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Abstract—Delay-tolerant Networking (DTN) enables com-
munication in sparse mobile ad-hoc networks and other
challenged environments where traditional networking fails
and new routing and application protocols are required.
Past experience with DTN routing and application protocols
has shown that their performance is highly dependent on
the underlying mobility and node characteristics. Evaluating
DTN protocols across many scenarios requires suitable
simulation tools. This paper presents the Opportunistic
Networking Environment (ONE) simulator specifically de-
signed for evaluating DTN routing and application protocols.
It allows users to create scenarios based upon different
synthetic movement models and real-world traces and offers
a framework for implementing routing and application
protocols (already including six well-known routing pro-
tocols). Interactive visualization and post-processing tools
support evaluating experiments and an emulation mode
allows the ONE simulator to become part of a real-world
DTN testbed. We examine a range of published simulation
studies which demonstrate the simulator’s flexible support
for DTN protocol evaluation.

Index Terms—Delay-tolerant Networking, Simulation,
Performance Evaluation, Mobility

I. INTRODUCTION

Personal communication devices, such as cellular
phones, have enabled voice and data communications to
mobile users, achieving global connectivity via infras-
tructure networks (cellular, WLAN). Local connectivity
among the devices may additionally be obtained by
forming ad-hoc networks since the mobile devices are
virtually always turned on and have the necessary radio
interfaces, processing power, storage capacity, and battery
lifetime to act as routers. However, such usually sparse
ad-hoc networks generally cannot support the type of
end-to-end connectivity required by the classic TCP/IP-
based communications due to frequent topology changes,
disruptions, and network partitions caused by the node
movement. Instead, asynchronous message passing (also
referred to as store-carry-forward networking) has been
suggested to enable communication over the space-time
paths that exist in these types of networks (e.g., Delay-
tolerant Networking, DTN [10], Haggle [27]).
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The performance of such opportunistic networks may
vary significantly, depending on how the mobile nodes
move, how dense the node population is, and how far
apart the sender and the receiver are. Delivery latency may
vary from a few minutes to hours or days, and a significant
fraction of the messages may not be delivered at all. The
key factors are the routing and forwarding algorithms used
and how well their design assumptions match the actual
mobility patterns. No ideal routing scheme has been found
so far.

Simulations play an important role in analyzing the
behavior of DTN routing and application protocols. With
typically sparsely distributed nodes, DTN simulations ab-
stract from the details of the wireless link characteristics
and simply assume that two nodes can communicate when
they are in range of one another. This allows focusing
on the evaluation of the DTN protocols—an approach
we follow in this paper. Instead of fully modeling the
lower layers we make simplifying assumptions about the
data rates, the radio ranges, and thus the resulting transfer
volumes.

In sparse node populations, the space-time paths, which
are exploited by the store-carry-forward communications,
are composed of the encounters between the nodes. The
frequency, duration, and other characteristics of these
encounters are largely dependent on the underlying mo-
bility patterns. Evaluations of DTN protocols have used
a large variety of synthetic mobility models as well as
real-world mobility traces (which we review in section
II). While synthetically generated node mobility allows
for fine-tuning in many respects, this usually covers only
limited mobility characteristics. In contrast, real-world
traces often have only coarse temporal (e.g., scanning
intervals in the order of several minutes) or spatial resolu-
tion (e.g., location determined from WLAN access point
attachment) and coverage (e.g., only covering a campus
area) and may exhibit biases due to the user group chosen
for sampling.

All these approaches may provide complementary data
points when assessing the performance of DTN protocols.
What is important is that protocols are evaluated under
different settings and that these settings can be fine-
tuned to match the intended application scenario(s) as
closely as possible. In this paper we extend our previous
work [19] on the Java-based ONE simulator. We present
new mechanisms for modeling multiple interfaces on a
node, support for interference-limited links and a frame-
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work for modeling complex applications running on the
nodes. Furthermore, we provide an overview of concrete
use cases where the ONE has been successfully exploited
to study a variety of aspects related to opportunistic,
message-based communications. Finally we present a
performance study of the simulator.

Our contributions are twofold: 1) The ONE simulator
offers an extensible simulation framework itself support-
ing mobility and event generation, message exchange,
DTN routing and application protocols, a basic notion of
energy consumption, visualization and analysis, interfaces
for importing and exporting mobility traces, events, and
entire messages. 2) Using this framework, we imple-
mented an extensive set of ready-to-use modules: six
synthetic mobility models that can be parameterized and
combined to approximate real-world mobility scenarios,
six configurable well-known DTN routing schemes, a
set of base primitives to design application protocols,
a basic battery and energy consumption model, several
input/output filters for interacting with other simulators,
and a mechanism for the integration with real-world
testbeds. The ONE simulator is designed in a modular
fashion, allowing extensions of virtually all functions to
be implemented using well-defined interfaces.

This paper is structured as follows: In section II, we
review related work on DTNs and (related) simulations
for mobility. We introduce the architecture and different
features of the ONE simulator in depth in section III
and describe how ONE is used in emulation setups in
section IV. We show example use cases from published
simulation studies and comment on the simulator’s per-
formance in section V. Section VI concludes this paper
with a summary and points out future work.

II. RELATED WORK

In this paper, we focus on communication performance
in delay-tolerant ad-hoc networks comprising mobile
nodes. Delay-tolerant Networking [10] is increasingly ap-
plied to enable communication in challenging networking
environments, including sparse sensornets and opportunis-
tic mobile ad-hoc networks. The DTNRG architecture [5]
proposes a bundle layer as an overlay to bridge different
(inter)networks. Nodes communicate via asynchronous
messages of arbitrary size that are exchanged using the
store-carry-and-forward paradigm. Messages have a finite
TTL and are discarded when the TTL expires. They may
also get dropped by a node due to congestion, yielding a
best-effort service. Application protocols need to tolerate
the delays resulting from the challenged environment
and the risk that messages are not delivered in time or
not at all. Typical performance metrics for evaluating
DTN protocol performance are hence message delivery
probability and latency.

Numerous routing and forwarding schemes have been
proposed over the past years (refer to [35] and [23] for
overviews). Different mechanisms are usually applied de-
pending on whether the network is primarily of mobile ad-
hoc nature (e.g., mobile devices carried by humans) or is

based upon a (fixed or mobile) infrastructure (e.g., space
networks, bus networks). Obviously, mixed networks exist
as well, for example, with mobile users supported by
infrastructure nodes.

The primary difference between various DTN routing
protocols is the amount of information they have available
to make forwarding decisions [13]. Ad-hoc DTNs usually
apply variants of reactive protocols. Flooding protocols
such as epidemic routing [33] do not use any information.
Predictive protocols such as PRoPHET [21] use past
encounters of nodes to predict their future suitability to
deliver messages to a certain target whereas other proto-
cols also exploit further (explicitly configured) schedule
and context information per node [20]. Furthermore, they
differ in their replication strategies, i.e., how many copies
of a message they create which, in turn, has a direct im-
pact on the load incurred on the network. Some protocols
generate just a single copy [30] (e.g., First Contact [13],
Direct Transmission/Delivery [30]), others a fixed number
limited by the sender [31] [29] while epidemic [33] and
probabilistic [21] routing potentially create an “infinite”
number of messages. Scheduling strategies govern in
which order messages are passed when a communication
opportunity occurs between two nodes. Finally, queue
management strategies define when and which messages
are deleted, e.g., if congestion occurs.

