a discrete-time Markov process, and N sub-channels have 

2
N 

states, as shown in Fig. 2, where P01 and P10 are the 

channel state transition probabilities for one step. For 

convenience, we assume that the statistical properties of 

the PU spectrum remain unchanged in T slots. Let Pi, i = 

1, 2,…, N, denotes the probability in which the i
th

 channel 
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is available for the CU during a certain slot. From the 

knowledge of probability theory, we get 

          01 101 1i i iP P P P P              (1) 

By finishing transposition, we can obtain the available 

probability of the i
th

 channel in the slot 

            01

01 10

i

P
P

P P



                 (2) 

Due to the energy consumption limitations and 

hardware limitations, a CU cannot sense all the N sub-

channel states in each slot. It chooses only N1 channels to 

sense the spectrum. After sensing, CU chooses N2 

channels to access according to the spectrum sensing. It is 

obvious that N2 ≤N1 ≤N. Since the transition of each 

channel state system is modeled as a discrete-time 

Markov process and only limited channels in the system 

can be observed by CU in each slot, the spectrum sensing 

and access can be designed as a partially observable 

Markov decision process (POMDP). 

Channel 1

Channel 2

s1(1) t

s2(T)

s1(T)

s2(3)s2(2)s2(1)

s1(3)s1(2)

t

Busy(0) slot Idle(1) slot

 
Fig. 1. Channel states in synchronous slot 

 

 

Fig. 2. Markov channel model 

III. SPECTRUM SENSING AND ACCESS STRATEGY 

A. Channel Revenue and Objective Function 

When the internal state of the Markov process in 

POMDP model is unknown, the internal channel state in 

slot t can be described by a belief vector [10]  

         1 2( ) [ ( ), ( ), , ( )]Mt t t t   Λ            (3) 

where m(t), m = 1, 2,…, M, is the conditional 

probability of the channel state m in slot t when the 

channel state transition probabilities, past decision and 

observational information are known, M = 2N represent 

all channel states of N channels. 

At the beginning of slot t, the CU chooses N1 channels 

to sense, then N2 channels to access. For any slot t, the 

vector (t) is a sufficient statistic of the optimal decision 

{N1, N2 } in slot t [11]. Therefore, a sensing strategy  is 

given to the CU to determine which channels to be sensed 

in the given slots under POMDP model. We define the 

channel state space of N sub-channels as 

        1 2[ ( ), ( ), , ( )] 0,1
N

Ns t s t s t  S           (4) 

the action selection, which decides which channels to be 

accessed, as 

               1,2, ,a N                    (5) 

and the available probability of all sub-channels as 

            1 2[ , , , ]NP P P Ω                (6) 

Generally, the most intuitive revenue is the available 

bandwidth to be transmitted. Then, the revenue function 

over channel a, which is chosen by CU, in slot t can be 

defined as 

           
2

( ) ( )a a a
a N

r t s t B


                (7) 

where  ( ) 0,1as t   is the state of channel a in slot t, Ba is 

the bandwidth of channel a. 

Let  represents the maximum probability of collision 

allowed by the primary network. The access strategy 

must be designed to maximize the total available 

bandwidth in T slots, which would be enslaved to . So, 

the objective function of the optimal POMDP access 

strategy over channel a in T slots is given by 

       
   

1

| 1

. .

T

a
t

c

arg max E r t

s t P









  
    

 


        (8) 

where E is the conditional expectation of the CU 

revenue obtained in T slots by strategy , Pc is the 

probability of collision, (1) is the initial belief vector. 

B. Channel State Prediction 

In order to improve the utilization efficiency of the idle 

spectrum on the premise of reducing the collision with 

the PU, the CU should predict the probability of channel 

occupied according to the past and present spectrum 

activities of the PU. Then the reasonable spectrum 

sensing and access action would be made based on the 

probability of channel occupied. 

