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Abstract— Wireless Sensor Networks (WSNs) have the po-
tential of significantly enhancing our ability to monitor and
interact with our physical environment. Realizing a fault-
tolerant operation is critical to the success of WSNs. The
main challenge is providing fault tolerance (FT) while con-
serving the limited resources of the network. Many schemes
have been proposed in this area. Our main contribution
in this paper is to propose a general framework for fault
tolerance in WSNs. The proposed framework can be used
to guide the design and development of FT solutions and to
evaluate existing ones. We present a comparative study of
the existing schemes and identify potential enhancements.
A primary module of the framework is the learning and
refinement module which enables a FT solution to be adap-
tive and self-configurable based on changes in the network
conditions. We view this as vital to the resource-constrained
and highly dynamic WSNs. Up to our knowledge, we are
the first to propose the implementation of such module in
FT solutions for WSNs.

Index Terms— Networked sensor systems, Fault tolerance,
Checkpoint/Restart

I. INTRODUCTION

Wireless Sensor Networks (WSNs) provide a bridge
between the digital world and the physical world. Typi-
cally, a WSN is comprised of numerous tiny sensor nodes
(or sensors for short) deployed in an environment for
monitoring and tracking purposes. Sensed data are ag-
gregated and, at times, stored “in-network™ at sink nodes
which may themselves be sensors or other nodes richer
in capabilities and resources. Data are then communicated
to the end users either periodically or on-demand through
the sinks or a higher order node; the base station. Clearly,
WSNs find numerous applications ranging from health-
care to crisis management and warfare. Many of these
applications require a continual stream of dependable data
with specific quality of service (QoS) requirements such
as bounded delay or minimal packet drop.

This paper is based on “A Fault Tolerance Management Frame-
work for Wireless Sensor Networks,” by I. Saleh, H. El-Sayed, and
M. Eltoweissy, which appeared in the Proceedings of the 3rd IEEE
Conference on Innovation in Information Technology (IIT06), Dubai,
UAE, November 2006. (© 2006 IEEE.
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While WSNs inherit most of the dependability and
QoS provisioning issues of wireless networks [3], [8],
[17], their characteristics pose unique challenges that
make present-day dependability and service differentia-
tion schemes unsuitable. Sensors are battery operated and
possess limited computing and communication capabili-
ties. In addition, when deployed, these sensors are likely
to operate unattended, closely interacting with their physi-
cal environment that may be hostile (for example, enemy
territory or hazardous terrain). These limitations render
WSNs more prone to failure than other wireless networks
and mandate numerous tradeoffs, for example between
safe mobility and performance, buffer space/bandwidth
and data redundancy, Energy consumption and Quality of
Data (QoD). We define QoD as the number of readings
received by the user divided by total number of readings
generated by the network during an observation period.

Realizing a fault-tolerant operation is critical to the
success of a WSN. In addition to resource preservation
and achieving high QoD, we identify the following as key
requirements for FT in WSNs:

1) Awareness of the network main operation and the
status of the network resources.

2) Adaptability to the frequent changes in WSNs con-
ditions.

While several schemes satisfy the first requirement,
only a few address the second requirement and to a limited
extend. In addition, There is no common framework for
a comprehensible comparison of FT schemes. The main
contribution of this paper is proposing a general frame-
work for fault tolerance (FT) in WSNs. The framework
achieves the following:

« Provide general guidelines for the design and devel-
opment of solutions for FT in WSNs.

o Present a unified approach for FT which can be used
to identify main modules and compare and contrast
different solutions.

To provide adequate adaptability to the network changes,
a learning and refinement mechanism is needed. However,
existing solutions were found to lack such mechanism.
We present CRAFT (Checkpoint/Recovery-bAsed scheme
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for Fault Tolerance), a fault-tolerant scheme for data
collection and dissemination in WSNs. CRAFT applies
in-network data checkpointing and recovery in order
to achieve high Quality of Data (QoD) with minimum
energy overhead. CRAFT integrates the FT tasks with
the network main operation. The scheme is also adaptive
to the changes in the network conditions, specially the
energy level of the sensors. Based on the proposed frame-
work, we present a comparative study of representative
schemes including CRAFT. To the best of our knowledge,
our work is the first to provide such handling of FT in
WSNE.

The remainder of the paper is organized as follows.
In section II, we describe the WSN model and basic
definitions. In Section III, we describe the fault toler-
ance framework. In Section IV we overview the CRAFT
scheme. In Section V, we discuss and compare related
work. Finally, we conclude this work in section VI with
future directions.

