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Abstract—In conventional design of a digital receiver, the 

timing recovery system and the equalizer are considered 

separately. Actually, the two processes are coupled and 

interacted. The paper proposes a batch scheme for jointly 

performing blind equalization and timing recovery, that embeds 

the timing recovery process inside the batch blind equalization 

algorithm. The proposed scheme adds the timing offset of 

sampling and interpolation filter in the objective function of 

constant modulus algorithm, iteratively updates the timing 

offset and equalizer coefficients in batch approach, thus 

achieves equalization, symbol timing error detector and timing 

recovery jointly. In this way, the timing recovery and the 

equalization processes can be coordinated. Simulation results 

show the performance of equalization and timing recovery.  

 

Index Terms—blind equalization, timing recovery, constant 

modulus, open-loop batch 

 

I. INTRODUCTION 

In a digital communication receiver, an equalizer is 

used to eliminate the channel effect for reducing the 

intersymbol interference (ISI), and a timing recovery 

system is used to compensate for the timing offset 

between the transmitted data and the received sample. In 

conventional design, the equalizer and the timing 

recovery system are considered separately: the equalizer 

is designed assuming that the timing offset has been 

completely compensated and its processing data is 

sampled correctly, the interpolation filter of timing 

recovery system is designed assuming the channel is 

known and fixed [1], [2]. However actually, the processes 

of equalization and timing recovery are coupled. As a 

consequence, the adaptation circuits of the equalizer and 

of the timing synchronizer interact and thus the timing 

phase and the equalizer coefficients are drifting slowly, 

especially in the tracking mode [3]. This problem is 

targeted by some researchers, but most of them aimed to 

eliminate the interaction [3]-[7]. In [3], the solving 

approach is using the equalizer coefficients to estimate 

the timing error and feeding to the timing loop to cancel 

its effects. In [4], a new receiver structure is presented for 

joint timing recovery and equalization, which partitions 
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the equalizer structure into a number of component parts, 

and position a magnitude equalizing portion prior to 

equalization approach is presented. Another kind of 

research is to design and realize timing recovery and 

equalization jointly. In [8], the interpolation filter for 

timing recovery and decision feedback equalizer is 

designed jointly to improve the performance. In [9], the 

Modified Constant Modulus Algorithm (MCMA) is 

extended to handle the timing offset parameter. 

The performance of baud spaced equalizer (BSE) is 

very sensitive to the choice of the sampling phase. 

Therefore, highly accurate synchronization is required. 

Whereas the fractional spaced equalizer (FSE) is in 

principle independent of the sampling phase, although 

large drifts of the coefficients can also degrade the 

equalizer performance. Furthermore, the overall 

implementation complexity of FSE is significantly much 

higher than that of BSE. So, our research will focus on 

the jointly timing recovery and BSE. Due to its simplicity, 

constant modulus algorithm (CMA) [10] is the most 

commonly used algorithm in blind equalization from 

practical implementation point of view. Compared with 

the stochastic gradient descent realization of CMA (SGD-

CMA), the open-loop batch approach using the 4-th order 

cumulants of the received signal represents faster 

convergence speed and better performance [11].  

In this paper, we propose a joint batch blind 

equalization and timing recovery method. We add the 

timing offset of sampling and interpolation filter in the 

objective function of CMA, derive the iterative update 

formulas of the timing offset and equalizer coefficients in 

batch approach. Our simulation results show the 

convergence performance and the estimation accuracy of 

timing offset. The rest of the paper is organized as 

follows. In section II we introduce the system model for 

joint implementation of symbol timing recovery and blind 

equalization. Section III is devoted to the derivation of 

the joint batch iterative algorithm. Simulation results and 

performance analysis is the subject of section IV, which 

is followed by some conclusions in section V. Some 

pivotal proof is presented in Appendix. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

We consider the baseband model of a single-input and 

single-output (SISO) system shown in Fig. 1. The 
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sequence of information bits Ik is applied to the digital 

modulator and converted into a complex valued symbol 

sequence 
ka . The symbol sequence 

ka enter the pulse 

shaping filter with the impulse response ( )Tg t ,then are 

distorted by the multipath channel ( )c t ,and further 

corrupted by additive white Gaussian noise(AWGN) 

