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Abstract— Birds, bees, and fish often flock together in
groups to find the source of food (target) based on local
information. Inspired by this natural phenomenon, flocking
control algorithms are designed to coordinate the activities
of multiple agents in cluttered and noisy environments,
respectively. First, to allow agents to track and observe the
target better in cluttered environments, two new approaches
are proposed to control the center of mass (CoM) of positions
and velocities of all mobile agents in the network (Single-
CoM), and the center of mass of positions and velocities
of each agent and its neighbors (Multi-CoM), respectively.
With these approaches, the flock can better track the target.
Second, to deal with noisy measurements we proposed two
flocking control algorithms, Multi-CoM-Shrink and Multi-
CoM-Cohesion. Based on these algorithms, all agents can
form a network and maintain connectivity, even with noisy
measurements. We also investigate the stability of our
algorithms. The numerical experimental tests are performed
to demonstrate the effectiveness of the proposed approach.

Keywords: Flocking control, Dynamic target tracking,

Multi-agent systems, Mobile agent networks

I. INTRODUCTION

Flocking is a phenomenon in which a number of agents

move together and interact with each other. In nature,

schools of fish, birds, ants, and bees, etc. demonstrate

the phenomena of flocking. Flocking control for multiple

mobile agents has been studied in recent years [1], [2], [3],

[4], and it is designed based on three basic flocking rules

proposed by Reynolds in [5]: flock centering (agents try

to stay close to nearby flock-mates), collision avoidance

(agents try to avoid collision with nearby flock-mates),

and velocity matching (agents try to match their velocity

with nearby flock-mates). The problems of flocking have

also attracted many researchers in physics [6], [7], math-

ematics [8], biology [9] and especially in control science

in recent years [4], [10], [11], [12], [13], [14], [1], [2],

[3], [15], [16], [17].

Flocking control has wide applications in mobile robots

and mobile sensor networks. Early works on flocking

control includes [1], [2], [3], [4]. Tanner et al. [1], [2],

[3] studied the stability properties of a system of multiple

mobile agents with double integrator dynamics in the case
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of fixed and dynamic topologies. However, in their work

the target tracking problem and sensing errors are not con-

sidered. In the context of target tracking, Olfati-Saber [4]

proposed a theoretical framework for design and analysis

of distributed flocking algorithms. These algorithms solve

the flocking problem in free space and in the presence

of obstacles. Based on his flocking control algorithm, all

agents can flock together and track the target quite well

in free space. However, the target tracking performance

is poor in the obstacle space. Specifically, the target is

not at the center of the flock. Moreover, every agent is

assumed to know the position and velocity of the target

precisely. To relax this assumption, a distributed Kalman

filter was developed in [18] for each agent to estimate the

target’s position. In addition, the flocking algorithm in [4]

assumes that all agents have the information of the target

in order to maintain cohesion and avoid fragmentation.

To solve this problem, Su et al. [10], [11], [19] extended

Olfati-Saber’s flocking control algorithm [4] to deal with

the situations of a minority of informed agents and

varying velocity of the target. However, their work does

not consider the tracking problem in cluttered and noisy

environments.

In this paper we propose new flocking control algo-

rithms for more realistic environments. The main dif-

ferences between our algorithms and those of the above

related work are:

1. In cluttered environments, the agents usually get

stuck behind the obstacles and sometimes can not follow

the target [4]. To handle this problem we present new

approaches for multi-agent systems to track a moving

target while avoiding obstacles. The main motivation

of these approaches is to make the CoM (Center of

Mass) of the network track the moving target better

in cluttered environments where the traditional flocking

control algorithms [4], [18], [10], [11], [19] have poor

tracking performance. In our methods all mobile agents

can surround the target closely in the obstacle space.

This will allow the network to observe and recognize the

target better. Specifically, in our Single-CoM algorithm,

the center of mass of positions and velocities of all mobile

agents in the network is controlled to track a moving

target. This algorithm works well in small networks, but it

has limited scalability in large networks. In contrast with

the Single-CoM algorithm, we proposed another flocking

control algorithm called Multi-CoM where the center of
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mass of positions and velocities of each agent and its

neighbors is controlled to track a moving target. This

algorithm allows agents to work better in large networks

in a distributed fashion.

2. In real flocking control environments, noise handling

is always an important issue since the noise usually causes

broken network or connectivity loss. This problem exists

in most of the previous work on flocking control [3], [4],

[19], [18]. To make the flocking control more applicable

in real environments we consider the effect of position

and velocity measurement errors of the agent itself, the

agent’s neighbors and the target. None of the flocking

control algorithms in the above related work considers this

noise issue. We propose two flocking control algorithms,

Multi-CoM-Shrink and Multi-CoM-Cohesion, which are

based on the extensions of the Multi-CoM flocking control

algorithm. Our algorithms allow the flock to preserve

connectivity, avoid collision, and follow the target in such

noisy environments. We demonstrate that by applying our

algorithms the agents can flock together in the presence of

noise with better connectivity and tracking performance.

The rest of this paper is organized as follows. In the

next section we present the flocking control algorithms,

Single-CoM and Multi-CoM, respectively, for tracking

and observing a moving target in cluttered environments.

Section III presents flocking control algorithms, Multi-

CoM-Shrink and Multi-CoM-Cohesion, respectively, for

tracking a moving target in noisy environments. Section

IV shows the main results on stability analysis of flocking

control algorithms in both cluttered and noisy environ-

ments. Section V demonstrates the experimental results.

Finally, Section VI concludes this paper.

II. FLOCKING CONTROL IN CLUTTERED

ENVIRONMENTS

In this section we present the flocking control algo-

rithms in cluttered environments.

A. Flocking Control Background

We consider n agents moving in an m (m = 2, 3)

dimensional Euclidean space. The dynamic equations of

each agent are described as:

{

q̇i = pi
ṗi = ui, i = 1, 2, ..., n.

(1)

here qi, pi ∈ Rm are the position and velocity of node i,
respectively, and ui is the control input of agent i.

To describe the topology of flocks we consider a dy-

namic graph G consisting of a vertex set ϑ = {1, 2..., n}
and an edge set E ⊆ {(i, j) : i, j ∈ ϑ, j 6= i}. In this

topology each vertex denotes one member of the flock,

and each edge denotes the communication link between

two members.