II. SYSTEM MODEL AND DEFINITIONS

Sensors are scattered in a sensor field as presented in
Figure 1. We consider a homogeneous network in terms of
node capabilities. The role of aggregating and forwarding
data to the end user can be assumed by any sensor in the
field with sufficient energy. Such a node is termed sink.
Initially, sensors are operational having the capabilities
to collect data and route data back to the sink. However,
due to lack of energy, a sensor may die and become non-
operational and cannot participate in any activity in the
system.

We assume a homogeneous network; the sink function-
ality could be located in any sensor in the sensor field
and hence the sink has the same limited capability as
other sensors in the field. Assuming sinks with limited
resources allows us to study more basic WSNs.
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Figure 1. An example of a WSN

The sensors communicate unreliably via a multihop
wireless connections. Usually, to reduce the energy con-
sumption and improve network throughput, not all the
sensors send data to the sink. A sensor that sends data
to the sink is called a source sensor. In addition, as
presented in Figure 1, WSNs may have different locations
of sensors for the same desired event. Each location has
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its boundaries where there is at least one source sensor
that sends source packets to the sink [16]. We denote the
source sensors by Ey,---, E,. We define U; ; to be the
jth source packet from a source sensor in FE;.

As presented in the pseudo code of Figure 2, the main
functionality of the sink is to collect source packets and
route the packets back to the end user. An end user could
be a human, satellite, or stationary computer [2]. The sink
can be invoked to send source packets to the user either
periodically, e.g., every T' seconds, or on demand when
the user sends a query to the sink asking for an update.

As presented in Figure 2, U is a data structure that
maintains the source packets in the sink. In addition, we
assume that U keeps the packets history up to h packets
for each source sensor s. For n different source sensors,
U will be a h X n matrix for maintaining these packets.

U=10
do //An infinite loop
settime(7") //Install a timeout
upon recv(U;,;, s)
add(U, Ui,j)
upon (recv(REQ, USER) OR timeout(7"))
Send (U, USER)
Until ("The sensing is done”)

Figure 2. The functionality of the sink

In our WSN model, we assume three possible failures.
The first failure is a fail-stop failure in sensors. Due to
a lack of power in the battery, a sensor becomes non-
operational. The second failure is due to losing data dur-
ing communication. We assume that each sensor knows
the percentage of the remaining power of its battery. To
help us predict the fail-stop failure in sensors, we define a
percentage threshold 7 such that if the percentage of the
remaining power reaches 7y, then the sensor cannot be an
operational sensor that participates in any communication
or sensing activity. In addition, we define another percent-
age threshold 72, 71 < T2, such that if the percentage of
the remaining power reaches 7o, the sensor cannot be a
sink. We assume that the sink consumes more power than
an operational sensor. The third type of failure that we
consider is the sudden hardware failure. Hardware failure
is unpredictable by the sensor.

III. THE FAULT TOLERANCE FRAMEWORK

The FT process in WSNs consists of two main mod-
ules; namely the FT System Management and the FT
System Operations. The process is depicted in Figure 3
and is described as follows.

The FT System Management takes as input the Fault
Specification, which includes information provided by
the system engineer (or their proxy) on the expected
faults and their estimated frequencies. It also includes
information about the valuable resources that need to be
fault-tolerant as no FT system will tolerate all faults.
For example, a FT system may be designed to tolerate
data loss due to unreliable communication. Also, this
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Figure 3. The Architecture of the fault tolerance Framework for WSNs

specification includes a description of the system’s normal
operation. A rule of the form ”’the network delivers 98% of
the collected readings” can be used to define the system’s
normal operation in the absence of faulty components.
Next, we describe in more detail, the functionalities that
should be supported by a FT process.

The FT System Management module consists of the
following:

- Defining Roles and Structures: A role defines a set
of tasks and a task may be executed by one or more role.
We refer to roles sharing one or more task as cooperative
roles. Data Replicator, Resource Monitorer, Fault Dis-
coverer, Damage Assessor are examples of roles. A FT
structure is any special setting used for FT operations. For
example, this could be a replicated set of data, or a special
clustering structure used to provide hardware redundancy.
The definition of such tasks, roles and structures differ
from one scheme to another and depends on the fault
specification provided by the system engineer. It should be
noted that the tasks, roles and structures definition can be
done once at system initialization, or they can adaptively
change based on the network conditions or feedback from
the FT operations as will be detailed shortly.

- Generating FT Schedule: The tasks within a role are
scheduled based on network conditions and performance
considerations. Dependence between schedules should be
exploited to achieve high performance while preserving
resources. For example, a schedule for data replication is
set based on the frequency at which new data is acquired
by the network and the user update schedule.