For evaluating the performance of DTN routing proto-
cols, manifold settings have been used, mostly including
some type of node mobility. Mobility has been created
(a) from synthetic mobility models, (b) taken from traces
obtained from real-world measurements, and (c) by eval-
uating code in the real-world. While a few testbeds for
(c) exist (such as DieselNet [3]) their flexibility is usually
limited, large-scale operation “expensive”, and their use
is typically limited to those running the testbed. Such
testbeds may also be used to obtain real-world traces (b)
which can then be made available to other researchers.

Various projects have collected traces of contacts
(peers, times, durations, and possibly positions) between
Bluetooth devices [11], between users and/or wireless
access points [8], among others. The CRAWDAD project1

provides a repository where numerous real-world traces
are available.2 These traces offer insights into real-world
interactions between mobile users from different angles
and constitute a valuable data source for validating the
mobility and connectivity characteristics obtained from
synthetic models.

But also real-world traces have their limitations as—so
far—the population analyzed in these traces is naturally
very limited and may thus bias the results. Furthermore,
the time granularity is often limited in order not to drain
mobile device batteries too quickly: e.g., the Haggle
iMotes uses sensing intervals of 5 min so that many con-
tact opportunities may easily go undetected and contact
durations can only be assessed equally coarsely. While
this can be seen to reflect energy constraints, the scanning

1http://crawdad.cs.dartmouth.edu/
2The DieselNet traces are available at http://traces.cs.umass.edu.
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interval cannot be adjusted afterwards. Finally, the results
cannot be arbitrarily scaled, thus limiting what can be
evaluated.

The only option for flexible and scalable simulations
is thus (a) model-based synthetic mobility generation.3

Mobility models range from simple entity models such
as Random Waypoint to complex ones such as Random
Trip [2] to group mobility to community models with
major points of interest [4] to vehicular ones taking street
maps into account (e.g., [6]). Node velocity and pause
times may be adjusted to match pedestrians, vehicles, or
other node types and smooth turns, acceleration and de-
celeration may be added to obtain more realistic behavior
[1]. Specific models for vehicular networking furthermore
consider additional constraints from simple road setups to
real-world maps on one hand and simple non-interfering
vehicles to vehicular interaction (distance, speed) based
upon traffic flow models on the other. Approximations for
footpath construction in and around buildings are used to
make motion more realistic and transmission range and
performance is adapted to model walls between mobile
nodes [14].

In other areas (e.g., for epidemic spreading studies or
traffic planning), more complex simulation models have
been created mimicking the behavior of the population
of an entire city [22]. Depending on the precise setting,
the latter may not have the proper focus for evaluating
ad-hoc interpersonal communications: TRANSIMS, for
example, allows modeling a population and their inter-
action at certain locations or in vehicles, but does not
include details on the way between such locations, which
limits the suitability of the generated mobility data of
pedestrians. In the case of TRANSIMS, detailed vehicle
information could be made available and has been used
for investigating MANET protocols [22].

Mobility generators for simple models are available for
ns-2 and ns-3, as part of their respective toolsets or as
specific extensions (e.g., [2]); both ns-2 and ns-3 accept
suitably converted traces as input.4 The latter also holds
for various openly available DTN simulators (dtnsim [13]
and dtnsim25) and numerous ones tailored to specific re-
search needs, based upon OMNet++, OPNET, or entirely
newly developed6, all of which have rather limited support
for DTN routing protocols readily available. While ns-2
(and now ns-3) and OMNet++ offer sound generic open
simulation platforms for packet-based communications
and tools such as JANE [7] provide specific support
for MANETs, generic support for DTN simulation is
overall fairly limited. The ONE simulator contributes
an environment for DTN protocol evaluation, embedding
internal and external mobility models, different DTN
routing schemes, and interactive inspection (similar to
nsnam for ns-2) as well as post-processing.

3For an overview, see, e.g., [1], [4], [9] and the references therein.
4http://www.nsnam.org
5http://watwire.uwaterloo.ca/DTN/sim/
6E.g., Pydtn at http://www.umiacs.umd.edu/˜mmarsh/pydtn/ and

http://www-net.cs.umass.edu/˜ellenz/software.html.

III. THE ONE SIMULATOR

At its core, ONE is an agent-based discrete event
simulation engine. At each simulation step the engine
updates a number of modules that implement the main
simulation functions.

The main functions of the ONE simulator are the
modeling of node movement, inter-node contacts using
various interfaces, routing, message handling and ap-
plication interactions. Result collection and analysis are
done through visualization, reports and post-processing
tools. The elements and their interactions are shown
in Figure 1. A detailed description of the simulator is
available in [16] and the ONE simulator project page [32]
where the source code is also available.

Node movement is implemented by movement models.
These are either synthetic models or existing movement
traces. Connectivity between the nodes is based on their
location, communication range and the bit-rate. The rout-
ing function is implemented by routing modules that
decide which messages to forward over existing contacts.
Finally, the messages themselves are generated either
through event generators that generate random traffic
between the nodes, or through applications that generate
traffic based on application interactions. The messages are
always unicast, having a single source and destination host
inside the simulation world.

Simulation results are collected primarily through re-
ports generated by report modules during the simulation
run. Report modules receive events (e.g., message or con-
nectivity events) from the simulation engine and generate
results based on them. The results generated may be logs
of events that are then further processed by the external
post-processing tools, or they may be aggregate statistics
calculated in the simulator. Secondarily, the graphical user
interface (GUI) displays a visualization of the simulation
state showing the locations, active contacts and messages
carried by the nodes.

routing 

visualization and results 

simulation 

engine 

connectivity 

data 

external DTN  

routing sim 

internal routing 

logic 

routing 

data 

visualization,  
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post processors 
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External events file 

Message event generator 
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External trace 

Map-based movement 
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Fig. 1. Overview of the ONE simulation environment

A. Node Capabilities

The basic agents in the simulator are called nodes.
A node models a mobile endpoint capable of acting as
a store-carry-forward router (e.g., a pedestrian, car or
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tram with the required hardware). Simulation scenarios
are built from groups of nodes in a simulation world.
Each group is configured with different capabilities.

Each node has a set of basic capabilities that are
modeled. These are radio interfaces, persistent storage,
movement, energy consumption, message routing and ap-
plication interactions. Node capabilities such as persistent
storage that involve only simple modeling are configured
through parametrization (e.g., peer scanning interval and
storage capacity). More complex capabilities such as
movement, routing and network interfaces are configured
through specialized modules that implement a particular
behavior for the capability (e.g., different mobility models
or interference-limited radio interfaces).

Modules in each node have access to the node’s basic
simulation parameters and state, including the position,
current movement path, and current neighbors. This al-
lows implementation of, e.g., geographic routing and
other context-specific algorithms. In addition, modules
can make any of their parameters available for other
modules in the same node through an intermodule com-
munication bus. This way, for example, a movement
module can change its behavior depending on the router
module’s state or a router module can adjust the radio
parameters based on the node inter-contact times.

The focus of the simulator is on modeling the be-
havior of store-carry-forward networking, and hence we
deliberately refrain from detailed modeling of the lower
layer mechanisms such as media access control (MAC)
algorithms or retransmissions due to corrupted link layer
frames. Instead, the radio link is abstracted to a communi-
cation range and bit-rate. The bit-rate is dependent on the
interface model and can be time-varying. Furthermore,
the context awareness and dynamic link configuration
mechanisms can be used to adjust both range and bit-
rate depending on the surroundings, the distance between
peers and the number of (active) nodes nearby as sug-
gested, e.g., in [14].