( )n t .In receiver, The received analog signal after the 

matched filter with the impulse response  Rg t  is given 

by 

 ( , ) ( ) ( )k

k

r t a h t T kT v t 




     (1)  

where ( ) ( ) ( ) ( )T Rh t g t c t g t   is the overall baseband 

impulse response,   ( ) ( )Rv t n t g t  is the complex 

filtered noise with variance 2

v . T is the symbol duration, 

and  is the normalized fractional unknown timing offset 

between the transmitter and receiver ( 1
2  ). 
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Figure 1.  Baseband system model for timing recovery and blind 
equalization 

After the analog to digital conversion, the received 

signal is oversampled with the timing offset at Q-times 

the symbol rate, that is 1 1

sT T
Q . So we get the digital 

signal  

( ) ( , ) ( ) ( )S k S S

k

r n r nT a h nT T kT v nT 




      (2) 

where n  is the sampling index. 

In all-digital receiver, timing offset estimator is used to 

deal with the oversampled signal and estimate the timing 

offset ̂  sent to the interpolator controller. The digital 

interpolator filters the oversampled signal ( , )Sr nT   using 

estimated parameters 
km (interpolator basepoint index) 

and  (interpolator fractional interval), then produce the 

resumed digital signal ( )x kT  which is equivalent to the 

signal sampled at exact sampling point. We denote 

( )x kT as ( , )x k   to indicate that resumed samples are 

determined by  . In order to remove ISI introduced by 

multipath channel, ( , )x k   is passed through the FIR 

equalizer with order 1wL   , whose adjustable 

coefficients is denoted as 0 1[ ]
w

T

Lw w ww . The 

output of equalizer ( )y k  becomes 

 
*

,

0

( ) ( ) ( , )
wL

H

k

i

y k w i x k i 


   w x  (3) 

where  , ( , ) ( 1, ) ( , )
T

k wx k x k x k L     x . 

At last the slicer and demodulator process the output of 

equalizer, and give the estimated result of the information 

sequence. 

The purpose of our research is to jointly implement the 

timing offset loop and equalizer, which are included by 

the dashed line in Fig. 1. Showed as Fig. 2, the proposed 

algorithm adopts the open loop batch processing method, 

calculate the statistics of received samples, iteratively 

achieve accurate estimation of interpolator fractional 

interval   and equalizer weights w , at last accomplish 

interpolation and equalization. 
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Figure 2.  Baseband system model for timing recovery and equalization. 

III. PROPOSED ALGORITHM 

A. Interpolator for Timing Recovery(TR) 

An FIR interpolator with impulse response 

 ( )I sh i T  is used to filter the received signal with 

timing offset [12], [13], and computes its output at 

sampling time ( )k skT m T  , that is  

 

   
2

1

N

i N

 (4) 

where 
1 2 1N N   is the interpolator tap order. 

 INTk sm kT T  is called interpolator basepoint index, 

and decides which sample and succeeding 
1 2N N  

samples is sent to the interpolator. 

s kkT T m    is called interpolator fractional interval. 

It determines the coefficients of interpolator, that is to say, 

variable   requests the recomputation of the filter 

coefficients. 

The Farrow [14] structure of the interpolation filter is 

suited for signal interpolation by machine. It consists of 

L+1 parallel FIR branch components with fixed 

coefficients denoted as  lc i  , for l =0,1,…,L, and only 

one variable parameter  . 