- Assignment of Roles: The assignment of roles
defines the mapping between the roles and the network
components. We classify FT schemes into in-network
or off-network. An in-network scheme assigns the FT
operations to one or more sensors within the network,
the scheme is hence aware of the network main operations
and adapts to the changes in the network conditions. Some
of the network resources are consumed by the FT tasks.
An off-network scheme assigns the FT operation to an
entity outside the network, a powerful station for example.
The scheme is hence oblivious to the network main
operation. However, some information may be needed to
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be sent from the network to the outside entity to maintain
the FT environment, which again consumes some of the
network resources. A scheme may be hybrid; applying
both in-network and off-network assignment of roles.

- Executing FT Schedule: refers to applying tasks
needed to maintain a fault-tolerant environment. These
tasks can be done once, for example, through hardware
redundancy by initially deploying extra sensors. Or, it
can be done periodically, for example, a periodical data
replication.

The FT System Operations consist of the following:

- Fault Discovery: refers to the detection of faulty
behaviors and the identification of faulty components.
A faulty behavior is detected when the actual system
behavior is different than the normal expected behavior.

- Cost Assessment: refers to the damage estimation
and the evaluation of different recovery alternatives. The
goal of this module is to deduce a recovery plan that
optimizes the use of resources to recover from fault.

- Fault Containment and Recovery: Once a recovery
plan is set, the plan is applied to contain the fault,
eliminate its effect and restore the network to its normal
operation. This module uses the maintained FT structures
to achieve these goals. For example, a replicated set data
may be used to recover from data loss due to a sensor
failure.

- Analysis and Refinement: This module is critical
to the operation of the WSN as it enables the network
to self-configure based on changes in its conditions or
based on a feedback from the FT operations. For example,
based on the fault frequency, a rescheduling may be
triggered. Roles Assignment may also be re-applied to
cope with a change in the sensors’ energy levels. FT
schemes in WSNs can be classified into static or dy-
namic solutions based on whether the Analysis/Refinment
module is implemented. The refinement module renders
the solution self-configurable and adaptive to the changes
in the network conditions or the changes in the FT
operations. To the best of our knowledge, all solutions
proposed so far are static, this opens up a new direction
for enhancement.
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IV. CRAFT: A FAULT-TOLERANT SCHEME FOR
WSNSs

In this section, we apply our framework to CRAFT,
our FT scheme for data collection and dissemination in
WSNs. CRAFT is based on Checkpoint/Recovery to re-
alize high QoD in the presence of faults. A more detailed
description of the scheme and its performance study can
be found in [18]. The scheme assumes a homogeneous
network where a sink is hosted on any sensor with enough
energy. The main idea of CRAFT is to tolerate failure of
the sink by applying periodical data checkpointing. The
checkpointed data is used to recover lost data at sensor
failure.

A. CRAFT Explained

Figure 4 presents the new behavior of the sink ac-
cording to our FT scheme. As presented in the figure,
the sink inserts the new source packet U;; to U,,. In
addition, it has a A x n matrix D,, that contains the most
updated source packets since the latest checkpoint. The
message C'K represents the checkpointed data with the
following fields: (1) the message type, which is CHKPT
in this case, (2) the most updated source packets since that
last checkpoint, and (3) the percentage of the remaining
battery power.

As presented in Figure 4, upon a checkpoint, the sink
sends D,,, but not U,, to the checkpoint sensor. This
is because D,, contains the new source packets that
have not been sent yet since the previous checkpoint. By
sending D,,, actually, we implement here the incremental
checkpointing approach rather than a full checkpointing
as described in [12]. As a result, we reduce the power
consumption in the sink and reduce the number of trans-
mitted packets in the network as well.

By our FT scheme, the main new modification in
the sink functionality is to send the CHKPT and TAU2
messages to the checkpoint sensor. The CHKPT message
contains the checkpointed data. Notice here that the
checkpointed data is saved in the memory of another
sensor. This is because in many WSNs, secondary storage
may not be available in the sensor field. Moreover, by
saving the checkpointed data in more than one node, we
make the checkpointed data more persistent and available.
Regarding the TAU2 message, the sink sends this message
to the checkpoint sensor if it is not able to continue
running the sink task due to lack of battery power.