The node energy consumption model is based on an
energy budget approach. Each node is given an energy
budget which is spent by energy consuming activities such
as transmission or scanning and can be filled by charging
in certain locations (e.g., at home). An inquiry mechanism
allows other modules to obtain energy level readings and
adjust their actions (e.g., scanning frequency as in [34],
forwarding activity, or transmission power) accordingly.

Node movement capabilities are explained below in
section III-B and the message routing capabilities in
section III-C.

B. Mobility Modeling

Node movement capabilities are implemented through
mobility models. Mobility models define the algorithms
and rules that generate the node movement paths. Three
types of synthetic movement models are included: 1) ran-
dom movement, 2) map-constrained random movement,
and 3) human behavior based movement.

The simulator includes a framework for creating move-
ment models as well as interfaces for loading external
movement data (see III-F). Implementations of popular
Random Walk (RW) and Random Waypoint (RWP) are
included (see Figure 2, top right). While these models
are popular due to their simplicity, they have various
known shortcomings [4]. It is also possible to completely
omit mobility modeling and construct topologies based
on static nodes (see Figure 2, top left).

To better model real-world mobility, map-based mo-
bility constrains node movement to predefined paths and
routes derived from real map data. Further realism is
added by the Working Day Movement (WDM) model [9]
that attempts to model typical human movement patters
during working weeks.

Fig. 2. Various mobility models in the ONE.

1) Map-Based Mobility: Map-based movement models
constrain the node movement to paths defined in map data
(see Figure 2, bottom left). The ONE simulator release
includes three map-based movement models: 1) Random
Map-Based Movement (MBM), 2) Shortest Path Map-
Based Movement (SPMBM), and 3) Routed Map-Based
Movement (RMBM). Furthermore, the release contains
map data of the Helsinki downtown area (roads and
pedestrian walkways) that the map-based movement mod-
els can use. However, the movement models understand
arbitrary map data defined in (a subset of) Well Known
Text (WKT). Such data is typically converted from real-
world map data or created manually using Geographic
Information System (GIS) programs such as OpenJUMP.7

In the simplest map-based model, MBM, nodes move
randomly but always follow the paths defined by the map
data. This results in a random walk of the network defined
by the map data and thus may not be a very accurate

7http://openjump.org
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approximation of real human mobility. A more realistic
model is the SPMBM where, instead of a completely
random walk, the nodes choose a random point on the
map and then follow the shortest route to that point
from their current location. The points may be chosen
completely randomly or from a list of Points of Interest
(POI). These POIs may be chosen to match popular
real-world destinations such as tourist attractions, shops
or restaurants. Finally, nodes may have pre-determined
routes that they follow, resulting in the RMBM model.
Such routes may be constructed to match, e.g., bus, tram
or train routes.

2) Working Day Movement Model (WDM): While
high-level movement models such as RWP, MBM, and
SPMBM are simple to understand and efficient to use in
simulations they do not generate inter-contact time and
contact time distributions that match real-world traces,
especially when the number of nodes in the simulation
is small. In order to increase the reality of (human) node
mobility, we have developed the Working Day Movement
(WDM) model [9] for ONE.

The WDM model brings more reality to the node
movement by modeling three major activities typically
performed by humans during a working week: 1) sleeping
at home, 2) working at the office, and 3) going out
with friends in the evening. These three activities are
divided into corresponding sub-models between which the
simulated nodes transition depending on the node type
and the time of the day.

Beyond the activities themselves, the WDM model
includes three different transport models. The nodes can
move alone or in groups by walking, driving or riding a
bus. The ability to move alone or in groups at different
speeds increases the heterogeneity of movement which
has impact on the performance of, e.g., routing protocols.

Finally, WDM introduces communities and social re-
lationships which are not captured by simpler models
such as RWP. The communities are composed from nodes
which work in the same office, spend time in the same
evening activity spots or live together.

We have shown that the inter-contact time and contact
time distributions generated by the WDM model follow
closely the ones found in the traces from real-world
measurements [9].

3) Composite Movement Models: Since movement
models can be configured on per node basis, it is possible
to combine multiple different types of mobility models in
one simulation. This allows composite movement models
to be created where, for example, some nodes follow map
based movement along roads and others who walk around
randomly within, e.g., a shopping center or a park.

Figure 2 (bottom right) shows a composite movement
model made up of three clusters of nodes with a random-
walk movement model constrained to a specific area and
one group of nodes following a map based movement
model between the clusters. This results in a message
ferry scenario where nodes within separate clusters can
communicate with each other through the message ferries.

C. Routing

The message routing capability is implemented simi-
larly to the movement capability: the simulator includes
a framework for defining the algorithms and rules used
in routing and comes with ready implementations of well
known DTN routing protocols.

There are six included routing protocols: 1) Direct
Delivery (DD), 2) First Contact (FC), 3) Spray-and-
Wait, 4) PRoPHET, 5) MaxProp, and 6) Epidemic. This
selection covers the most important classes of DTN
routing protocols: single-copy, n-copy and unlimited-copy
protocols, as well as estimation based protocols.

Direct Delivery and First Contact are single-copy rout-
ing protocols where only one copy of each message
exists in the network. In Direct Delivery, the node carries
messages until it meets their final destination. In First
Contact routing the nodes forward messages to the first
node they encounter, which results in a “random walk”
search for the destination node.

Spray-and-Wait [31] is an n-copy routing protocol
that limits the number of message copies created to a
configurable maximum and distributes (“sprays”) these
copies to contacts until the number of copies is exhausted.
Both variants of Spray-and-Wait suggested by its authors
are included: in normal mode, a node gives one copy to a
contact, in binary mode half of the copies are forwarded.
Once only a single copy is left, it is forwarded only to
the final recipient.

Three routing protocols perform variants of flooding.
Epidemic [33] replicates messages to all encountered
peers, while PRoPHET [21] tries to estimate which node
has the highest “likelihood” of being able to deliver a
message to the final destination based on node encounter
history. MaxProp [3] floods the messages but explicitly
clears them once a copy gets delivered to the destination.
In addition, MaxProp sends messages to other hosts in
specific order that takes into account message hop counts
and message delivery probabilities based on previous
encounters.

Routing capabilities of simulators such as ns-2 or
dtnsim2 can also be used in conjunction with ONE.
Report modules can export mobility and connectivity data
to other programs (modules for ns-2 and dtnsim2 are
included) and external scripts are then used to import the
results of routing simulation back into ONE (script for
dtnsim2 is included).

If the external routing simulation was run with a contact
schedule created by the ONE simulator, as described in
section III-G, the whole process from node movement to
external simulator’s routing decisions can be visualized
and inspected using ONE.

Adding Routing Protocols: To evaluate new routing
protocols in the ONE simulator, a new routing module
needs to be created for the respective protocol. All routing
modules inherit basic functionality, such as simple buffer
management and callbacks for various message-related
events, from the MessageRouter module. These callbacks
are invoked by the simulator engine for all kinds of events,

96 JOURNAL OF COMMUNICATIONS, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER



e.g., when a new message is created or a message is sent
to the node. A router module needs to handle these events
and also define actions to be carried out at every time step
and the behavior when a new node comes into or leaves
the node’s radio range.

The basic functionality for all these events is common
for the all currently implemented routing modules with
internal routing logic. It is simply re-used for new routing
protocols by extending the ActiveRouter module. This
module provides functions for checking if any of the
currently buffered messages are destined to a neighboring
node, offering sets of messages to neighboring nodes,
and dealing with successfully transferred and aborted
message transfers, and it implements FIFO and random-
ordering buffer management. For Epidemic, DD and FC
routers no functionality beyond this is needed, making
their implementations straightforward.