We know that during the movement of agents, the

relative distance between them may change, hence the

neighbors of each agent also change. Therefore, we can

define a neighborhood set of agent i as follows:

Nα
i = {j ∈ ϑ : ‖qj − qi‖ ≤ r, ϑ = {1, 2, ..., n} , j 6= i} ,

(2)

here r is an active range (radius of neighborhood circle

in the case of two dimensions, m = 2, or radius of

neighborhood sphere in the case of three dimensions,

m = 3), and ‖.‖ is the Euclidean distance. The superscript

α indicates the actual neighbors (α neighborhood agents)

of agent i that is used to distinguish from virtual neighbors

(β neighborhood agents) in the case of obstacle avoidance

discussed later.

The geometry of flocks is modeled by an α-lattice [4]

that meets the following condition:

‖qj − qi‖ = d, j ∈ Nα
i , (3)

here d is a positive constant indicating the distance

between agent i and its neighbor j. However, at singular

configuration (qi = qj) the collective potential used to

construct the geometry of flocks is not differentiable.

Therefore, the set of algebraic constrains in (3) is rewrit-

ten in term of σ - norm [4] as follows:

‖qj − qi‖σ = dα, j ∈ Nα
i , (4)

here the constraint dα = ‖d‖σ with d = r/kc, where kc
is the scaling factor. The σ - norm, ‖.‖σ, of a vector is a

map Rm =⇒ R+ defined as

‖z‖σ =
1

ǫ
[
√

1 + ǫ‖z‖2 − 1], (5)

here ǫ > 0. Unlike the Euclidean norm ‖z‖, which

is not differentiable at z = 0, the σ - norm ‖z‖σ,

is differentiable every where. This property allows to

construct a smooth collective potential function for agents.

The flocking control law in [4] controls all agents to

form an α-lattice configuration. This algorithm consists

of three components as follows:

ui = fα
i + fβ

i + fγ
i . (6)

The first component of (6) fα
i , which consists of a

gradient-based component and a consensus component

(more details about these components see [20], [21], [22]),

is used to regulate the potentials (repulsive or attractive

forces) and the velocity among agents.

fα
i = cα1

∑

j∈Nα
i

φα(‖qj−qi‖σ)nij+c
α
2

∑

j∈Nα
i

aij(q)(pj−pi),

(7)

where cα1 and cα2 are positive constants, and each term

in (7) is computed as follows [4]:

1. The action function φα(z) that vanishes for all z ≥
rα with rα = ‖r‖σ is defined as follows:

φα(z) = ρh(z/rα)φ(z − dα) (8)

with the uneven sigmoidal function φ(z) defined as

φ(z) = 0.5[(a + b)σ1(z + c) + (a − b)], here σ1(z) =
z/

√
1 + z2 (z is an arbitrary variable), and parameters
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0 < a ≤ b, c = |a− b|/
√
4ab to guarantee φ(0) = 0. The

bump function ρh(z) with h ∈ (0, 1) is

ρh(z) =







1, z ∈ [0, h)
0.5[1 + cos(π( z−h

1−h
))], z ∈ [h, 1)

0, otherwise.

(9)

2. The vector along the line connecting qi to qj is

nij = (qj − qi)/
√

1 + ǫ‖qj − qi‖2. (10)

3. The elements aij(q) of the adjacency matrix [aij(q)]
are defined as

aij(q) =

{

ρh(‖qj − qi‖σ/rα), if j 6= i
0, if j = i.

(11)

The second component of Equation (6) fβ
i is used to

control the mobile agents to avoid obstacles,

fβ
i = cβ1

∑

k∈N
β

i

φβ(‖q̂i,k − qi‖σ)n̂i,k

+cβ2
∑

k∈N
β

i

bi,k(q)(p̂i,k − pi) (12)

where cβ
1

and cβ
2

are positive constants, and the set of β
neighbors (virtual neighbors) of agent i at time t with k
obstacles is

Nβ
i (t) =

{

k ∈ ϑβ : ‖q̂i,k − qi‖ ≤ r
′

, ϑβ = {1, 2, ..., k}
}

(13)

here r
′

is selected to be less than r, in our simulations

r
′

= 0.6r. ϑβ is a set of obstacles. q̂i,k, p̂i,k are the

position and velocity of agent i projecting on the obstacle

k, respectively. The virtual neighbors are used to generate

the repulsive force to push the agents away from the

obstacles.

Similar to vector nij defined in Equation (10), vector

n̂i,k is defined as

n̂i,k = (q̂i,k − qi)/
√

1 + ǫ‖q̂i,k − qi‖2. (14)

The elements bi,k(q) of the adjacency matrix [bi,k(q)] are

defined as

bi,k(q) = ρh(|q̂i,k − qi‖σ/dβ) (15)

where dβ = ‖r′‖σ .

The repulsive action function of β neighbors is defined

as

φβ(z) = ρh(z/dβ)(σ1(z − dβ)− 1). (16)

The third component of (6) fγ
i is a distributed naviga-

tional feedback.

fγ
i = −cγ

1
(qi − qγ)− cγ

2
(pi − pγ) (17)

where cγ1 and cγ2 are positive constants, and the γ - agent

(qγ , pγ) is the virtual leader (more information of virtual

leader, see [23]) defined as follows
{

q̇γ = pγ
ṗγ = fγ(qγ , pγ)

(18)

B. Single-CoM and Multi-CoM flocking Control Algo-

rithms

In environments populated by obstacles, the agents

hardly follow the target because of repulsive forces gener-

ated from the obstacles, and this causes poor tracking per-

formance. To address this issue, two possible approaches,

named Single-CoM and Multi-CoM, respectively, are in-

vestigated. In the Single-CoM algorithm, the CoM of

positions and velocities of all agents is controlled to track

the moving target. In this case, each agent need know the

position and velocity of all other agents. To address the

scalability problem the Multi-CoM (CoM of positions and

velocities of each agent and its neighbors) algorithm is

proposed, where each agent only need know the positions

and velocity of its neighbors.