Although the vector (t) is a sufficient statistic, it is 

impossible to get all channel states in the slot t. When the 

channel states occupied are independent from each other, 

M dimensions belief vector (t) may be replaced by 

another N dimensions belief vector (available probability 

of all sub-channels) (t) in the slot t [6], where M is 

much larger than N. 

At the beginning of slot t, if the channel state transition 

probability P01 and P10 are known and the channel a is 

chosen in slot t, the expected revenue is obtained by  

     
*

, 10 01[ ( )(1 ) (1 ( )) ]t a a a ar P t P P t P B          (9) 
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where [Pa(t)(1P10)+(1Pa(t))P01] represents the 

available probability of channel a in slot t. Without 

considering the effect of the current action on the future 

revenue, the action in slot t is to maximize the expected 

immediate revenue with the greedy strategy as 

 

  

*

,
1,2, ,

10 01
1,2, ,

max

  max ( )(1 ) (1 ( ))

t a
a N

a a a
a N

t = arg r

arg P t P P t P B

 







  
 (10) 

But the action decision a*(t) is not always available, 

which is depended on the observation of channel a*(t) in 

slot t Θa*(t),  *( ) 0,1a t  . If Θa*(t) is equal to 1, the 

channel a*(t) is available. If Θa*(t) is equal to 0, the 

channel a*(t) is unavailable. Therefore, the belief vector 

(t+1) in the slot t+1 will be updated based on the 

information of the channel a* and the observation Θa*(t) 

as follows 

      
1

*

*

( 1) [ ( 1), , ( 1)]

| ,
N

a

t P t P t

t a t t

    

  

Ω

Ω
      (11) 

where Pi(t) is updated as follows 

 
   
   

      

*

*
*

*
*

10 01

1,  , 1

1 0,  , 0

(1 ) 1 ,  

a

i a

i i

a t i t

P t a t i t

P t P P t P a t i

   


    
    

 (12) 

From (7) ~ (12), we know that the channel state 

transition probabilities P01 and P10 are the key to predict 

the channel state, sense the spectrum and access the 

channels in the POMDP for the CU. In the next section, 

we shall give the estimation algorithm of the channel 

state transition probabilities. 

IV. ESTIMATION ALGORITHM OF CHANNEL STATE 

TRANSITION PROBABILITIES 

A. Estimation of State Transition Probability 

Assume that a channel may be described by L states, 

which are denoted by s0, s1, …, sL-1. The probability of 

the lth state sl in slot t is presented by yl(t), l = 0, 1,…, 

L1. The one step transition probability (the probability 

that the channel transfers from the jth state to the lth 

during one slot) is Pjl, j, l = 0, 1,…, L1. Because the 

transition of channel state is a stationary random process, 

the transition probabilities are independent of the number 

of slots. The channel state prediction model is given by 

    1T Tt t Y Y P                   (13) 

where P=(Pjl)L×L is the channel state transition probability 

matrix, Y(t)=[y0(t) y1(t) …yL-1(t)]
T 

is the channel state 

probability vector, and 
1

0

1
L

jl
l

p




 ,  
1

0

1
L

l
l

y t




 . Thus, the 

number of independent elements in matrix P is L(L1) = 

L
2
L. 

Assume that the number of existing sets of channel 

state probability statistics are (K+1) (K > L2)), namely, 

yl(t), l = 0, 1,…, L1, t = 0, 1,…, K. According to (13), if 

the estimation of the channel state transition probability P, 

 ˆ ˆ
jl L L

p


P , is known, the fitting error of the lth state 

probability in slot t is given by 

       
1

0

ˆ 1
L

l l jl j
j

e t y t p y t




               (14) 

The sum of the fitting error squares for the channel l
th

 

state probabilities in the entire slots is given by 

 2

0

K

l l
t

Q e t


                          (15) 

And the sum of the fitting error squares for all the state 

probabilities of the channel is given by 

 
1 1

2

0 0 0

L L K

l l
l l t

Q Q e t
 

  