The following pseudocode listing shows how whole
Epidemic router’s logic is implemented in the callback
that is called on every simulation update round.

update()
if (isTransferring() OR

nrofMessages = 0 OR
nrofConnections = 0)

return

startedTransfer := exchangeDeliverableMessages()
if (startedTransfer)

return

tryAllMessagesToAllConnections()
end

Since the implementation of Epidemic router transfers
only a single message at a time, the update method does
not do anything if there is an ongoing transfer. Also, if
the routing module’s message buffer is empty, or the node
does not have any connections to other nodes, nothing
needs to be done. Next, the routing module checks if any
of the messages it has is for one of the nodes it is currently
connected to, and if so, it starts to transfer such a message
and returns from the method. Finally, all other messages
are offered on all connections and a transfer is started if
any of the connected nodes accept any of the messages.

More advanced routing modules may need to track
node contacts and therefore implement the node discovery
callback; e.g., PRoPHET and MaxProp perform their
own book-keeping on past encounters this way. Below
is shown the logic of the PRoPHET routing module’s
connection tracking callback.

changedConnection(Connection c)
if (NOT c.isUp())

return

peer := con.getOtherHost()
oldValue := predictions.get(peer)
predictions.put(peer, oldValue + (1 - oldValue) * P_INIT)

pForPeer := predictions.get(peer)
foreach (node, p in peer.getRouter().getPredictions())

pOld := predictions.get(node)
pNew := pOld + (1 - pOld) * pForPeer * p * BETA
predictions.put(node, pNew)

end
end

PRoPHET router updates the delivery predictions every

time a new connection comes up, so disconnection events
are ignored. The delivery prediction for the contacted peer
is updated as defined in the original PRoPHET paper [21].
Then, also transitive predictions are updated by asking
peer’s delivery predictions from its routing module, and
iterating through them while updating the values with
the transitive prediction formula. The update method of
PRoPHET is similar to Epidemic router module’s update,
but instead of trying all messages to all connections, the
messages are ordered by the delivery predictions and only
messages for which the peer has a higher probability of
delivery are forwarded. The message sending order is
routing module specific and hence implemented in the
PRoPHET module, but the routing framework provides
methods for trying a set of messages for a set of connec-
tions, which also the PRoPHET module utilizes.

State may also be attached to messages using a tagging
mechanism and thereby routing information may be for-
warded hop-by-hop across the network. For example, the
Spray-and-Wait router uses this mechanism to include a
copy count in every message. A message can be tagged
with multiple independent values, or even data structures,
that allow arbitrary routing, or any other, data to be
transferred with them.

When a simulation is run with the new routing module,
the generic report modules gather the same performance
data of the routing process as they do with the existing
modules, so that comparing the performance of the new
module to the existing ones is straightforward. In addition,
it is possible to create routing module specific report
modules that, e.g., read and interpret the data stored
in messages with the tagging mechanism or query for
parameters directly from the routing modules.

D. Application Modeling

In addition to mobility and routing modeling, ONE
includes support for modeling application layer interac-
tions. Two approaches are supported: high-level model-
ing of unicast and request-response interactions through
message generators, and more detailed modeling through
an application layer framework.

The message generator can be used to create traffic by
drawing the source, destination, size and interval from a
random distribution, or by reading them from an external
message event file. The message event files can be created
with the included tools or created based on real-world
traces. Simple, interactive request-response interactions
can be modeled by tagging the created messages to expect
a response. When such a message is received, the receiver
will generate a response message with a given size to the
originator.

While the message generator based application model-
ing enables modeling of simple unidirectional or request-
response interactions, more complex interactions can be
modeled by building an application module using the
application layer framework. The framework allows ar-
bitrary application layer logic to be implemented and
attached to the simulated nodes.
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The conventional sockets API is built around a send-
receive model with well-known source and destination
addresses. However, DTN applications often require more
complex interactions between the application layer and
the bundle transport layer. For example, application gate-
way nodes may wish to pick up all messages of a partic-
ular application and forward them to the classic Internet
(e.g., an email gateway [12]). Other applications may
wish to terminate the spread of a message based on some
application layer condition (e.g., search termination [24]).
In general, application layer logic may wish to receive,
inspect, modify or terminate any message regardless of
whether the host is the destination of the message.

The application layer framework allows the application
modules to: 1) receive messages (all messages or only
messages with a specific application identifier), 2) modify
messages by altering, appending or removing any values
or properties, 3) signal to the router that the message
should be dropped, 4) generate messages, and 5) execute
arbitrary logic and actions every time step. Any number
of application instances can be attached to a single host
in the simulation.

The messages inside ONE do not carry any applica-
tion payloads. Instead, generic name-value pairs, called
properties, can be attached to the messages. Applications
can model different types of messages by adding specific
properties, e.g., a ping message might have a property
named “type” with a value “ping” and the response
message may have the type “pong”. This allows arbitrary
protocol interactions to be implemented.

The application layer framework also includes support
for application specific report modules. The application
instances can raise application events with specific types
and parameters. Report modules can listen to these events
and create application-specific reports based on them.

Adding Application Protocols: To simulate a new ap-
plication with complex interactions, a new application
module and a report module must be constructed. The
application module can then be attached to any number
of hosts in the simulation scenario.

Every new application module inherits basic function-
ality from the base Application module. This includes
a callback for handling incoming messages, an update
callback for every simulation time step, and the ability
to raise application events that are communicated to
all the registered report modules. The new application
implements the callbacks to provide the custom applica-
tion behavior, and sends application events to the report
module.

To create a simple ping application, the application
module would implement the update callback to generate
ping messages at regular intervals. These messages are
handed to the router and forwarded in the simulation
similarly to all the other messages. The handle callback
is implemented to receive the ping messages and generate
a pong message in response. Furthermore, the application
module will generate events every time ping or pong
messages are created or received. The report module can

then calculate delivery probabilities based on these events.
The following listings demonstrate an implementation

of a simple ping application module.
handle(Message msg, DTNHost host)
if (msg.to = host AND msg.property("type") = "ping")
pongMessage.to := msg.from
pongMessage.property("type") := "pong"
host.sendMessage(pongMessage)
raiseEvent("RECEIVED_PING")

else if (msg.to = host AND msg.property("type") = "pong")
raiseEvent("RECEIVED_PONG")

end if
end

update(DTNHost host)
if (getSimulationTime() > nextSendTime)
pongMessage.to := getRandomHost()
pongMessage.property("type") := "ping"
host.sendMessage(pongMessage)
nextSendTime = getSimulationTime() + randomInterval()
raiseEvent("SENT_PING")

end if
end

E. Link Layer Modeling

The focus of ONE is in modeling the network layer
store-carry-forward interactions and the link layer is ab-
stracted to bit-rate and range. However, the simulator sup-
ports generic interfaces which can be used to model nodes
with multiple radios (e.g., Bluetooth, WiFi) or to create
links with time-variant characteristics (e.g., interference
limited links).

Each node within the simulator can be configured with
an arbitrary number of named interfaces, with each inter-
face having a different type and/or different parameters.
Nodes configured with the same interface can create
connections between each other. This allows nodes to be
configured with short range but high bit-rate interfaces
(e.g., Bluetooth) and with longer range but lower bit-
rate interfaces (e.g., cellular). Furthermore, it allows a
subset of nodes to create a backbone network by using a
long range interface for communication within the subset,
while using a short range interface to communicate with
other nodes.