    
0

( )
L

l

I s l

l

h i T c i 


    

So (4) can be denoted as 

  
2

1 0

( , ) ( )
N L

l

k l

i N l

x k r m i c i 
 

    (5) 
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 

   

 



x k x m T

r m i T h i T

( , ) ( )

( ) ( )

k s

k s I s



In terms of hardware implementation complexity, The 

obvious advantage of Farrow structure is that the filter 

coefficients are fixed and the output samples is only 

related to the parameter  . The design of the Farrow 

interpolator is based on polynomials, traditionally 

Lagrange polynomials. In this paper we use the filter 

coefficients ( )lc i  for the Lagrange interpolator 

polynomials, which can be expressed in the matrix form 

as [15] 

 Vc z   

where V  is a Vandermonde matrix,  

 

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0 0

1 1 1 1

2 2 2 2

L

L

L

LL L L L

 
 
 
 
 
 
 
 

V .  

Vectors c  and z  are defined respectively as  

        0 1 2

T

LC z C z C z C z   c   

 1 21
T

Lz z z     z   

And 
( )lC z

 is the transfer function of the lth FIR 

branch filter, which can be expressed as  

     
1 2

0

N N
i

l l

i

C z c i z






    

So, the solution of above equation is expressed as 

 1c V z . (6) 

Then we can get the interpolator coefficients ( )lc i  

from the vector c  . 

B. Open-Loop Batch Method of Constant Modulus 

Algorithm (OLB-CMA) 

The cost function of constant modulus algorithm 

(CMA) is defined by 

  
22

2( )CMAJ E y k R  
  

 (7) 

where  E  denotes statistical expectation and 2R  is a 

positive real constant defined by 

 
 

 

4

2 2

E a k
R

E a k

 
 
 
 

  

The equalizer coefficient vector update of steepest 

descent method is given by 

    1k k

CMAJ

 

w
w w  (8) 

where 
CMAJ

w
 denotes stochastic gradient of the CMA 

cost function with respect to the equalizer coefficients 

vector w ,  is the step-size parameter, ( )( ) k  denotes the 

kth iterative value. 

With limited samples of channel output data, the 

adaptation of the stochastic gradient can only be 

approximated. One well known approximation is to adopt 

the instantaneous value instead of the statistical 

expectation in the gradient calculation, which is called 

SGD-CMA. The weights update of SGD-CMA is given 

by: 

 
          

21

2

k k Hy k R y k k

   w w x  (9) 

Because of the rough estimation of the gradient, the 

traditional SGD-CMA usually requires a large number of 

iterations or samples to approximate the steepest descent 

counterpart, it means that SGD-CMA converge slowly. 

On the other hand, the batch processing method of 

CMA [11] calculate the stochastic gradient directly from 

a block of channel output samples and achieve a much 

more accurate estimation of the gradient. Furthermore, it 

doesn’t have to refilter the input of equalizer in each 

iteration. That is to say, it is a open loop batch iterative 

adaptation, called OLB-CMA. OLB-CMA converges 

much faster and more smoothly than SGD-CMA, its 

weights update is given by 

   

   

1

4 2

2( ) 2 ( )

k k

CMA

k

J

E y k R E y k


  

        
   

w

w w

w w

w
 (10) 

where: ,  ( ) ( 1) ( )
T

k wx k x k x k L  x  and 

H

k k kX x x .  

  
2

( ) H

kE y k E  
 

w X w  (11)  

  
2

( ) 2 kE y k E  
 w

X w (12) 

   
4

( ) vec vecH T

k kE y k E      
W X X W  (13) 

  4
( ) 4mat vecT

k kE y k E       w
X X W w  (14) 

Here, HW ww ,   denotes the Kronecker product, 

vec( )  function converts a matrix into a vector formed by 

stacking all columns of the matrix sequentially and the 

reverse operation mat( )  converts the vector back to its 

matrix form. 

According to (10)-(14), the update of weight vector do 

not require the output of equalizer, that is to say, OLB-

CMA doesn’t need convolution operation to produce the 

equalizer output in every step. It only computes the 

statistics about channel out 
 kE X

 and 

T

k kE   X X
 in 

starting step, then use (10) to optimize the equalizer 

iteratively.  

C. Proposed Joint Equalization and TR Algorithm 

As mentioned in section II, when we receive the 

channel out signal with timing offset , we want to 
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eliminate the timing error and channel multipath 

interference simultaneously and cooperatively, like Fig. 2.  