1) Single-CoM tracking: Firstly, based on Olfati-

Saber’s flocking algorithm (6) we slightly modify it with

a dynamic γ-agent. In this scenario, the dynamic γ-agent

is considered as the moving target.

ui = cα1
∑

j∈Nα
i

φα(‖qj − qi‖σ)nij

+cα2
∑

j∈Nα
i

aij(q)(pj − pi)

+cβ1
∑

k∈N
β

i

φβ(‖q̂i,k − qi‖σ)n̂i,k

+cβ2
∑

k∈N
β

i

bi,k(q)(p̂i,k − pi)

−ct1(qi − qt)− ct2(pi − pt) (19)

here the pair (qt, pt) is the position and velocity of

the moving target, respectively, and ct1, c
t
2 are positive

constants, and ct2 = 2
√

ct1.

By observing the control protocol (19), we see that

the CoM is difficult to reach the target in the presence

of obstacles since the agents are sometimes stuck behind

the obstacles. This causes the poor tracking performance.

Therefore this protocol should be extended with more

constraint on the CoM as follows:

ui = fα
i + fβ

i + f t
i (20)

where f t
i is a tracking feedback term applied to agent i

by a moving target with position and velocity (qt, pt),
respectively.

f t
i = −ct1(qi − qt)− ct2(pi − pt)

−csc1 (q − qt)− csc2 (p− pt) (21)

here csc1 , c
sc
2 are positive constants. The pair (q, p) is the

center of mass (CoM) of positions and velocities of all

agents defined in (22).

{

q = 1

n

∑n

i=1
qi

p = 1

n

∑n

i=1
pi,

(22)

here q, and p are also called the global average of position

and velocity, respectively.
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Consequently, the extended control protocol (20) is as

follows:

ui = cα1
∑

j∈Nα
i

φα(‖qj − qi‖σ)nij

+cα2
∑

j∈Nα
i

aij(q)(pj − pi)

+cβ1
∑

k∈N
β

i

φβ(‖q̂i,k − qi‖σ)n̂i,k

+cβ2
∑

k∈N
β

i

bi,k(q)(p̂i,k − pi)

−ct1(qi − qt)− ct2(pi − pt)

−csc1 (q − qt)− csc2 (p− pt) (23)

In control algorithm (23), each mobile agent at each

time t need know the position and velocity of all other

agents to compute the CoM (q, p). This means that the

scalability is limited because at each time t all other

agents have to send their positions to agent i.
2) Multi-CoM tracking: To make the algorithm scal-

able we implement a distributed tracking algorithm called

Multi-CoM tracking in which the CoM of each agent and

its neighbors is controlled to track the target. Hence, we

design the tracking term f t
i as

f t
i = −ct1(qi − qt)− ct2(pi − pt)

−cl1(qi − qt)− cl2(pi − pt), (24)

here (cl1, c
l
2) are the positive constants. qi and pi are the

local averages of position and velocity of agent i and its

neighbors, respectively. They are defined as






qi =
1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

j=1
qj

pi =
1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

j=1
pj .

(25)

here |Nα
i ∪ {i}| is the number of agents in agent i’s

local neighborhood including agent i itself. Since the local

averages are the local CoMs we name this algorithm as

Multi-CoM.

Consequently, the Multi-CoM flocking control algo-

rithm is proposed as

ui = cα1
∑

j∈Nα
i

φα(‖qj − qi‖σ)nij

+cα2
∑

j∈Nα
i

aij(q)(pj − pi)

+cβ1
∑

k∈N
β

i

φβ(‖q̂i,k − qi‖σ)n̂i,k

+cβ
2

∑

k∈N
β

i

bi,k(q)(p̂i,k − pi)

−ct1(qi − qt)− ct2(pi − pt)

−cl1(qi − qt)− cl2(pi − pt) (26)

In control algorithm (26), each mobile agent only need

have local knowledge about the position and velocity of

itself and its neighbors. Therefore this algorithm can scale

up to lager mobile agent networks.

III. FLOCKING CONTROL OF MULTIPLE AGENTS IN

NOISY ENVIRONMENTS

The above flocking control algorithms are designed

under the following assumptions: each agent can sense the

position and velocity of itself, the neighbors and the target

precisely. However, in reality these assumptions are not

valid because sensing always has noise. Motivated by this

observation we study how to design distributed flocking

control algorithms which can still perform well when the

measurements are corrupted by noise.

In this section we are going to design two algorithms

in noisy environments. The first one is the Multi-CoM-

Shrink flocking control algorithm. The main idea of this

algorithm is to shrink the size of the network in oder to

keep the connectivity. The second one is the Multi-CoM-

Cohesion flocking control algorithm, and its main idea

is based on the position and velocity cohesion feedback

to create the strong cohesion between the agent and the

network. Both algorithms are based on the Multi-CoM

flocking control algorithm presented in Section II.

A. Multi-CoM-Shrink Algorithm

Assume that the estimates of the position and velocity

of agent i are: q̂i = qi + ǫiq and p̂i = pi + ǫip, where ǫiq
and ǫip are the position and velocity measurement errors,

respectively. Then we have:

q̂i − q̂j = qi − qj + ǫijq ; p̂i − p̂j = pi − pj + ǫijp ,

here ǫijq = ǫiq − ǫjq and ǫijp = ǫip − ǫjp.

Similarly, the estimates of the position and velocity of

the target are:

q̂t = qt + ǫtq and p̂t = pt + ǫtp,

where ǫtq and ǫtp are the position and velocity measure-

ment errors, respectively. Then we have:

q̂i − q̂t = qi − qt + ǫitq ; p̂i − p̂t = pi − pt + ǫitp ,

here ǫitq = ǫiq − ǫtq and ǫitp = ǫip − ǫtp.

If all noises are bounded, one possible method to

maintain connectivity in noisy environments is to shrink

the size of the network. We assume that the noise ǫiq
satisfies ‖ǫiq‖ ≤ rw as shown in Figure 1.