Beyond a simple constant bit-rate interface, ONE in-
cludes an interference-limited interface. This interface
has time-variable bit-rate that is calculated based on the
number of other transmitting nodes within the vicinity of
the node. This leads to a more realistic radio model where
the interference from multiple simultaneously transmit-
ting nodes decreases the bit-rates for nearby nodes. The
interference modeling could be extended to include, for
example, location dependent variable bit-rate to model the
effects of fading due to buildings or other factors.

F. External Interfaces

An important feature of ONE is its ability to interact
with other programs and data sources. The simulator
has interfaces, e.g., for node movement, connectivity and
message routing traces.

It is possible to generate node movement using an
external program, such as TRANSIMS or BonnMotion8,

8www.cs.uni-bonn.de/IV/BonnMotion
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or from a real-world GPS trace such as the ones available
from CRAWDAD. Such a trace file needs to be converted
to a suitable form for the External Movement module.
The distribution package contains a simple script that can
convert TRANSIMS output to this format.

Instead of node locations, many real-world traces con-
tain only information about connections between nodes.
This kind of traces can also be imported to ONE and
used for routing simulations. For this purpose we have
created conversion scripts, e.g., for the DieselNet traces.
We have also generated connectivity traces from the real-
time location data of trams in the Helsinki area.9

Like node movement and connection traces, also mes-
sage traces can be imported to ONE. These may include
message creation and deletion events, and starting and
cancellation of message transfers. This functionality is
especially useful if ONE is used for analyzing traces
generated by other DTN routing simulators or even real-
world traces.

In addition to reading output of other programs, ONE
can also generate input traces for them. It has report
modules whose output is compatible with dtnsim and
dtnsim2 connectivity trace input. In a similar fashion, it
is also possible to create mobility traces using a mobility
report module. If properly formatted, these traces are
usable in, e.g., ns-2. This way ONE can function as a
general purpose mobility simulator.

While report files are an easy way to interact with other
programs, a report module can also communicate in real
time with them. This approach was used with real world
DTN integration, described in section IV.

G. Reporting and Visualization

ONE is able to visualize results of the simulation in two
ways: via an interactive Graphical User Interface (GUI)
and by generating images from the information gathered
during the simulation.

Figure 3 shows the GUI displaying the simulation
in real-time. Node locations, current paths, connections
between nodes, number of messages carried by a node,
etc. are all visualized in the main window. If a map-
based movement model is used, also all the map paths
are shown. An additional background image (e.g., a
raster map or a satellite image of the simulation area) is
shown below the map paths if available. The view allows
zooming and interactive adjusting of the simulation speed.

The GUI produces a filtered log of simulation events,
such as contacts and message transfers. Filters are used to
show only interesting events, or to pause the simulation
when a particular type of event occurs. Selecting a node
from a list or a log message opens it for closer inspection.
This allows retrieving further information about the mes-
sages a node is carrying and about the routing module’s
state.

While the GUI is good for getting an intuitive over-
all picture of what is happening during the simulation,

9http://netlab.hut.fi/tutkimus/dtn/theone/trace 1week 30m.txt.zip

Fig. 3. Screenshot of the ONE simulator’s GUI

more rigorous ways to visualize node relations, message
paths and performance summaries are provided by post
processed report files.

ONE includes report modules that can create
Graphviz10 compatible graph files. Figure 4 shows how
these graphs visualize node connections and the paths that
the messages have traveled in the network. Likewise, for
visualizing how messages are spread in the network as a
function of time, a message location report module can
provide this data and an animator script will turn the data
into a GIF animation.
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Fig. 4. Example message paths from node p1 to p2

The simulator includes a message statistics report mod-
ule that gathers statistics of overall performance (number
of created messages, message delivery ratio, how long
messages stay in node buffers, etc.). A post processing
script that plots the report module’s output is also in-
cluded.

H. Creating Simulation Scenarios
Simulation scenarios are built by defining the simulated

nodes and their capabilities. This includes defining the
basic parameters such as storage capacity, transmit range
and bit-rates, as well as selecting and parameterizing
the specific movement and routing models to use. Some
simulation settings such as simulation duration and time
granularity also need to be defined.

The simulator is configured using simple text-based
configuration files that contain the simulation, user in-
terface, event generation, and reporting parameters. All

10http:// www.graphviz.org/
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modules have their high-level behavior defined by their
Java code implementation, but the details of their behavior
is adjustable using the configuration subsystem. Many
of the simulation parameters are configurable separately
for each node group but groups can also share a set
of parameters and only alter the parameters that are
specific for the group. The configuration system also
allows defining of an array of values for each parameter
hence enabling easy sensitivity analysis: in batch runs,
a different value is chosen for each run so that large
numbers of permutations can be explored.

If configuring existing implementations of different
modules is insufficient for creating a specific scenario,
ONE can also be extended with new code. We have
introduced several hooks for extensions without a need
for any changes in other parts of the simulator code. This
allows sharing new modules as plugins and using them
with different versions without needing to patch rest of
the simulator. Routing modules, movement models, event
generators and report modules are all dynamically loaded
when the simulator is started. Hence, when creating a
new module, user only needs to create and compile a
new class, define its name in the configuration file, and
the simulator automatically loads it when the scenario
is started. All these modules can also have any number
of settings defined in the configuration files and these
settings are accessible to the module when it is loaded.

IV. REAL-WORLD DTN INTEGRATION

The ONE simulator has been designed to be used in
conjunction with DTN211 in order to provide a realistic
environment for testing and evaluating real-world DTN
applications. The DTN2 bundle router (dtnd) is the refer-
ence implementation of the DTNRG bundle protocol [28].
DTN2 implements convergence layers such as TCP, UDP
and Bluetooth, routing algorithms such as epidemic and
PRoPHET, and neighborhood discovery mechanisms such
as Bonjour. Applications can use the DTN2 API to take
advantage of the bundle delivery services provided by the
bundle router.

There are two interaction models between ONE and
the DTN2 reference implementation: 1) Controlling dtnds
through their console interface based upon connectivity
data exported by the ONE simulator, and 2) real-time
integration using the simulator to emulate all or parts
of a DTN. In the first approach, ONE is only used for
providing realistic, mobility model based connectivity
characteristics to a network of DTN2 nodes. In the
second approach, ONE is used to emulate all aspects of
a DTN network including mobility, routing, radio link
characteristics and node storage constraints while DTN2
is used mainly for providing the application interface.

A. DTN Controller

Traces generated by ONE’s connectivity report mod-
ules are suitable to control the link status between

11http://www.dtnrg.org/wiki/Code

dtnd instances. This requires an external DTN Controller
that reads the contact trace files produced by the ONE
simulator and controls the dtnds through their console
interfaces. The connectivity traces report each event of
a link between two nodes going up or down and the
time instance when it occurred. The controller reads these
events sequentially and instructs the corresponding dtnd
instances to open or close the specified link. Real-time
operation is achieved by scheduling the control commands
according to the trace file’s time-stamps.