Since the input of equalizer is determined by channel 

output signal and interpolation filter, i.e. the interpolator 

fractional interval  . So Introducing new parameter   

to the CMA cost function (7), we can use the only one 

cost function 
CMAJ  to optimize w  and  . 

Since the input of equalizer is determined by channel 

output signal and interpolation filter, i.e. the interpolator 

fractional interval  . So Introducing new parameter   

to the CMA cost function (7), we can use the only one 

cost function 
CMAJ  to optimize w  and  . 

   

   

1

4 2

2( ) 2 ( )

k k

CMA

k

J

E y k R E y k


  

        
   

w w

w w w

w w

w
 (15) 

   

   

1

4 2

2( ) 2 ( )

k k

CMA

k

J

E y k R E y k

 

  

 




  

        
   

 (16) 

Obviously, the key of the above two iterative update 

equations is to calculate the gradient of the second and 

fourth statistics of equalizer out ( )y k  with respect to w  

and , 
w

 and   is the step-size parameter of w  and 

  respectively. 

Define: 

 




1 1

2

( ) ( 1)

( ) ( 1) ( )

km k k

k k k

r m N r m N

r m r m r m N

   

 

r
 (17) 

 

21
T

L     μ
 (18) 

 
1 2

0 1

0 1

0 1 2 1 1 2 1 2

( 1) ( 1)

(0) (0) (0)

(1) (1) (1)

( ) ( ) ( )

( )

L

L

L

l N N L

c c c

c c c

c N N c N N c N N

c i
   

 
 
 
 
 

   



C
 (19) 

where 
kmr  is the channel out signal vector with timing 

offset,   in the vector μ  is the interpolator fractional 

interval. C  means the interpolator coefficients matrix, its 

lth column is the coefficient of the lth FIR branch filter, 

described as (6). 

So we get the matrix form of the interpolator out 

denoted by (5) as.  

 ( , )
k

T

mx k   r Cμ . (20) 

Furthermore, we give the interpolator out vector  

 

1

, ( , ) ( 1, ) ( , )

k

k

k

k Lw

T

k w

T

m

T

m

m

T

m

x k x k x k L   





  

 
 
 

  
 
 
 

x

r

r
Cμ R Cμ

r

(21) 

where we call 
kmR  the channel out data matrix. 

Define: T U μ μ ,  

, , ,

H

k k k  X x x ,  

 2
 C C C  , 

 4
   C C C C C ,  

 2 *

k k km m m R R R  

 4 * *

k k k k km m m m m   R R R R R  

 2 T U U U  

We can derive the expression of the variable and 

corresponding statistics that included in (15) and (16). 

   2 2 2
( ) vec ( ) vec( )

k

H

mE y k E   
  

W R C U  (22) 

  

        

4

4 4 2

( ) vec mat

vec vec
k

H

m

E y k

E

  
 

 
 

W

R C U W

 (23) 

    2 2 2
( ) 2mat vec( )

kmE y k E    
  w
R C U w

 (24) 

   2 2 2
( ) vec ( ) vec( )

k

H

mE y k E 
     

  
W R C U  (25) 



         

4

4 4 2

( ) 4 mat

mat vec vec
km

E y k

E

  
 

 
 

w

R C U W w

 (26) 

 

  

         

4

4 4 2

( ) vec mat

vec vec
k

H

m

E y k

E





  
 

   
   

W

R C U W

 (27) 

So, the update of (15) and (16) can be completed with 

calculation of equation (24)-(27), don’t need to refilter 

the channel out signal. The proof of (22-27) is showed in 

Appendix.  

Two statistics 
 2

kmE  
 
R and 

 4

kmE  
 
R , and some 

variables, such as  2
C ,  4

C , vec( )U ,  U , 
  2

vec U , 

  2
vec U  are involved in the computation, that make 

the computation seemed complicated. But the two 

statistics can be estimated over all available received data 

before the iterative process and stored in the memory. 

Variables  2
C  and  4

C  can be decided in advance when 

we choose the interpolator. Variables vec( )U ,  U , 

 2
vec( )U  and  2

vec( ) U  are only dependent on 

estimated  , their expression can be derived very easy 

according to (18). 