The sensor takes the checkpoint periodically every 7,
seconds. The time between two consecutive checkpoints
is called the checkpoint interval. In any checkpointing
approach, the length of the checkpoint interval affects the
tradeoff between the reliability and the performance of
the system [1], [15]. Similarly, in our approach, the value
of the checkpoint interval affects the system reliability
and performance. For example, if we set small values for
T, then we gain frequent saving of the most updated
U that cause better reliability for the sink. However,
due to the frequent checkpoints, the sensors involved
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in checkpointing consume more energy and overhead.
In order to gain maximum benefits of the checkpoints
to provide FT in the sink, the checkpoint interval T,
should be less than the interval time of the user update
(T), but more than the interval time of sensing update,
which is the rate of sending the source packets. As we
mentioned before, we consider a fail-stop failure, due to
a loss of battery power, in which a faulty sensor stops
its operations. In our scheme we are mostly interested
in monitoring the sensors along the checkpoint path. In
general, the sensor S; monitors its successor sensor .S; 1
forall 7, 1 <i<m.

The main indication of failure detection that we use
is by letting S; to send its percentage of the remaining
battery power to its predecessor sensor in the checkpoint
path. In addition, the checkpoint sensor (S,,_1) uses
the periodic checkpoints from the sink to monitor the
sink. By the first indication, once the battery of the
sink S,,, reaches the threshold 75, S,, sends a control
message to its predecessor indicating that .S,,, would not
be able to run the sink. Potentially, as part of the recovery
mechanism, the checkpoint sensor S,,_1 will take over
and run the sink instead. In order that S,,_; runs the
sink, the percentage power of its battery should be more
than 7.

Similarly, we use the threshold 71 to detect failures in
all the sensors in the checkpoint path. Once the battery
of the sensor S;, 1 < ¢ < m, reaches the threshold 71, S;
sends a control message to its predecessor S;_1 indicating
that S; would not be able to be in the checkpoint path, the
control message also includes reference to S;1;. Conse-
quently, the checkpoint path shrinks itself to exclude 5.
Therefore, S;_1 informs S, 1 that S; is excluded from the
path and S;_1 is its new predecessor. Notice here that we
mostly concern about the checkpoint sensor S,,,_; which
will be the sink if S,, fails.

The second indication of failure detection is by letting
the checkpoint sensor S; trace the checkpoint interval in
Si+1. Since every T,,,, S;+1 saves its checkpointed data in
S;, S; can estimate the time of arriving the checkpointed
data of S;;;1. Therefore, if the communication delay
between S; 11 and S; is d;4+1, then S; can set a timeout
that is great or equal of d; 1 + T,,,. Upon an expiration
of the timeout, S; suspects that S;y; is faulty. Upon a
suspicion, .S; performs a recovery as mentioned above.
Notice here that since the checkpoint message contains
the percentage power of the battery, S; can predict in
a high probability if the missing checkpoint is due to a
message loss in the wireless network or a failure that has
occurred in S;41.

Figure 5 presents a pseudo code of the behavior of
a checkpoint sensor .S; on the checkpoint path. .S; uses
the timeout ¢ for monitoring the incoming messages from
the successor sensor .S;11. An expiration of the timeout
is due to an expected message from S;;; that did not
arrive in time. By our system model, a message may not
arrive because of either S;;1 is faulty or the message is
lost in the unreliable wireless network. In this case, S;
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settime(7") //For user update

do //An infinite loop

upon recv(U; ;, s)

Dm - @
if (am < T2)

Until ("The sensing is done”)

settime(7,,,) //T,, is the checkpoint interval
am = myPerPower() // Percentage power of battery

add(U., U ;); add(Dy,, U; ;)

upon (recv(REQ, USER) OR timeout(7")) /Send update to user
Send (U, USER); Uy, = 00

upon timeout(7,,,) // Do checkpoint
CK = (CHKPT, Dy, am); Send (CK, Sm—1)

Send ((TAU2), S,,—1) // inform about my energy

Figure 4. The new behavior of the sink

suspects S;+1. Upon a suspicion, .S; invokes the function
suspect(). This function uses the value of a1, that is
obtained from the latest checkpoint, to predict the cause
of the timeout expiration.