This approach allows the network of bundle routers
to run independently of the ONE simulator instance.
This is practical for creating long lived, robust testbeds.
We have experimented with a DTN Controller (not part
of the ONE release) to create a testbed network that
simulates buses running between Ruoholahti in downtown
Helsinki and the Helsinki University of Technology in
Espoo roughly eight kilometers away. This was done by
generating a simulation scenario for ONE which modeled
buses traveling between the two locations over a 24
hour period and then running a simulation to produce
the connectivity trace. Our DTN2 controller uses the
trace to open and close links between dtnd instances
resulting in a connectivity pattern that resembles having
real bundle routers in the buses. The testbed is used for
experimenting with various applications, such as a DTN
camera application that takes and returns pictures upon
receiving a corresponding request.

B. DTN Emulation Support

In order to take advantage of all of the ONE simulator’s
features when creating an emulated environment for real
DTN applications, real-time integration with the DTN2
reference implementation is required. For this purpose
ONE implements the External Convergence Layer Inter-
face of DTN2. This allows the simulator to connect to
dtnd instances as an external convergence layer adapter,
appearing as a link in the DTN2 link table. Any bundles
passed onto this link by DTN2 will appear as new
messages in ONE. The simulator also controls dtnds via
the console interface to automatically set up the routing
to pass bundles to and from the link.

It is possible to connect any number of DTN2 instances
at the same time. Each instance is configured to match
a specific node inside the simulation with a mapping
from the Endpoint Identifiers (EIDs) used in the bundle
protocol to the node IDs used by the ONE simulator.
The EID mapping uses regular expressions allowing one
node to have any number of matching EIDs as well as
allowing one EID to match any number of nodes. When
a bundle arrives from dtnd, ONE matches the destination
EID against the configured EID to node ID mappings and
generates a bundle message to each matching destination.
After this the bundle messages are treated identically to
all other messages inside the simulation. Once a bundle
message reaches its destination inside the simulation it is
delivered to the dtnd instance connected to the destination
node.
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The DTN Emulation Support has been used to provide
a realistic scenario for demonstrating an implementation
of mail over DTN [12]. A simple scenario for the ONE
simulator was constructed that mimicked the layout of
an exhibition hall with a number of DTN-capable nodes
moving around the area. Multiple devices, such as Internet
tablets, running dtnd and DTN email applications were
connected to the simulator. As messages were sent from
these devices they appeared in the ONE simulation,
traveled around until they found their destination, and
then appeared in the real device they were destined to.
ONE was run in the GUI mode showing in real-time the
messages as they traveled between the nodes.

V. SIMULATOR USAGE

ONE has been used to evaluate a number of mobility
models, routing protocols, applications and other DTN
mechanisms. We do not show new simulation results
here, but refer to a number of simulations and results
from previous studies. New results for the simulator
performance are presented in Section V-B.

A. Use cases

ONE can be used to study the basic store-carry-forward
behavior by recording message delivery statistics such
as latencies and delivery probabilities and their distri-
butions in various scenarios. Such simulations help to
build understanding of the performance of a complete
DTN message delivery service under different routing
algorithms, mobility models and node characteristics.

Beyond the basic analysis of message delivery in dif-
ferent scenarios, more detailed studies of mobility models,
routing, applications, and other DTN mechanisms can be
done by extending various aspects of the simulator and
statistics reporting.

Basic Store-Carry-Forward Behavior: A previous tech-
nical report [17] describes the basic feature set of ONE.
The report presents simulations based on a scenario of
interpersonal communication between mobile users in
Helsinki downtown area using modern mobile devices.
The simulation scenarios use existing modules and no
custom extensions to the simulator are created.

The simulations include pedestrians, cars, trams and
stationary throw-boxes. A sparse scenario with 100 nodes
and a more dense scenario with 500 nodes is simulated,
both with six or less throw-boxes. Both personal area
networking (PAN) and wireless local area networking
(WLAN) with communication ranges of 10 and 30 meters
respectively are studied. The mobile nodes have buffer
sizes of 5 and 20 MB while the stationary throw-boxes
have buffer sizes of 50 and 200 MB.

Each node generates one message per hour on average.
The message sizes are randomly distributed between 100
KB and 2 MB. Both one-way and simple request-response
interactions are simulated.

Four of the movement models described in Section
III-B are studied: RWP, MBM, SPMBM, and RMBM.
The map based models use a map of downtown Helsinki

with an approximate size of 4.5 by 3.4 km. RWP move-
ment uses the same area but is not constrained by the
map. Epidemic, Direct-Delivery, PRoPHET, and multiple
variations of Spray-and-Wait algorithms are simulated.

The simulations are run over a number of combinations
of the above settings. The results show relative distribu-
tions of inter-contact times and contact durations. This
revealed, among other things, that the addition of higher
velocity nodes such as cars and trams and motionless
throw-boxes did not alter the contact duration distribution
significantly.

The results also show message delivery probabilities
and latencies for the various routing algorithms and
movement models. These reveal that delivery latencies
are in the order of half an hour to couple of hours, while
delivery probabilities range from less than 5% to over
35% depending on the configuration. Multiple parameters,
such as the mix of different node types, message size and
message lifetime, have observable impact on the message
delivery.

Further work by the authors [19] extend the above
simulations by introducing a new energy model to the
simulator along with explicit intervals for scanning for
neighbors. The simulations are also run with a larger map
(8.3 by 7.3 km) and use WDM mobility in addition to the
movement models used in the above report. The energy
model assumes each node has a battery with a limited
energy budget. Energy is subtracted from the budged
every time a node transmits or scans the area for other
nodes. Nodes that have exhausted their budged can no
longer communicate with other nodes.

The results of the simulations show that as the realism
of the mobility increases, the contact durations increase
as well. This is explained by the fact that in reality nodes
tend to stay close to each other for extended periods
of time when, e.g., traveling on a bus, working in an
office or spending time in a restaurant. The same effect
accounts for more realistic models being less susceptible
to adverse effects due to increasing scanning intervals.
Another observation is that in more realistic mobility
models some nodes tend to be more central than others
with more social interactions. This causes the batteries of
those nodes to drain more quickly than other nodes.

Mobility Modeling: ONE has been used both for mod-
eling increasingly realistic movement of mobile nodes and
as a generator of mobility traces for other simulators.

A study by F. Ekman et al. [9] introduces the WDM
(see Section III-B2 for explanation of the model) with
a set of ONE simulations that analyzes the impact of
lowering the abstraction level of the mobility model,
bringing in more realism to the node movement.

The simulations divide the Helsinki area into four
districts, each with a set number of homes, offices and
meeting spots. Three of these districts model primarily
residential areas while one models the downtown area.
There are bus lines both within and between the districts.
In total 1000 nodes, 200 offices and 24 meeting spots
within 7 by 8.5 km area are simulated. 50% of the nodes
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are able to travel by car, while the rest will travel by foot
or by bus. In addition, 10 nodes following the SPMBM
movement were used as background traffic.

The simulations are focused purely on the movement
of the nodes and the resulting inter-contact times, contact
durations, and contacts per hour. No routing or message
passing is considered. Comparisons are made against an
RWP model and real world traces.

The results of the simulations show that the new model
produces contact characteristics that are similar to those
observed in real-world traces, while the RWP model used
as a comparison could not produce such characteristics.
This implies that a synthetic mobility model with a low
abstraction level can create more realistic mobility than
models with higher abstraction levels. By changing the
map from Helsinki map to a Manhattan-like grid, the
results show that the underlying map had no significant
effect on the contact patterns.

Contact traces generated by the synthetic mobility
models in ONE have also been used by M. Pitkänen
and J. Ott [26] with another simulator to study caching
in opportunistic networks. The mobility model used was
SPMBM with 100 nodes roaming on the downtown
Helsinki map for 30 days.