The proposed joint equalization and TR algorithm can 

be summarized in 3 steps after initialization. 

Initialization: Initialize equalizer tap weight vector 

w with zeros and substitute 1 for the central tap. 

Initialize interpolator fractional interval 0  . Calculate 

constants 
 2

C  and 
 4

C  using the solution of (19) and 
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save the results in    
2 2

1 21 1L N N     and 

   
4 4

1 21 1L N N     storage space respectively. 

Step 1: calculate the second and fourth order statistics  
 2

kmE  
 
R and 

 4

kmE  
 
R  by averaging corresponding 

expression of channel output signal ( )r n . The results will 

require respectively    
2 2

1 21 1wL N N     and 

   
4 4

1 21 1wL N N     storage space.  

Step 2: calculate vec( )U ,  U , 
  2

vec U , 

  2
vec U  and  vec W  using estimated w and  . 

Step 3: update w and   according to (15-16) and (24-

27). 

Repeat step2 and 3 until convergence or repeated time 

reaches the desired limit. 

Last: use the optimal w and  , get the equalizer 

output signal ( )y k  as below. 

 ,( )
k

H H

k my k  w x w R Cμ (28) 

IV. SIMULATION RESULTS AND ANALYSIS 

In this section, we present simulation results to 

illustrate the performance of the proposed joint batch 

algorithm in terms of convergence and estimate precision 

of . Simulations are carried out in 25 dB SNR 

environment with QPSK and 16-QAM. The transmitter 

pulse shaping filter and receiver matched filter are all root 

raised cosine filters with roll off factor be set to 0.25. The 

multipath channel is taken from Signal Processing 

information database SPIB [16], which is defined as 

chan2. 

For simplicity, the oversampling factor Q is set to 2 for 

implementing interpolation, the Farrow structure linear 

interpolator is chose. The interpolator coefficient matrix 

C  can be calculate according to (15). Estimated timing 

offset ̂  showed below in simulation results is half of the 

estimated interpolator fractional interval  .  

The equalizer is selected as a 15 tap filter with central 

tap initialized to 1. To measure the jointly algorithm 

effectiveness, we consider the mean square error (MSE) 

between the equalizer output and the transmitted symbol. 

Because the CMA cost function is phase blind, the 

equalizer output signal will perhaps have a phase rotation. 

We apply an DD phase recovery loop [17] after the 

equalizer output to estimate the phase rotation and then 

correct the phase offset.  

Fig. 3 and Fig. 4 demonstrate the convergence 

behavior and estimate performance of the proposed 

algorithm in one run. By accurately estimating the 

statistics of received data, the MSE and estimated timing 

offset curves converge very smoothly. 

Fig. 3 shows the simulation result for QPSK modulated 

transmitted symbol, timing offset is set to 0.2. Step size 

parameters 
w

 and   are selected by trial method, here 

0.0005 
w

 and 0.001  . When the number of 

channel output symbols is 800, the algorithm 

convergence is achieved after about 200 iterations (solid 

curve). When the number of channel output symbol is 

200, the convergence is achieved after about 400 

iterations (dash curve). The convergence speed is much 

faster than SGD-CMA, whose slow convergence speed is 

well known. In both situation, the MSE converges to 

about -27dB, the estimated timing offset converges to 0.2 

approx. 
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Figure 3.  Simulation results for QPSK, timing offset is 0.2.(a) MSE 
performance. (b) Estimated timing offset 
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Figure 4.  Simulation results for 16-QAM, timing offset is -0.3: (a) 
MSE performance. (b) Estimated timing offset 
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Fig. 4 shows the simulation result for 16-QAM 

modulated transmitted symbol, timing offset is set to -0.3, 

0.0005 
w

 and 0.01  . We consider the situations 

in that data length is 800 and 400, the algorithm behaves 

similarly as previous simulation. MSE converges to about 

-20dB after about 200 iterations (solid curve and dash 

curve). The estimated timing offset converges to -0.35 

approx.  
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Figure 5.  Convergence performance comparison 

Fig. 5 compares the convergence performance of 

proposed algorithm (solid curve) and OLB-CMA (dash 

curves) with received data suffered various timing offset. 