����� �

����� �

����	� 
���� �

�
��� 
����� 
�

��

Figure 1. Agent 2 is considered as a neighbor of agent 1 because the

estimated distance d̂a is less than the active range r.
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Let us denote da = ‖qi − qj‖ to be the actual distance

between agent i and agent j. Then to maintain the

connectivity and no collision among agents we need

0 < da ≤ r. (27)

Denote d̂a to be the estimate of the actual distance da,

then we have

d̂a = ‖q̂i − q̂j‖ ≤ ‖qi − qj‖+ ‖ǫijq ‖. (28)

Since ‖ǫiq‖ ≤ rw we have ‖ǫijq ‖ ≤ 2rw, and we obtain

‖qi − qj‖ − 2rw ≤ d̂a ≤ ‖qi − qj‖+ 2rw. (29)

With ‖qi − qj‖ = da we have

da − 2rw ≤ d̂a ≤ da + 2rw, (30)

or,

d̂a − 2rw ≤ da ≤ d̂a + 2rw. (31)

Since the control algorithm (19) guarantees that d̂a con-

verges to the desired distance d. Then from (31) we obtain

d− 2rw ≤ da ≤ d+ 2rw. (32)

From (27) and (32) we should have
{

d− 2rw > 0
d+ 2rw ≤ r.

(33)

Hence from (33) we obtain d to be

2rw < d ≤ r − 2rw. (34)

Equation (34) shows that we need to design the distance d
within the range (2rw, r− 2rw] to maintain connectivity

and no collision among agents. However if we select d to

be smaller than r − 2rw then each agent will have more

neighbors than necessary. Hence, we choose d = r−2rw.

Now, from (5) we obtain dαnew as

dαnew = ‖d‖σ =
1

ǫ
[
√

1 + ǫ(r − 2rw)2 − 1]. (35)

From (8) we obtain a new action function φnewα (‖q̂j −
q̂i‖σ) as follows:

φnewα (‖q̂j−q̂i‖σ) = ρh(‖q̂j−q̂i‖σ/rα)φ(‖q̂j−q̂i‖σ−dαnew).
(36)

From (25) we have the local average of position and

velocity for each agent i, q̂i and p̂i with noise computed

as






q̂i =
1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

j=1
q̂j

p̂i =
1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

j=1
p̂j ,

(37)

From (10) and (11) we obtain n̂ij and âij(q) as

n̂ij = (q̂j − q̂i)/
√

1 + ǫ‖q̂j − q̂i‖2 (38)

âij(q) =

{

ρh(‖q̂j − q̂i‖σ/rα), if j 6= i
0, if j = i,

(39)

Now, we propose a Multi-CoM-Shrink algorithm with

dαnew as

ui = cα1
∑

j∈Nα
i

φnewα (‖q̂j − q̂i‖σ)n̂ij

+cα2
∑

j∈Nα
i

âij(q)(p̂j − p̂i)

−ct1(q̂i − q̂t)− ct2(p̂i − p̂t)

−cl1(q̂i − q̂t)− cl2(p̂i − p̂t). (40)

B. Multi-CoM-Cohesion Algorithm

In this subsection we describe the Multi-CoM-Cohesion

algorithm, which introduces local position and velocity

cohesion feedbacks to each agent.

We have the following definitions:

dil = qi − qi is the relative distance between node i
and its local average of position;

vil = pi − pi is the relative velocity between node i
and its local average of velocity;

However, because agent i senses its own position and

velocity with noise, hence the estimates d̂il and v̂il are

also corrupted by noise (ǫid, ǫ
i
v) as:

{

d̂il = q̂i − q̂i = qi + ǫiq − (qi + ǫiq) = dil + ǫid
v̂il = p̂i − p̂i = pi + ǫip − (pi + ǫip) = vil + ǫiv,

(41)

here ǫid = ǫiq − ǫiq with ǫiq = 1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

i=1
ǫiq ,

and ǫiv = ǫip − ǫip with ǫip = 1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

i=1
ǫip.

Based on the above definitions, we design a distributed

flocking control law, Multi-CoM-Cohesion, in noisy envi-

ronments as:

ui = cα1
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij

+cα2
∑

j∈Nα
i

âij(q)(p̂j − p̂i)

−cposd̂il − cvev̂il

−ct1(q̂i − q̂t)− ct2(p̂i − p̂t)

−cl1(q̂i − q̂t)− cl2(p̂i − p̂t), (42)

here d̂il, v̂il are the estimates of dil and vil, re-

spectively, and cpos and cve are positive constants. The

terms −cposd̂il and −cvev̂il are called local position

and velocity cohesion feedbacks, respectively. The role

of these negative feedbacks is to maintain position and

velocity cohesions. This means that each agent tries to

stay close to the local average of position and minimize

the velocity mismatch between its velocity and the local

average of velocity in noisy environments.

In this algorithm, to make it simpler in the stability

analysis provided later we dropped the obstacle avoidance

term. However, in real applications, to allow each agent to

avoid both static and dynamic obstacles we only need to

add the second component (12) to the control algorithm

(42). In general, this component does not affect the

properties of the global stability of the whole system.
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Figure 2. Demonstration of two agents (2 mobile sensors) tracking the moving target with Single-CoM in both free and obstacle spaces.

IV. STABILITY ANALYSIS

A. Stability Analysis of Flocking in Cluttered Environ-

ments

In this sub-section we will analyze the stability of

our algorithms, the flocking control with Single-CoM and

Multi-CoM, respectively, in cluttered environments, and

we will explain why the tracking performance in the

presence of the CoM constraint is better than without the

CoM constraint in the obstacle space.

Theorem 1. In cluttered environments, consider a

system of n mobile agents where each agent has dynamics

(1) and is controlled by (23). Then the flowing statements

hold:

1. The CoM of positions and velocities of all agents in

the network will exponentially converge to the target in

the free space.

2. The error between the CoM’s position and the

target’s position is reduced in the obstacle space.

Proof:

Proof of part 1: In free space,
∑

k∈N
β

i

φβ(‖q̂i,k −
qi‖σ) = 0, hence we can rewrite the control algorithm

(23) by ignoring constants cνη (for ∀η = 1, 2 and ν = α, β)

as follows:

ui = −
∑

j∈Nα
i

∇qiψα(‖qj − qi‖σ)

+
∑

j∈Nα
i

aij(q)(pj − pi)

−ct1(qi − qt)− ct2(pi − pt).