Routing: J. Karvo and J. Ott use ONE simulations in
conjunction with theoretical considerations to study the
impact of timescales in the parametrization of estimation
based routing algorithms [15]. The study implements two
modified versions of existing ONE routing protocols,
PRoPHET and MaxPROP, which allows parametrization
by predefined values or by local estimation.

The simulations use the WDM scenario described
above, but scale down the number of nodes to 544. The
nodes generate messages with sizes uniformly distributed
between 1 KB and 1 MB and buffer sizes of 100 MB.
Simulations are run with different offered loads, ranging
from each node generating one message per day to eight
messages per day. The simulation time is one day (plus
warmup and cool-down periods), which captures one full
cycle of the daily WDM movement.

The simulation results show that for routing algorithms
that update and maintain historical delivery probability es-
timations, proper parametrization based on the timescales
inherent in the underlying mobility and connectivity is
important.

A. Keränen and J. Ott studied routing in a network
composed from commercial aircraft traveling between
international airports [18]. The simulations use data for
up to 248,469 flights between 3,879 airports. Since the
airline schedules are well known in advance a shortest-
path algorithm can be used to route messages within
the network. The results show that 90% of messages
sent from the Helsinki airport towards other international
airports will reach their destination within 24 hours,
while practically all messages will reach their destination
within 40 hours. Furthermore, the study also considers
the delivery of messages between the airport and the city
center using the WDM and concludes that over 99% of

messages could be delivered from the city to the airport,
while some 67% of messages could be delivered from the
airport to the city.

Application Modeling: As explained in Section III-D,
applications in DTN networks may require more com-
plex interactions than the simple send/receive interactions
modeled by the basic message generators in the simulator.
One example of such an application is a content search
service, which has been studied through ONE simula-
tions [24].

The simulator is modified by adding application layer
logic for evaluating search queries and match them against
content items stored in the node. Content items are then
distributed to the nodes according to the Zipf distribution.
The nodes generate queries which are spread in the
network and responses are generated by nodes that have
content items matching the query in their content stores.
Multiple criteria for terminating the spread of the search
query are simulated.

The simulations include four distinct scenarios based
on a static disc topology with 92 nodes, RWP with 125
nodes, SPMBM with 126 nodes on a Helsinki map, and
WDM with 544 nodes on a Helsinki map.

The simulations show that regardless of the search ter-
mination mechanism or scenario employed, only popular
content items a few hops away from the query originator
are likely to be found. Furthermore, the routing algorithm
has a significant role in determining the spread of the
query message.

Other DTN Mechanisms: Fragmentation of DTN mes-
sages has been studied using ONE simulations [25]. The
study includes custom modifications to the ONE message
delivery mechanism which allow multiple fragmentation
methods such as proactive fragmentation, reactive frag-
mentation along arbitrary boundaries and reactive frag-
mentation along predefined boundaries.

The simulations use SPMBM on a Helsinki map and
RWP movement in 1 by 1 km area as a comparison. 80
mobile nodes, 40 cars and 6 trams are simulated. The
nodes have 2 Mbit/s links and 100 MB buffers. Nodes
send messages of equal size (500 KB to 5 MB) every 30
seconds on average. The interval is adjusted so that the
offered load remains the same regardless of the message
size. All six routing protocols described in Section III-C
are used.

The results show that reactive fragmentation consis-
tently increases delivery ratio for large messages while
the delay stays the same. Fragmentation along predefined
boundaries performs slightly better than fragmentation
along arbitrary boundaries; most likely due to better
duplicate detection and the absence of trivially small
fragments. Proactive fragmentation performs worse than
no fragmentation at all in all scenarios.

B. Performance Observations

The ONE simulator offers a framework for evaluating
DTN protocols and, as such, its performance primarily de-
pends on the evaluated protocols and their computational
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and memory requirements. Naturally, the performance
depends on the size of the simulation area, the number of
nodes, their communication range, the mobility model,
and the scanning intervals which together govern the
frequency of connection events.

Simulations usually run much faster than real-time,
but complex simulation setups and large state space may
cause significant slowdown. The simulator continuously
reports the ratio of simulation time per second of real-
time elapsed, which gives some performance indication.

In our previous work [19] we used three rack-mounted
Linux PCs with multi-core Intel x86 CPUs (2.9–3.7 GHz)
and 8–128 GB of RAM (but most simulations also run on
commodity PCs or laptops). For a 1029 node scenario,
we observed mean simulation speeds ranging from 40:1
to well beyond 1000:1 depending on the PC, the mobility
model, and the routing protocols; only MaxProp was
notably slower (as low as 10:1 and less). Increasing the
scanning intervals impacts the number of encounters;
using 60 s reduced the simulation time by up to one fourth
in HCS and WDM. Finally, increasing the radio range
leads to more encounters and thus generates more events
to process, slowing down simulations depending on the
scenario (we observed a factor of 5–10 when moving from
10 m to 100 m radio range).

The routing protocols influence performance by the
number of message copies they create and thus FC,
DD, and SnW run faster than Epidemic and PRoPHET.
Sophisticated routing protocols, such as MaxProp, that
require a lot of state information per node and connec-
tion and perform complex processing, may slow down
simulations with a large number of nodes and frequent
encounters, also requiring a lot of RAM for the Java
Virtual Machine (JVM).

The simulation speed also depends on the simulation
time resolution, i.e., the intervals at which the simulation
time is advanced. This interval is adjustable and doubling
the interval may often make the simulation run almost
two times faster. We ran the above simulations with a time
resolution of 1.0 s, noting that earlier experiments yielded
similar simulation results for 1.0 s and 0.1 s [17]. For
scenarios with larger radio ranges and/or slowly moving
nodes, even coarser granularity may be sufficient.

To further test how the number of simulated hosts
effects the simulation speed, we ran a set of simula-
tions with SPMBM movement model using 10 × 8km
Helsinki downtown area map, First Contact router, and
the population divided evenly into two groups: pedestrians
and cars. Simulation time resolution was 0.1 seconds
and message generation interval 20–30 minutes (uniform
random distribution). We used a regular desktop PC with
AMD x86 CPU running at 2.81 GHz, 4 GB of RAM, and
a 32-bit Microsoft Windows operating system.

The simulation time was set to only 3 hours but we
observed that longer simulation times resulted in similar
results with the FC router. The total number of nodes was
varied from 100 to 3000 and the effect of node count to
simulation speed was measured to be roughly logarithmic,

as shown in Figure 5. The simulation with 100 nodes run
at almost 500 1

s , while a 500 node simulation had average
speed of 70 1

s . Increasing the node count to 1000 and 1500
decreased the speed respectively to 32 and 20 1

s . The 3000
node simulation was still running at approximately 6 1

s .
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Fig. 5. Simulation speed with different number of nodes

Most of the computational complexity of these simu-
lations came from finding out if two nodes are within
radio communication range from each other and moving
the nodes in the simulation area. For example, in the
500 node simulation, according to the NetBeans 6.5 Java
IDE’s profiler12, about 40% of the CPU cycles were spent
for checking the connectivity, 15% for updating routing
modules and 25% for movement simulation (mostly for
calculating the shortest paths). Also the JVM version
may have significant impact on the simulation speed: for
example, the simulation with 500 nodes run 14% faster
with Sun JVM version 1.6.0 13-b03 compared to version
1.6.0 01-b06.