Ui=10
settime(t = d,+1 + T1,) // For detecting lost messages
do // Aninfinite loop
«a; = myPerPower()
upon recv(msg, Si+1)
case (msg.type)

CHKPT: //This is a checkpointed data
add(U;, msg.D)
Qi1 = MSg.«

TAU1: // Sent by a checkpoint node

successor(S;12)
settime(t = di+2 + Tom)
/I Sent by the sink node
if (a; > 12)
recoverSink(S;)
else
Sz‘+1 = IleWSiIlk()
notify(S;11)

TAU2:

upon timeout(?)
suspect(S;+1, it1)
if (a; < 71) // inform about my energy
Send ((TAU1, S;41), Si—1)
Until ("The sensing is done”)

Figure 5. The behavior of S;

By Figure 5, S; may receive three different types of mes-
sages from its successor S;1. The first type is CHKPT.
This message indicates the receiving of the checkpointed
data from S;;;. Upon receiving a CHKPT message, S;
saves this data in its data structure U;. The second
type of messages is TAU2. This message is sent by the
sink (in this case ¢+ = m — 1), when the percentage
power of its battery is less that the threshold 7 (see
Figure 4). Upon receiving TAU2, S; becomes the sink
if it has enough power in its battery. In this case, S;
invokes recoverSink(S;) before running the sink task.
In this function, S; informs the source sensors and the
user about the new sink location. Notice here that by
recovering the sink in S;, we minimize the period time
in which the system does not have a sink. However, if .S;
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cannot run the sink, it selects a new sensor to act as a
the new sink (see Figure 5). We are currently exploring
alternatives for sink selection. The third type of messages
is TAUIL. The checkpoint node S;;;1 sends the control
message TAUL if the percentage power of its battery
is less that the threshold 7;. Upon receiving TAU1, S,
excludes the checkpoint node S;11 from the checkpoint
path and indicates that S; o is its successor in the path.
Then, S; updates the value of ¢ to be d; 12 + T,.

We can see here the main two benefits of our FT
scheme due to Checkpoint/Recovery. The first benefit is
reducing the loss in collected source packets upon a sink
failure. Due to checkpoints, some source packets that
have not sent yet to the user are saved in the checkpoint
sensor. Therefore, these packets are recovered from the
checkpoint at sink failure. The second benefit is to reduce
the time in which the NSS runs without sink. Since
the checkpoint sensor monitors the sink, it is ready to
recover the sink immediately upon any failure detection.
In Section IV-E we quantify the benefits of our FT scheme
in the quality of data arriving at the user. We also study
the energy consumption.

B. CRAFT within the FT Framework

- Defining Roles and Structures: CRAFT defines
the following roles; Data Replicator: replicates the data
possessed by the sink. The replicated data is used to
recover from a sink failure. Damage Assessor: evaluates
the damage by inspecting the replicated data and deciding
whether some data packets have to be recovered from the
source nodes. Fault Discoverer: discovers a sensor fault
by monitoring the energy level or detecting a response
timeout. The checkpointed data is a structure used by the
scheme to recover from a fault. It consists of the set of
data packets collected by the sink since the latest user
update. It also contains the sink energy level which is
used to predict a power failure.

- Generating FT Schedule: A static schedule is
defined for the periodical update of the checkpointed
data structure. The schedule is set based on the data
generation rate and the user update frequency. A possible
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enhancement on the current version of CRAFT is to adapt
the schedule to the changes in the network conditions.

- Assignment of Roles: All roles defined before are
assigned to a checkpoint sensor, which is a previous sink
that has reached a defined energy threshold. Also, by
monitoring its energy level, a sink predicts its own failure.

- Executing FT Schedule: The checkpointed data is
periodically updated by including new data packets, and
the latest energy level of the sink.

- Fault Discovery: A checkpoint sensor detects a
failure when a response from the sink is timed out. Also,
a sink may predict its own failure when its energy level
reaches a certain threshold.

- Cost Assessment: The current version of CRAFT
recovers from a fault regardless of the cost.

- Fault Containment and Recovery: Once a failure
is detected by a checkpoint sensor, the replicated data is
used for recovery, packets may be also recovered from
the source nodes.

- Analysis and Refinement: This module is not
currently implemented by CRAFT.

We compared our proposed CRAFT scheme with a
NOFT scheme where there is no data checkpointing. In
the NOFT case, when the sink fails, the user selects a
new sensor to act as a sink. Data lost due to sink failure
cannot be recovered in this case. In both schemes, we
measured the QoD achieved and the corresponding energy
consumption.