                     (16) 

At this point, the problem of estimation of matrix P 

can be formulated by the Least Square problem as follow 

   
1

2

0 0
1

0

min min

ˆ. . 1 0,1 1

jl jl

L K

l
p p l t

L

jl
l

Q e t

s t p j L



 




 
  

 

  





       (17) 

Introducing the Lagrange multipliers λj (j = 0, 1,…, 

L1), we can obtain the Lagrangian function 

 
1 1 1

2

0 0 0 0

ˆ 1
L K L L

l j jl
l t j l

Q e t p
  

   

 
   

 
       (18) 

Taking the derivative of Lagrangian function, we get 

   
0

2 1
ˆ

K

l j j
tjl

Q
e t y t

p





   


       (19) 

Letting 0
ˆ

jl

Q

p





, we have 

      
0

2 1
K

j l j
t

e t y t


               (20) 

Taking the constrained condition of the problem in (17) 

into account, we obtain 

     

   

1 1 1 1

0 0 0 0

1 1

0 0

ˆ 1

1

1 1
0

L L L L

l l jl j
l l l j

L L

l j
l j

e t y t p y t

y t y t

   

   

 

 

 
   

 

  

 


   

      (21) 

Then, 

   
1 1

0 0 0

2 1 0
L K L

j l j
l t l

e t y t
 

  

 
   

 
        (22) 

On other hand,  

1

0

L

j j
l

L 




                 (23) 
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From equation (22) and (23), we deduce that λj is 0 and 

the Lagrangian function does not make sense. Then, we 

can take directly the derivative of Q function instead of 

introduce the Lagrange multipliers λj as follows 

                 
0

2 1
ˆ

K

l j
tjl

Q
e t y t

p 


  


         (24) 

Letting 0
ˆ

jl

Q

p





, we have 

           
0

1 0
K

l j
t

e t y t


            (25) 

Substituting (14) into (25), we can get 

     
1

0 0

ˆ 1 1 0
K L

l jl j j
t j

y t p y t y t


 

 
    

 
     (26) 

for j, l = 0, 1,…, L1. They can be expressed in matrix as 

ˆ YP M                              (27) 

where 

                
1 1

TY X X                            (28) 

1 2

TM X X                           (29) 

and 

 

     

     

     

0 1 1

0 1 1

1

0 1 1

0 0 0

1 1 1

1 1 1

L

L

L

y y y

y y y

y K y K y K







  
 

  
    
 

     

X    (30) 

 

     

     

     

0 1 1

0 1 1

2

0 1 1

1 1 1

2 2 2

L

L

L

y y y

y y y

y K y K y K







  
 

  
    
 

   

X           (31) 

Then, the Least Square estimation of the state 

transition probability matrix can be obtained as follow 

1ˆ P Y M                               (32) 

The channel state transition process is a special 

Markov chain, in which the channel state has only one 

state within each slot. Then, there is one and only one 

component, which is “1”, in the channel state vector Y(t), 

the others are all “0”. When the j
th

 component is “1” in 

Y(t), i.e., the channel is located in j
th

 state, we have 

     0, ,0, ( ),0, ,0 0, ,0,1,0, ,0
T T

jt y t     Y   (33) 

According to (30) and (31), we can obtain the block 

matrices as follows  

     1 0 , 1 , , 1
T

Y Y Y K    X         (34) 

     2 1 , 2 , ,
T

Y Y Y K   X          (35) 

and 

   
1

1 1
0

K
T T

t

t t




 X X Y Y                             (36) 

   
1

1 2
0

1
K

T T

t

t t




 X X Y Y                        (37) 

If the channel is located in j
th

 state in slot t, we obtain 

   T

jjt t Y Y E                               (38) 

where Ejj is a L-order matrix, in which the elements in the 

jth row and jth column are 1, and the other elements are 0. 