−csc1 (q − qt)− csc2 (p− pt). (43)

where ψα(z) =
∫ z

dα
φα(s)ds is the pairwise attrac-

tive/repulsive potential function. From (43), we can com-

pute the average of the control law u as follows:

u =
1

n

n
∑

i=1

ui =
1

n

n
∑

i=1

(−
∑

j∈Nα
i

∇qiψα(‖qj − qi‖σ)

+
∑

j∈Nα
i

aij(q)(pj − pi))

−(ct1 + csc1 )(q − qt)

−(ct2 + csc2 )(p− pt). (44)

Obviously, we see that the pair (ψα, a(q)) is symmetric.

Hence we can rewrite (44) as:

u = −(ct1 + csc1 )(q − qt)− (ct2 + csc2 )(p− pt)(45)

Equation (45) implies that
{

q̇ = p
ṗ = −(ct1 + csc1 )(q − qt)− (ct2 + csc2 )(p− pt).

(46)

The solution of (46) indicates that the position and

velocity of the CoM will exponentially converge to those

of the target.

Proof of part 2: To see why the tracking performance

in the presence of obstacles of the flocking control with

Single-CoM is better than that of the flocking control

without CoM (No-CoM) (19), we analyze the forces

acting on the α-agents (actual agents) when they avoid

the obstacle as shown in Figure 2. In this figure, without

losing generality we simply consider two agents tracking

the target (γ-agent) which moves along an arbitrary

trajectory.

Firstly, when two agents track the target in the free

space (without obstacle), in the equilibrium state the CoM

is close to the target (in this case, agent 2 is the neighbor
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of agent 1). The total interaction forces between two

agents are equal to zero, and also because of velocity

matching, the sum of different velocities between these

agents is equal to zero. Hence we obtain u as in (45).

This means that the CoM (q, p) converges to the target

(qt, pt).

When these agents move in the obstacle space they

project themselves to the surface of obstacle and get

their virtual neighbors, β-agents. In this scenario, two β-

agents, β1 and β2, of two agent 1 and agent 2 are created,

respectively (see Figure 2). These β-agents generate the

repulsive forces, Fβ1α1
and Fβ2α2

to push these agents

away from the obstacles. However, the presence of γ-

agent (target) is necessary to steer both agents around the

obstacle. We have the synthesized forces (vector form)
~Fα1

= ~Fβ1α1
+ ~Fα1γ and ~Fα2

= ~Fβ2α2
+ ~Fα2γ of agent

1 and agent 2, respectively. To prevent each agent from

hitting the obstacles, the weights of the repulsive forces,

cβ
1

and cβ
2

, are set to be bigger than those of the attractive

force between the target and each agent, ct1 and ct2. This

leads to Fβ1α1
> Fα1γ and Fβ2α2

> Fα2γ . Therefore,

this causes the agents being pushed away in a certain

distance from the target, or the CoM is no longer close to

the target. When the CoM considered as a virtual agent is

directly controlled to track the target, the offset distance

between the CoM and the target, ‖q − qt‖, creates the

negative feedback to the whole system then it makes the

CoM converge to the target faster.

In addition, the weights of the attractive force between

the target and the CoM csc1 and csc2 are freely set so that

the CoM can converge to the target as soon as possible.

Namely, the bigger weight the faster convergence, but if

it is too big the overshoot will appear. Keep in mind that

the choice of csc1 , c
sc
2 does not cause the collision with the

obstacle. This is different from the choice of ct1 and ct2
which are selected less than cβ1 and cβ2 , respectively. As

shown in Figure 2, when the CoM is controlled to track

the target directly the force FCγ is created to support

the agents to move back to surround the target faster,

or the CoM will converge to the target faster. For more

information, see the simulation results.

For the Multi-CoM flocking control algorithm, we have

the following statement for the stability properties.

In cluttered environments, consider a system of n
mobile agents, that have dynamics (1) and are controlled

by the Multi-CoM flocking algorithm (26). Then based

on our observations which are shown in the simulation

results we see that:

1. The CoM of positions and velocities of all agents in

the network will exponentially converge to the target in

the free space.

2. The error between the CoM’s position and the

target’s position is reduced in the obstacle space.

The results of the Multi-CoM flocking algorithm are

similar to the Single-CoM flocking algorithm. However,

the benefit of the Multi-CoM flocking algorithm is that

each agent is controlled locally instead of globally as in

the Single-CoM flocking algorithm.

B. Stability Analysis of Flocking in Noisy Environments

Before analyzing the stability of the flocking control

algorithm, Multi-CoM-Cohesion, we build the error dy-

namic model of the flocking system in noisy environ-

ments.

1) Error Dynamic Model: To study the stability prop-

erties, we have the error dynamics of the system given as

follows:
{

ḋig = vig
v̇ig = ui − 1

n

∑n

j=1
uj = ui − u, i = 1, 2, ..., n.

(47)

here u = 1

n

∑n
j=1

uj .

We have following definitions:

dig = qi−q is the relative distance between node i and

its global average of position;

vig = pi−p is the relative velocity between node i and

its global average of velocity;

Then we have the following relations:

dil = qi − qi = dig + q − 1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

qj

= dig + q − 1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

(djg + q)

= dig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

djg. (48)

Then similar to dil, vil is obtained as follows:

vil = vig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

vjg . (49)

The estimates of the local average of position and

velocity, respectively in (37) is rewritten as

q̂i = qi − dig +
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

djg + ǫiq. (50)

p̂i = pi − vig +
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

vjg + ǫip. (51)

Now, we can rewrite the control law (42) with consid-

ering (41), (50) and (51):

ui = cα1
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij

+cα2
∑

j∈Nα
i

âij(q)(p̂j − p̂i)

+(cl1 − cpos)(dig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

djg)

+(cl2 − cve)(vig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

vjg)

−(ct1 + cl1)(qi − qt)− (ct2 + cl2)(pi − pt)
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−cposǫid − cveǫ
i
v − cl1ǫ

i
q − cl2ǫ

i
p

−(ct1 + cl1)ǫ
it
q − (ct2 + cl2)ǫ

it
p (52)

The average of control law for composite system is

u =
cα1
n

n
∑

i=1

[
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij ]

+
cα2
n

n
∑

i=1

[
∑

j∈Nα
i

âij(q)(p̂j − p̂i)]