C. The SAN Model

Our evaluation of the CRAFT and NOFT schemes
was carried through model-based simulation. We modeled
both CRAFT and NOFT as a Stochastic Active Net-
works (SANs) using the Mobius modeling tool [4]. SANs
are a convenient and high-level language for capturing
the stochastic behavior of a system. Mdobius is a tool
dedicated to creating and simulating (or solving) SAN-
based models. A SAN has the following components:
places (denoted by circles), which contain tokens; fokens,
which indicate the “’value” or “’state” of a place; activities
(denoted by vertical ovals), which change the number
of tokens in places; input arcs, which connect places
to transitions; output arcs, which connect transitions to
places; input gates (denoted by triangles pointing left),
which are used to define complex enabling predicates and
completion functions; output gates (denoted by triangles
pointing to the right), which are used to define com-
plex completion functions; and instantaneous activities
(denoted by vertical lines), which are used to specify
zero-timed events. An activity is enabled if for every
connected input gate, the enabling predicate contained
in it is true, and for each input arc, there is at least
one token in the connected place. When an activity
completes, one token is added to each place connected by
an output arc, and functions contained in connected output
gates and input gates are executed. The output gate and
input gate functions are usually expressed using pseudo-C
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code. The times between enabling and firing of activities
can be distributed according to a variety of probability
distributions, and the parameters of the distribution can
be a function of the state.

The sensor and the sink operations are modeled using
the two subnets shown in Figure 6 and 7, respectively. The
source sensor subnet is replicated as many times as the
number of source sensors in the network. The experiments
settings are listed in Tablel. We will refer to the number
of tokens at a place p as mark(p).

The SAN model is constructed as follows:

o The sensing_act activity is fired every T's simulat-
ing a new sensing event, mark(newSensing) is set
to 1 indicating that a new packet is generated and
mark(sensingPacket) is incremented to keep track
of the current packet id. Mark(src) is updated to
simulate the energy consumed by a source node for
sensing.

o This marking fires frwdSink_act, if mark(enPLost)
is equal to 1, mark(PLost)is incremented indicating
that a packet is lost, otherwise, the packet id is
added to msgQ and mark(inTransit) is incremented to
indicate the number of packets ready to be collected
by the sink.

o If mark(inTransit) is greater than 1, and
mark(sinkRecovery) is equal to 0, the sinkRec_act
is fired, a packet is consumed from the msgQ
and added to the sink, and mark(inTransit) is
decremented.

o user_act is fired deterministically every 7', and the
packets collected at sink are moved to the user
place. mark(sink) is updated accordingly to reflect
the energy consumption.

o chkpt_act is fired every T,,,, and the data held by the
sink place is copied into the chkpt place to simulate
a checkpoint event.

o When mark(sink) reaches 7o, fd_act is fired, and
mark(sinkRecovery) is set to 1 indicating that the
sink is being recovered, the delay to recover a sink
is simulated within the recovery_act activity.

e The fh_act simulates a sink hardware failure.
When fired, mark(sinkRecovery) is set to 2 indi-
cating that the sink failed. After a sink recovery
delay, simulated within the recovery_act activity,
mark(sinkRecovery) is reset to 0O indicating that the
sink is alive again. in case of the FT scheme, the
data recovery is simulated by copying the data from
chkpt to the sink. In case of NOFT, sink is initialized
with empty data. Mark(sink) and mark(chkpt) are up-
dated to reflect the energy consumed in the recovery
process. A similar recovery process is modeled for
the chkpt according to the scheme described before.

D. Reward Assignment

The QoD is measured by comparing the number of
packets received in the place user, to the number of
packets generated. The total number of generated packets
is equal to the number of times the sensing_act activity
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Figure 7. The SAN model simulating the operation of a sink and checkpoint sensors

is fired. The energy consumption is measured by keeping
track of the energy marking of the places src, sink and
chkpt.

E. Experiments and Results

We assume that a sensor consumes one energy unit
when sensing a packet, sending a packet consumes three
units and receiving a packet consumes one packet. The
sink incurs 30 energy units consumption per packet sent
to the user as the user is assumed to be far away from
the sensors’ field. Table I summarizes the environment
settings of our experiments. First, we study the effect of
the checkpoint path length on the performance of the FT
scheme compared to the NOFT scheme for different fail-
ure rates.We consider the case where the checkpoint path
consists of three nodes, we call this setting F'T_C'PP3.
The path consists of the sensors denoted S5, Sy and S;.
As described before, S3 acts as a sink and periodically
checkpoints its state to Sy which in turn checkpoints
its state to S;. When S3 fails, Sy takes over acting as
the new sink, and again extends the checkpoint path by
adding new sensor. Similarly, when S5 fails, S; takes
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Number of Source Nodes | 5