Assume njl represent the statistical number of times 

with which the channel transfers from the jth state to the 

lth in one slot during observed T, we can obtain the 

statistics of the channel historical state, as showed in 

Table I.  

Therefore, 
1 1

T
X X  is a diagonal matrix as follows 

   

1

0
0

1 1

1

( 1)
0

L

l
l

T

L

L l
l

n

n










 
 
 

  
 
 
 





X X                (39) 

where 
1

0

L

jl
l

n




  is the frequencies for which the channel is 

located in jth state from slot 0 to slot K-1. 

Further, if the channel is located in jth state in slot t 

and located in lth state in slot t+1, we will have 

   1T

jlt t  Y Y E                   (40) 

where Ejl is a L-order matrix, in which the elements in the 

jth row and lth column are 1, and the other elements are 0. 

Then, we obtain 

  

00 01 0( 1)

10 11 1( 1)

1 2

( 1)0 ( 1)1 ( 1)( 1)

L

LT

L L L L

n n n

n n n

n n n





   

 
 
 
 
 
  

X X        (41) 

According to (32), we derived out the statistical 

estimation of the state transition probability as follows 

TABLE I:  HISTORICAL STATISTICS OF CHANNEL STATE 

 
s0    s1    …   …    sL-1 

(states in slot t+1) 

s0 

s1 

 

sL-1 (s
ta

te
s 

in
 s

lo
t 

t)
 n00   n01  …    …   n0(L-1) 

n10   n11  …    …   n1(L-1) 

                 

n(L-1)0 n(L-1)1  …    … n(L-1) (L-1) 

    
1

0

ˆ jl

jl L

jl
l

n
P

n








   , 0,1, , 1j l L           (42) 

If the channel has only two states, i.e., L=1, the 

statistical estimations of the two state transition 

probabilities are given by 
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 

 

01 01 00 01

10 10 10 11

ˆ /

ˆ /

P n n n

P n n n

  


 

                    (43) 

B.  Estimated Error of State Transition Probability 

Due to the reciprocity of P01 and P10, we discussed the 

estimated error of P01 only in the following. 

Assuming that we observe the sub-channel for k times 

during T and there are k0 times with which the sub-

channel state is “0” (s0). Due to the Markov characteristic 

of the channel, the stationary probability of the channel 

state is given by[12] 

      0 10
0

01 10

lim
k

k P
P s

k P P
 


               (44) 

Define 

        
0 0

0 1

0 , ( ) , ( 1)

1 , ( ) , ( 1)
n

s t s s t s
Z

s t s s t s

  
 

  
        (45) 

where t = 1, 2, …, k0. 

Clearly, Zn is an independent and identically distributed 

random variable with the mean P01 and variance 2

01 01P P . 

Therefore, the estimated value of state transition 

probability can be formulated as follows 

0

01
10

1ˆ
k

n
n

P Z
k 

                              (46) 

According to the central limit theorem, the sum of the 

independent and identically distributed random variables 

obeys the Normal distribution [13]. Therefore, the 

probability density function (PDF) of
01P̂ can be written as 

follows 

   
01P̂ ～

2

01 01
01

0

,
P P

N P
k

 
 
 

   when 0k       (47) 

where N(•) is a Normal distribution function. 

Define the relative estimated error of transition 

probability P01 as 

01 01
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P P

P





                           (48) 

When the upper bound of the relative estimated error ε 

is given, the corresponding confidence Pε can be obtained 

from 
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where ф(•) is the normal cumulative distribution function.  

When the confidence Pε is given, the statistical upper 

bound of the relative estimated error ε can be obtained 

from 
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On other hand, when the upper bound of the relative 

estimated error ε and the corresponding confidence Pε are 

given, the sample size is given by 

 
2

01

01 10

2

11 1ˆ1
ˆ ˆ 2

P
P

P P
k
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
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          



-1φ

     (51) 

It shows the relationship between sample size, the 

upper bound of the relative error, the confidence and the 

channel state transition probabilities estimated. The larger 

the sample size is, the smaller the estimated error is, and 

the higher the confidence is. 