+(
cl1 − cpos

n
)

n
∑

i=1

(dig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

djg)

+(
cl2 − cve

n
)

n
∑

i=1

(vig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

vjg)

−(
ct1 + cl1
n

)

n
∑

i=1

(qi − qt)− (
ct2 + cl2
n

)

n
∑

i=1

(pi − pt)

− 1

n

n
∑

i=1

[cposǫ
i
d + cveǫ

i
v + cl1ǫ

i
q + cl2ǫ

i
p

+(ct1 + cl1)ǫ
it
q + (ct2 + cl2)ǫ

it
p ] (53)

Substitute ui in (52) and u in (53) into (47) we obtain:

v̇ig = cα1
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij

−c
α
1

n

n
∑

i=1

[
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij ]

+cα2
∑

j∈Nα
i

âij(q)(p̂j − p̂i)

−c
α
2

n

n
∑

i=1

[
∑

j∈Nα
i

âij(q)(p̂j − p̂i)]

−(
cl1 − cpos
|Nα

i ∪ {i}|)
|Nα

i ∪{i}|
∑

j=1

djg

−(
cl2 − cve

|Nα
i ∪ {i}|)

|Nα
i ∪{i}|
∑

j=1

vjg

−(
cl1 − cpos

n
)

n
∑

i=1

(dig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

djg)

−(
cl2 − cve

n
)

n
∑

i=1

(vig −
1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

vjg)

−(cpos − cl1)dig − (cve − cl2)vig

−(ct1 + cl1)dig − (ct2 + cl2)vig

−cposǫid − cveǫ
i
v − cl1ǫ

i
q − cl2ǫ

i
p

−(ct1 + cl1)ǫ
it
q − (ct2 + cl2)ǫ

it
p

+
1

n

n
∑

i=1

[cposǫ
i
d + cveǫ

i
v + cl1ǫ

i
q + cl2ǫ

i
p

+(ct1 + cl1)ǫ
it
q + (ct2 + cl2)ǫ

it
p ]

= −(ct1 + cpos)dig − (ct2 + cve)vig

+Φi +Ωi(V ) + ζi, (54)

where

Φi = cα1
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij

−c
α
1

n

n
∑

i=1

[
∑

j∈Nα
i

φα(‖q̂j − q̂i‖σ)n̂ij ]

+cα2
∑

j∈Nα
i

âij(q)(p̂j − pi)

−c
α
2

n

n
∑

i=1

[
∑

j∈Nα
i

âij(q)(p̂j − pi)];

Ωi(V ) = −(
cl1 − cpos
|Nα

i ∪ {i}|)
|Nα

i ∪{i}|
∑

j=1

djg

−(
cl2 − cve

|Nα
i ∪ {i}|)

|Nα
i ∪{i}|
∑

j=1

vjg

−(
cl1 − cpos

n
)

n
∑

i=1

(dig

− 1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

djg)

−(
cl2 − cve

n
)

n
∑

i=1

(vig

− 1

|Nα
i ∪ {i}|

|Nα
i ∪{i}|
∑

j=1

vjg);

ζi =
1

n

n
∑

i=1

[cposǫ
i
d + cveǫ

i
v + cl1ǫ

i
p + cl2ǫ

i
p

+(ct1 + cl1)ǫ
it
q + (ct2 + cl2)ǫ

it
p ]

−[cposǫ
i
d + cveǫ

i
v + cl1ǫ

i
q + cl2ǫ

i
p

+(ct1 + cl1)ǫ
it
q + (ct2 + cl2)ǫ

it
p ]

here, we define Vi = [dig vig ]
T and V =

[V1, V2, ..., Vn]
T .

Rewrite (54) in state space representation
[

ḋig
v̇ig

]

=

[

0 I
−k1I −k2I

] [

dig
vig

]

+

[

0
I

]

(Φi +Ωi(V ) + ζi), (55)

here k1 = (ct1 + cpos), k2 = (ct2 + cve), and I is an m ×
m identity matrix.

Then we can rewrite (55) as

V̇i =

[

0 I
−k1I −k2I

]

Vi

+

[

0
I

]

(Φi +Ωi(V ) + ζi) (56)

Let the matrix Ai =

[

0 I
−k1I −k2I

]

, then we have the

characteristic equation as:

det(λI −Ai) = (λ2 + k2λ+ k1)
m = 0. (57)
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Since k1 > 0, k2 > 0, and if k2 < 2
√
k1 then all roots of

the characteristic equation (57) have negative real parts

(Re(λi) < 0).

2) Stability Analysis of the Multi-CoM-Cohesion algo-

rithm: In this subsection we will analyze the stability of

the flocking control algorithm, Multi-CoM-Cohesion, in

noisy environments based on the Lyapunov approach.

We assume that the errors of sensing position and

velocity have linear relationship with the magnitude of the

state of the error system. That is because two agents are

far away from each other, the sensing errors will usually

increase. Hence, we have
{

‖ǫid(t)‖ ≤ cied1
‖Vi(t)‖ + cied2

‖ǫiv(t)‖ ≤ ciev1‖Vi(t)‖+ ciev2 , i = 1, 2, ..., n.
(58)

We also assume that the noise ǫitq and ǫitp on the target

tracking terms (negative feedbacks) are bounded as
{

‖ǫitq (t)‖ ≤ cieq
‖ǫitp (t)‖ ≤ ciep, i = 1, 2, ..., n,

(59)

and the noise ǫiq and ǫip on the estimates of local average

of position and velocity are bounded as
{

‖ǫiq(t)‖ ≤ cieq
‖ǫip(t)‖ ≤ ciep, i = 1, 2, ..., n.

(60)

here cieq = 1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

i=1
cieq , and ciep =

1

|Nα
i
∪{i}|

∑|Nα
i ∪{i}|

i=1
ciep.