Node Initial Energy 10000 units
Packet drop rate 0.0001

1 0.125

L) 0.25

Ts 30 sec

T 90 sec

TABLE 1.
SIMULATION ENVIRONMENT SETTINGS

over. When S fails, its failure is detected by S5, which
recover by selecting a new sensor. We compare this setting
by the case where we have only two sensors on the
checkpoint path, we denote it by F'I"_C'PP2. In this case,
the path consists of the sink S3 and a checkpoint sensor
So. When the sink fails, the failure is detected by So
which acts then as sink and selects a new sensor to act
as checkpoint. When S5 fails, its failure is detected by
the sink which recover it by selecting a new checkpoint
sensor and sending the latest checkpointed states to this
new sensor. The results of simulating the two schemes

chkptRecovery_IG



JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007

and the NOFT are shown in Figure 8 and 9.
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Figure 8. The effect of the checkpoint path length on the QoD achieved
by the FT scheme
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Figure 9. The effect of the checkpoint path length on the energy
consumption of the FT scheme

As shown by the results, the QoD achieved by both
FT_CPP2 and the FT_C'PP3 are approximately the
same as they both recover from checkpoint failure. How-
ever, F'T'_C'PP3 increases the energy overhead by about
14.5% compared to FT_C'PP2. This increase is due
to the checkpointing activity from Sy to S;. Hence,
the recovery mechanism applied by FT_C'PP2 is more
efficient than F'T_CPP3. In the following experiments,
we will implement the FT scheme using a sink path of
length two.

Next, we will study the effect of the checkpointing on
the QoD and the energy consumption per data packet, we
have compared the FT (i.e. the application of CRAFT)
and NOFT schemes under different values of the sensors’
failure rate. Figure 10 and Figure 11 show the QoD and
the corresponding energy consumption, for both FT and
NOFT, at user update interval 7" of 180. We have plotted
the difference on performance (FT-NOFT) at different
values of 7" in Figure 12 and Figure 13. The results show
that the FT scheme is less sensitive to the failure rate and
it always achieves a better QoD than the NOFT. From
Figure 12, the QoD achieved by the FT is higher than the
NOFT and the difference becomes more significant as 7'
increases and at higher failure rates. As 7" increases, more
packets are lost by the NOFT scheme, and unlike the FT
scheme, these packets cannot be recovered. For higher
probability of sink failure, the number of lost packets
is further increased. At high failure rates, the number
of lost packets increases which decreases the QoD of
both schemes but still the FT performs better. Due to
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the checkpointing, FT is expected to be more energy
consuming than the NOFT scheme. However, the energy
overhead of the FT decreases compared to the NOFT as
the failure rate increases. This is due to the fact that, at
high failure rate, the NOFT scheme is sending smaller
percentage of the generated packets to the user, which
increases its energy overhead per packet. Consequently,
for very large values of failure rates, the FT scheme is
actually consuming less energy per packet than the NOFT
scheme while achieving higher QoD at the same time.
For example, at failure rate of 0.008 and 7" of 180 sec,
the FT scheme achieved about 14.4% enhancement in the
QoD and saved about 2.16% of the energy consumed per
packet.

OCRAFT mNOFT
00
2 u
20 +—1
70 +—
FR T
=R -
&21 —
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20 +—1
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u}
0oz 0.004 0,005 0.002 0o
Failure Rae

Figure 10. The QoD achieved by the FT and the NOFT schemes at
T=180 under different failure rates
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Figure 11. The energy consumption of by the FT and the NOFT schemes
at 7=180 under different failure rates
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Figure 12. The increase in the QoD achieved by the FT scheme
compared to the NOFT scheme for different 7" and failure rates

In our next set of experiments, we study the effect of
the checkpointing interval T;,, on the QoD and the energy
consumption of both schemes; the FT and NOFT. We have
set 1" to 130, and the failure rate to 0.004. As shown in
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Figure 13. The energy overhead of the FT scheme compared to the
NOFT scheme for different 7" and failure rates

Figure 14, as T, increases, the percentage of data packets
that are lost before being sent to the user increases,
which decreases the QoD achieved by the FT scheme.
Also, as T, increases, the energy consumed by the FT
decreases as the chekpointing is done less frequently
(refer to Figure 15). However, for large values of T,,,
the number of packets sent to the user decreases which
increases the energy consumed per packet. Hence, for a
certain settings of failure rate and user update interval,
an optimal value of 7},, can be found where FT achieves
the maximum increase in the QoD with minimum energy
consumption overhead.
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Figure 14. The effect of the checkpointing interval 7', on the QoD
achieved by the FT scheme compared to the NOFT scheme [FT-NOFT]
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Figure 15. The effect of the checkpointing interval 75, on the energy
consumed per packet by the FT scheme compared to the NOFT scheme
[FT-NOFT]

V. RELATED WORK

Fault tolerance in measurements by a group of sensors,
was first studied by Marzullo [11] who proposed a model
that tolerates individual sensor failures. In this model,
a processor receives inputs from several sensors whose
outputs are connected intervals and gives a fault tolerant
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algorithm that takes these intervals as inputs and gives the
output as a connected interval representing the sensor val-
ues. The work in [13] and [9] extend Marzullo’s model
by reducing the output interval estimate and relaxing the
assumption on the number of faulty nodes, respectively.
Unlike Marzullo’s work, we focus on providing fault
tolerance in WSNs focusing on performance, but not the
sensor values.