C.  Estimation Algorithm 

The estimation of channel state transition probabilities 

is summed as follows: 

(1) Initializing the channel state  ( ) 0,1js t  , where j 

= 0, 1. 

(2) Observing the channel state information in the past. 

(3) Counting the number of channel state transferring 

from the jth state to the lth state njl in one step in the 

historical channel state, where j, l = 0, 1. 

(4) Calculating the channel state transition 

probabilities  01 10
ˆ ˆ,P P  according (43). 

(5) Calculating the sample size k required for the given 

upper bound of the relative estimated error and the 

confidence according (51). 

(6) Comparing the size of historical channel state 

information with k. If the sample size required k is 

smaller than the size of historical channel state 

information,  01 10
ˆ ˆ,P P  are the state transition 

probabilities estimated. Otherwise, grow the size of 

historical channel state information to k and go back to 

step (2), estimate the channel state transition probabilities 

again until the sample size required is smaller than the 

size of historical channel state information. 

V. SIMULATION RESULTS 

In this section, we provided some simulation results of 

the LS estimation algorithm proposed and compared it 

with the linear estimation algorithm
 [14]

.  

Fig. 3 and Fig. 4 show the estimation of the channel 

state transition probabilities with LS estimation algorithm 

under different channel state transition probabilities. 

Along with the sample size increases, the values 

estimated are close to the channel state transition 

probabilities given.  
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Fig. 3. Estimation of transition probability P01 
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Fig. 4. Estimation of transition probability P10 

Fig. 5 and Fig. 6 give the estimated values when the 

channel state transition probabilities vary from 0 to 1. 

The curves are lines with slope 1 approximately. It means 

that the estimated values are almost same to the preset 

values. 

Fig. 7 quantifies the relative estimated error of the 

channel state transition probability P01 with LS estimation 

algorithm. As the increasing of the sample number, the 

estimated value of the channel state transition 

probabilities gradually convergences to the preset value. 

Suppose that the upper limit of the estimation error ε is 

10%, the corresponding confidence Pε is 95%. The 

sample numbers required for (P01, P10) = (0.1, 0.9), (0.5, 

0.5), (0.8, 0.2) are 3841, 768, 480 respectively according 

to (51). They are close to the sample numbers. 
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Fig. 5. Estimated value when P01 varies from 0 to 1 
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Fig. 6. Estimated value when P10 varies from 0 to 1 
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Fig. 7. Relative estimation error of P01 
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Fig. 8. Comparison of estimation error of P01 between LS algorithm and 

linear 
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Fig. 9. Comparison of estimation error of P10 between LS algorithm and 

linear 
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Fig. 8 and Fig. 9 present the comparisons of the 

relative estimation error of channel state transition 

probabilities between LS estimation algorithm and linear 

algorithm. They show that the error of the LS estimation 

algorithm proposed is smaller than the linear estimation 

algorithm. It implies that the convergence speed of LS 

algorithm is faster than linear algorithm. For example, 

when we require the relative estimation error of P01 is 

smaller than 5%, the sample number required in LS 

algorithm is about 2.6×10
3
. But the sample number in 

linear algorithm is about 7.2×10
3
. the sample number in 

LS algorithm is only 36% of the one in linear algorithm. 

VI. CONCLUSIONS 

The probabilities of channel state transition are very 

important for sensing and accessing spectrum in CR 

networks. In this paper, we used the historical statistics 

information of channel to estimate the channel state 

transition probabilities and the LS algorithm to minimize 

the estimating error. The relationship between the 

estimated precision of the channel state transition 

probabilities and sample number of the historical 

statistics information of channel is analyzed. Simulation 

results have shown that the LS algorithm estimates the 

channel state transition probabilities more accurate and 

faster than linear algorithm. 
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