Theorem 2. Consider a system of n mobile agents with

dynamics (1) and controlled by (42), and all noise are

bounded by (58), (59) and (60) . Let

c1pv =
(cpos + 1)2 + c2ve

2cposcve
+

√

(
cpos + c2ve − 1

2cposcve
)2 +

1

c2pos
,

and if

cposc
i
ed1

+ cvec
i
ev1

≤ 1

c1pv
,

and the parameters are such that

m
∑

j=1

[
2c1pv

√

(cl
1
− cpos)2 + (cl

2
− cve)2

(1− ǫi)[1 − c1pv(cposc
i
ed1

+ cveciev1)]

−
2c1pv

1

n
(cposc

i
ed1

+ cvec
i
ev1

)

(1− ǫi)[1− c1pv(cposc
i
ed1

+ cveciev1 )]
] < 1,

here 0 < ǫi < 1 for ∀i, then the trajectories of (56) are

bounded.

Proof: To study the stability of the error dynamics

(56), one possible choice is to choose the Lyapunov

function for each agent as

Li(Vi) = V T
i PVi, (61)

here P = PT is a 2m x 2m positive-definite matrix (P >
0). Then, the Lyapunov function for the composite system

is

L(V ) =

n
∑

i=1

V T
i PVi.

From (61) we have

L̇i(Vi) = V T
i P V̇i + V̇ T

i PVi. (62)

Then, substitute V̇i in (56) into (62) we obtain

L̇i(Vi) = V T
i (PAi +AT

i P )Vi

+2V T
i PB(Φi +Ωi(V ) + ζi)

= −V T
i CVi + 2V T

i PB(Φi +Ωi(V ) + ζi),

here B =

[

0
I

]

, and C = −(PAi +AT
i P ).

The remaining part of this proof is to show L̇i(Vi) < 0.

The detailed proof of L̇i(Vi) < 0 is similar to that in the

reference [24].

V. SIMULATION RESULTS

A. Flocking Control in Cluttered Environments

In this subsection we test our proposed algorithms in

cluttered environments, Single-CoM (23) and Multi-CoM

(26), respectively in simulation with different trajectories

of the moving target and compare them with No-CoM

(19).

First of all we test our algorithms for the case that the

target moves in a sine wave trajectory. Parameters used

in this simulation are specified as follows:

- Parameters of flocking: number of agents = 120; the

initial positions of agents are randomly distributed in the

square area of 90 x 90 size; the initial velocities of agents

are set to zero. Parameters a = b = 5; the interaction

range r = 1.2d = 9; ǫ = 0.1 for the σ-norm; h = 0.2 for

the bump function (φα(z)); h = 0.9 for the bump function

(φβ(z)).
- Parameters of target movement: The target moves in

a sine wave trajectory: qt = [50+ 35t, 295− 35sin(t)]T

with 0 ≤ t ≤ 8.5.

Second we test our algorithms for the case in which

the target moves in a circle trajectory. Parameters used in

this simulation are specified as follows:

- Parameters of flocking: parameters used in this case

are the same with those in the sine trajectory case.

- Parameters of target movement: The target moves

in a circle trajectory: qt = [310 − 160cos(t), 255 +
160sin(t)]T with 0 ≤ t ≤ 5.

To compare three algorithms, No-CoM (19), Single-

CoM (23) and Multi-CoM (26) we use the same initial

state (position and velocity) of mobile agents.

Figure 3 represents the snapshots of mobile agents

tracking the target moving in the sine wave and circle

trajectories, respectively, and Figure 4 shows the error

between the CoM’s positions and the target’s positions

(called tracking performance) using three flocking con-

trol algorithms, No-CoM, Single-CoM and Multi-CoM,

respectively.

In Figure 3, the snapshots of mobile agents when they

are avoiding the obstacles are captured at the same time.

Comparing the results we can see that in Figure 3 (b, b’,

c, c’) more agents (agents) can pass through the narrow

space between two obstacles than those in Figure 3 (a, a’).
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Figure 3. Snapshots of the positions of the mobile agents at the beginning, forming a connected network, avoiding obstacles and at the ending
when they are tracking the target moving in the sine wave trajectory (a, b, c) and the circle trajectory (a’, b’, c’) using flocking control algorithms
with No-CoM (19), Single-CoM (23) and Multi-CoM (26), respectively. Here, (a, a’) are for No-CoM, (b, b’) are for Single-CoM, and (c, c’) are
for Multi-CoM.
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Figure 4. Error between the CoM’s positions and the target’s positions for the cases: sine wave trajectory (a, b, c) and circle trajectory (a’, b’, c’)
using flocking control algorithms with No-CoM (19), Single-CoM (23) and Multi-CoM (26), respectively. Here, (a, a’) are for No-CoM, (b, b’) are
for Single-CoM, and (c, c’) are for Multi-CoM.

This means that by controlling the CoM in the algorithms,

Single-CoM and Multi-CoM, respectively (Figure 4 b, b’,

c, c’) the agents can more closely follow the target than

those in the No-CoM algorithm (Figures 4 a, a’). We can

see that the results of tracking performance in Figure 4
(b, b’, c, c’) for both trajectories of the target using the

Single-CoM and Multi-CoM algorithms, respectively, are

better than those in Figure 4 (a, a’) using the No-CoM

algorithm.

In addition, by observing the movement of the agents

in the obstacle space we clearly see that by controlling

the CoM all agents can easily pass through the obstacles.

Hence, this makes all agents to better follow and surround

the target. Moreover, in free space all agents can track the

target faster while still maintaining the formation, and

especially in the initial tracking time (about 70 - 100

iterations) all agents quickly catch up the target (Figure 4
(b, b’, c, c’)). However without controlling the CoM the

agents usually are stuck behind the obstacles that causes

the poor tracking performance as shown in Figure 4 (a,

a’), and in free space all agents track the target slower

such as in the initial tracking time it takes about 300 to

400 iterations for all agents to catch up the target.

We tested our algorithms in several contexts of obstacle

distributions and different shapes of the obstacles such

as the wall obstacles, and we see that our proposed

algorithms, Single-CoM and Multi-CoM, work better than

the No-CoM in both free and obstacle spaces. Since the

space of the paper is limited we do not show more results

here.

B. Flocking Control in Noisy Environments

In this subsection we first discuss a metric to eval-

uate the network connectivity. Then we test our pro-

posed flocking control algorithms, Multi-CoM-Shrink

(40), Multi-CoM-Cohesion (42), and compare them with

the existing flocking control algorithm, No-CoM (19), in

noisy environments.