Test condition and step size parameter are same as that of 

Fig. 3 with 800 data samples. The convergence 

performance of the proposed joint algorithm is close to 

the performance of OLB-CMA in situation that without 

timing offset. The faster convergence speed and better 

performance of OLB-CMA compared with traditional 

SGD-CMA has been described in [11]. 

V. SUMMARY 

In this paper, we present a new approach for jointly 

blind equalization and TR. The new approach complete 

the timing offset estimation, symbol timing recovery by 

interpolator and blind equalization simultaneously. 

Furthermore, the new approach modifies the CMA cost 

function, uses the only one cost function to optimize the 

timing offset and equalizer weight vector, lessens the 

interaction between the TR loop and blind equalizer, 

strengthens the joint effect. In the realization of the 

approach, batch method is adopted. By estimating the 2nd 

and 4th order statistics of received data in batch mode, we 

not only get the accurate estimated value, but also avoid 

refiltering received data in each iteration. Simulation 

results show that the joint OLB-CMA and TR algorithm 

can accomplish the timing recovery and blind 

equalization effectively, and its convergence performance 

is closed to the performance of OLB-CMA in situation 

that without timing offset existed. 

APPENDIX 

Proof of (22)―(27): According to (21), we rewrite ,k X  

as  

 , , , k k

H
H

k k k m m    X x x R Cμ R Cμ  

   
k k

H

m m R C U R C  

     mat vec
k k

H

m m R C U R C  

    mat vec( )
k k

TH

m m

  
   

  
R C R C U

   *mat vec( )
k km m  R R C C U    

    2 2
mat vec( )

km R C U                                  (29) 

         , , k k k k

TH H
T

k k m m m m   X X R C U R C R C U R C  

          k k k k

T H
T

m m m m



   R C R C U U R C R C  

          k k k k

H
T

m m m m

 

   R C R C U U R C R C  

          mat vec
k k k k

H
T

m m m m

   
     

  
R C R C U U R C R C

           mat vec
k k k k

T
H

T

m m m m

     
       

     

R C R C R C R C U U

            mat vec
k k k k

T

m m m m

      
  

R C R C R C R C U U  

     * *mat vec
k k k k

T

m m m m
        
 

R R R R C C C C U U   

       4 4 2
mat vec

km
 
 
R C U                                                   (30) 

Substitute (29) and (30) into (11) and (13), we get 

(22)―(27) which given in Section III: 

 2

, ,( ) H

k kE y k E Tr E 
          

w X w X W  

 ,vec ( ) vecH H

kE 
   W X  

     2 2
vec ( ) vec mat vec( )

k

H H

mE  
 

W R C U  

   2 2
vec ( ) vec( )

k

H

mE  
 

W R C U                      (22) 

   
4

, ,( ) vec vecH T

k kE y k E  
      

W X X W  

           4 4 2
vec mat vec vec

k

H

mE  
 

W R C U W      (23) 

Then we can derive (24-27) easily. 
2

,( ) 2 kE y k E 
       w

X w  

    2 2
2mat vec( )

kmE  
 
R C U w            (24) 

   2 2 2
( ) vec ( ) vec( )

k

H

mE y k E 
     

    
W R C U  

   2 2
vec ( ) vec( )

k

H

mE 
  
 

W R C U                 (25) 

4

, ,( ) 4 k kE y k E  
       w

X WX w  

  , ,4mat vec k kE  
   X WX w  

  , ,4mat vecT

k kE  
   X X W w  

          4 4 2
4mat mat vec vec

kmE  
 
R C U W w  (26) 
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 
         

4

4 4 2

( ) vec

mat vec vec
k

H

m

E y k

E

 
   
 

 
 

W

R C U W

 

           4 4 2
vec mat vec vec

k

H

mE 
   

   
W R C U W (27) 
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