The upper limit of reasonably simulated node count, at
least with currently available commodity hardware, lies
somewhere below half a million nodes. A simulation on
our test desktop PC with 500,000 nodes, using Random
Waypoint movement in 20 × 20km area, First Contact
router and without connectivity checking or messages,
was able to process around one update round every
second, resulting at speed of 1 1

s with 1.0 second time
resolution. With connectivity checking enabled, same
speed is reached with around 200,000 nodes. Simulations
of this size require over a gigabyte of JVM heap, and
up to 1.5 GB of RAM in total, so 32-bit operating
system’s memory addressing capabilities, especially with
Windows13, start to limit simulation scenario sizes. We
also tested a 1 million node simulation on a 64-bit Linux
platform with 3.7 GHz Intel x86 CPU and 16 GB RAM.
This required over 3 GB of RAM for the JVM and
resulted in simulation speeds just below 0.1 1

s .
If the node count is kept constant and we change

only the used routing protocol, the simulation speed will
give an indication on the relative computational load the
different routing modules cause. We tested this with 200
nodes and the SPMBM movement model. The simulation
time was increased to 18 hours since, especially for

12http://www.netbeans.org/features/java/profiler.html
13http://msdn.microsoft.com/en-us/library/aa366778.aspx
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some routing modules, the amount of required computing
increases when more messages are created during the
simulation. The results of this test are shown in Figure 6.
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Fig. 6. Simulation speed with different routing protocols

The SnW (binary mode with 6 copies), FC and
DD protocols are all approximately equally efficient,
while PRoPHET and Epidemic make the simulation take
roughly two times longer and MaxProp up to five times
longer. PRoPHET and Epidemic simulations become
slower over time since they generate a large number of
message replicates. PRoPHET requires more advanced
operations for to the probability calculations and message
sorting, but it compensates this by a smaller amount
(some 25% in this test) of started transfers and created
message replicas. MaxProp is clearly the heaviest of the
routing protocols and its speed also degrades most over
time. MaxProp’s shortest path calculation for messages
took some 20% of the CPU cycles but even more (over
50%) was spent on exchanging the delivery predictions
of different nodes. The amount of state MaxProp keeps,
especially the delivery prediction mappings, grow over
time when more nodes meet each other. Eventually all
nodes have full knowledge of each others’ prediction
mappings requiring in the order of the number of nodes
squared entries on each node.

Finally, we tested how much impact different move-
ment models have on the simulation speed. Figure 7
shows that there is not much difference between RWP
and MBM, but SPMBM and WDM make the simula-
tion around 20% slower because of the shortest path
calculations. WDM, even though notably more complex
model than SPMBM, is slightly lighter to simulate since
in WDM nodes are stationary for long periods of time
and do not thus require complex calculations that often.

All in all, the present version of the ONE simulator is
capable of supporting sizable simulation setups of some
thousand nodes with fairly complex movement models
and routing modules and still simulate their behavior
faster than real time. Even larger simulation scenarios are
possible if the simulation time resolution can be decreased
and/or only simpler routing modules with small amount
of state information are used.

VI. CONCLUSION

In this paper, we have presented the ONE simulator, an
opportunistic networking evaluation system that offers a
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Fig. 7. Simulation speed with different movement models

variety of tools to create complex mobility scenarios that
come closer to reality than many other synthetic mobility
models. GPS map data provides the scenario setting and
node groups with numerous different parameters are used
to model a wide variety of independent node activities and
capabilities. The Working Day Movement model allows
recreating complex social structures and features such
as scanning intervals add further aspects of reality and
heterogeneity to the modeling. All these aspects may
matter as our simple examples have shown. With its
flexible input and output interfaces, the ONE simulator
can incorporate real-world traces and feeds from other
mobility generators as well as generate mobility traces
for use by other simulators. Its DTN framework currently
includes six parameterizable DTN routing protocols and
two types of application messaging. Its visualization com-
ponent is used for instant sanity checks, deeper inspection,
or simply to observe node movements in real-time—
which broadens its applicability beyond DTN studies.
Particularly the integration with the DTN reference im-
plementation allows creating testbeds and emulations.

The ONE simulator still has numerous limitations and
will hardly ever be complete. In the short-term we intend
to examine support for broadcast and multicast addressing
so that the same message can be addressed and delivered
to multiple nodes. We also intend to increase support for
importing location data from external sources in standard
formats. The dependency on DTN2 for supporting real-
life DTN integration will be removed through a native
implementation of the relevant protocols. Furthermore,
message generation activity will need to take into account
group relationships and context information. Finally, fur-
ther refinements to the Working Day Mobility model are
needed to provide better modeling of buildings and of
traffic; we are interested in learning and importing from
other simulation environments.

We are using and continuously advancing the ONE
simulator in our ongoing DTN research, as a mobility
generator and as a full simulator, e.g., for our work on
opportunistic content caching in DTNs [26] and we apply
it in our DTN graduate course.14 We maintain an open
source distribution of the simulator; the current release
(1.4.0) includes all features described in this paper [32].

14TKK S-38.3151, https://noppa.tkk.fi/noppa/kurssi/s-38.3151/
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[26] PITKÄNEN, M., AND OTT, J. Enabling Opportunistic Storage for
Mobile DTNs. Journal on Pervasive and Mobile Computing 4, 5
(Oct 2008), 579–594.

[27] SCOTT, J., HUI, P., CROWCROFT, J., AND DIOT, C. Haggle:
A Networking Architecture Designed Around Mobile Users. In
Proceedings of IFIP WONS (2006).

[28] SCOTT, K., AND BURLEIGH, S. Bundle Protocol Specification.
RFC 5050, November 2007.

[29] SPYROPOULOS, T., PSOUNIS, K., AND RAGHAVENDRA, C. Effi-
cient Routing in Intermittently Connected Mobile Networks: The
Multiple-copy Case. ACM/IEEE Transactions on Networking (Feb.
2008).

[30] SPYROPOULOS, T., PSOUNIS, K., AND RAGHAVENDRA, C. S.
Single-copy routing in intermittently connected mobile networks.
In Proc. Sensor and Ad Hoc Communications and Networks
SECON (October 2004), pp. 235–244.

[31] SPYROPOULOS, T., PSOUNIS, K., AND RAGHAVENDRA, C. S.
Spray and Wait: An Efficient Routing Scheme for Intermittently
Connected Mobile Networks. In Proc. of the ACM SIGCOMM
Workshop on Delay-Tolerant Networking (WDTN) (2005).

[32] TKK/COMNET. Project page of the ONE simulator.
http://www.netlab.tkk.fi/tutkimus/dtn/theone, 2009.

[33] VAHDAT, A., AND BECKER, D. Epidemic routing for partially
connected ad hoc networks. Technical Report CS-200006, Duke
University, April 2000.

[34] WANG, W., SRINIVASAN, V., AND MOTANI, M. Adaptive contact
probing mechanisms for delay tolerant applications. In Proc. of
ACM MobiCom (September 2007).

[35] ZHANG, Z. Routing in intermittently connected mobile ad hoc
networks and delay tolerant networks: Overview and challenges.
IEEE Communications Surveys and Tutorials 8, 4 (January 2006),
24–37.

Ari Keränen received his M.Sc. in communications engineering from
Helsinki University of Technology (TKK), Finland, in 2008 with major
in networking technology and minor in software systems. He has worked
as a Researcher at the Department of Communications and Networking
at TKK since January 2007 and at Ericsson Research Finland since June
2007. His research interests include Delay-tolerant Networking, Peer-to-
Peer networks, and Host Identity Protocol.
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