In [6] an algorithm is developed that guarantees reliable
and fairly accurate output from a number of different
types of sensors when at most k out of n sensors are
faulty. The results of the scheme are applicable only to
certain individual sensor faults and traditional networks.
They are not generalizable to the reliability needs in
complex network levels and most importantly; they do
not address the reliability issues that are induced by the
ad-hoc nature of the wireless sensor networks.

A fault tolerance technique is proposed in [7] where
a single type of resource backs up different types of
resources. For example, if communication bandwidth is
reduced and all of the computation power is available,
the system can compress data using more computationally
intensive compression schemes.

The Geographic Hash Table (GHT) [14] for data dis-
semination uses data replication for tolerating faults in
WSNs. GHT defines a home node and a home perimeter
of an event. The home node stores all data readings related
to that event. These readings are replicated on a set of
neighboring nodes that constitute the home perimeter.
Data on the home perimeter is periodically refreshed and
when a home node fails, a node on the perimeter is
selected as the new home. If we consider our source
nodes as home nodes, then this solution and ours may
be viewed as complementary. Alternatively, home nodes
may be viewed as stationary sinks. In this latter case, we
present a different approach that relies on a fewer number
of mobile sinks.

RideSharing [19] is a fault-tolerant data aggregation
scheme. In RideSharing, when a packet sent from a child
node to its parent is lost, the packet is recovered by a
backup parent. A backup parent is assumed to be a node
in the child transmission range and hence it overhears the
packets sent by the child. Figure 16 highlights the main
differences between the different schemes based on our
proposed framework.

VI. CONCLUSION

WSNs enable a microscopic view of our surroundings.
Dependable and efficient data collection and dissemina-
tion in WSNs are important for numerous applications.
Realizing a fault-tolerant operation is therefore critical
to the success of a WSN. Many FT solution for WSNs
have been proposed with diverse approaches. In this
paper, we identified key FT requirements and presented
a new framework for FT in WSNs. We demonstrated
a partial application of our framework to CRAFT; a
Checkpoint/Recovery scheme that we proposed in [18].
By employing this framework, we highlighted similarities



JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 4, JUNE 2007 47
Scheme Fauk Roles Schedule Roles Maintenance Discovery Assessment Recovery
Specification Assignment
CRAFT - Random -Replicator | - Static All roles are | Refreshing Based on - Based on - Checkpoint
node failure | -Damage Checkpointing | assigned to data by energy level | last node recovers
- Energy Assessor schedule set the periodically and recovered a dead sink
exhaustion | -Fault based on data | Checkpeint replicating communicati | data - Data
- Lost Discoverer | update sensor the sink on timeout sequence ID, | recovered
packets frequency and buffer data can be from
the sensors’ contents further checkpoint
buffer size. recovered - Data
from the recovered
sources from sources
GHT - Random -Replicator | Static schedule | Roles are Refreshing Based on the | None A refresh
node failure | -Fault set for data assigned to data on the routing packet echoed
- Energy Discoverer | refreshment node onthe | routing path | protocol, a at anode
exhaustion based on how home node detects indicates that
often new data | perimeter of the death of itis the new
is acquired an event. the sink candidate to
be sink
RideSharing | Lost -Parent None Parent and None Using flags A parent Backup
packets -Backup Backup added to a checks the parents
Parent Parents are packet that flag bits in a | aggregate the
selected indicate packet and missing value
based on a whether a decide into theirs
node child value is | whether a
transmission received or missing
range not value can be
recovered
Marzullo Random “Averager”; | None Roleis None Based on Neone By applying an
failurewith | an external assigned to previous averaging
bounded module that an external knowledge algorithm
effect on recover the entity of the
data missing system’s
accuracy values expected
correct
values
Note: None of these schemes is implementing the Analysis/Refinement functionalities
Figure 16. Different schemes compared based on FT Framework
and differences among existing schemes and identified [71 . Koushanfar, M. Otkonjak, and A. Sangiovanni-

directions for enhancements.

In a sequel to this paper, we will implement the
learning and refinement module in CRAFT. This will
render the solution adaptive to the changes in the networks
conditions and self-configurable based on feedback from
the FT operations.
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