To evaluate the network connectivity maintenance, first

we know that the link (connectivity) between node i and

node j is maintained if the distance between them 0 <
‖qi − qj‖ ≤ r. Otherwise this link is considered broken.

Then for graph connectivity, a dynamic graph G(ϑ,E) is

connected at time t if there exists a path between any two

vertices. An example of graph connectivity is shown in

Figure 5.

  
 

 

 

 

 

 

 

 

 

 

  

Figure 5. If one or two of the links (1,2), (3,4), (5,6) is broken the
graph connectivity is still remained, but if all of that links is broken the
graph connectivity is lost.

Based on the above analysis, to analyze the connectivity

of the network we define a connectivity matrix [cij(t)] as
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Figure 6. Snapshots of agents when they are randomly distributed (a, e, i), and when they form a network and track a target (red/dark line) moving
in a sine wave trajectory (b, c, d; f, g, h; j, k, l), where (a, b, c, d) are for the algorithm (19), (e, f, g, h) are for the Multi-CoM-Shrink algorithm,
and (i, j, k, l) are for the Multi-CoM-Cohesion algorithm.

follows:

[cij(t)] =

{

1, if j ∈ Ni(t), i 6= j
0, if j /∈ Ni(t), i 6= j

(63)

and cii = 0.

Since the rank of the Laplacian of a connected

graph [cij(t)] of order n is at most (n − 1) [4] or

rank([cij(t)]) ≤ (n − 1), the relative connectivity of a

network at time t is defined as

C(t) =
1

n− 1
rank([cij(t)]). (64)

If 0 ≤ C(t) < 1 the network is broken, and if

C(t) = 1 the network is connected. Based on this metric

we can evaluate the network connectivity in our proposed

flocking control algorithms.

The parameters used in this simulation are specified as

follows:

- Parameters of flocking: number of agents = 50 (ran-

domly distributed in the square area of 120 x 120 size);

a = b = 5; the active range r = 19; ǫ = 0.1 for the σ-

norm; h = 0.2 for the bump functions (φnewα (z), φα(z)); h
= 0.9 for the bump function (φβ(z)). The desired distance

for the algorithms (19) and Multi-CoM-Cohesion, d = 16.

For the Multi-CoM-Shrink algorithm, rw = 3.4, hence

d = r − 2rw = 19− 2× 3.4 = 12.2.
- Parameters of target movement:

Case 1: The target moves in a sine wave trajectory:

qt = [50 + 50t, 295− 50sin(t)]T with 0 ≤ t ≤ 6

Case 2: The target moves in a circle trajectory: qt =
[310− 160cos(t), 255 + 160sin(t)]T with 0 ≤ t ≤ 4.

- The noise used in the simulation is Gaussian with

zero mean and a variance of 1.

Figures 6 and 7 show the results of of the moving target

(red/dark line) tracking in the sine wave and circle trajec-

tories in noisy environments for three algorithms, (19),

Multi-CoM-Shrink and Multi-CoM-Cohesion. Especially,

Figures 6(a, b, c, d) and 7(a, b, c, d) are for the flocking

control algorithm (19). Figures 6(e, f, g, h) and 7(e, f, g,

h) are for the proposed flocking control algorithm Multi-

CoM-Shrink. Figures 6(i, j, k, l) and 7(i, j, k, l) are for the

proposed flocking control algorithm Multi-CoM-Cohesion

.

To compare our proposed flocking control algorithms,

Multi-CoM-Shrink and Multi-CoM-Cohesion with the ex-

isting flocking algorithm (19), we use the same initial

state (position and velocity) of the mobile agents. Figure

8 shows the results of the tracking performance and the

connectivity, respectively: (a, c) are for the flocking con-

trol algorithm (19), (b, d) are for the Multi-CoM-Shrink

flocking control algorithm, and (e, f) are for the Multi-

CoM-Cohesion flocking control algorithm. Comparing the

results in these figures we clearly see that:
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Figure 7. Snapshots of agents when they are randomly distributed (a, e, i), and when they form a network and track a target (red/dark line) moving
in a circle trajectory (b, c, d; f, g, h; j, k, l), where (a, b, c, d) are for the algorithm (19), (e, f, g, h) are for the Multi-CoM-Shrink algorithm, and
(i, j, k, l) are for the Multi-CoM-Cohesion algorithm.
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Figure 8. The tracking performance results (error between the CoM and target positions): (a) is for the algorithm(19), (b) is for the Multi-CoM-Shrink

algorithm, and (c) is for the Multi-CoM-Cohesion algorithm. The connectivity is evaluated by the C(t) value: (d) is for the algorithm (19), (e) is
for the Multi-CoM-Shrink algorithm, and (f) is for the Multi-CoM-Cohesion algorithm.
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• For the flocking control algorithm (19): The tracking

performance has big errors, and it makes the target

out of the center of the network. In addition, the

connectivity is lost, or the network is broken (C(t) <
1).

• For the Multi-CoM-Cohesion algorithm: The track-

ing performance has small errors. In addition, the

agents can quickly form a network (only five itera-

tions) and then maintain connectivity (C(t) = 1).

• For the Multi-CoM-Shrink algorithm: The tracking

performance also has small errors, and the connec-

tivity is maintained after six iterations. However, the

size of the network is smaller than that of the Multi-

CoM-Cohesion flocking control algorithm, and each

agent has more neighbors because each agent tries to

reduce the distance to its neighbor in order to keep

connection to them.

VI. CONCLUSION

In this paper, we considered the problem of controlling

a group of mobile agents to track a target in clut-

tered and noisy environments, respectively. First, flocking

control algorithms with Single-CoM and Multi-CoM are

designed to enable mobile agents to track and observe the

moving target more effectively in cluttered environments

while maintaining their formation and collision avoidance

among agents. By controlling the CoM explicitly, the

mobile agents can track and observe the moving target

better. In addition, flocking control with No-CoM, flock-

ing control with Single-CoM, and flocking control with

Multi-CoM are compared. The numerical simulations are

done with different target trajectories to demonstrate our

theoretical results. Second, in noisy environments, two

flocking control algorithms, Multi-CoM-Shrink and Multi-

CoM-Cohesion, are proposed. In the Multi-CoM-Shrink

algorithm our approach is to shrink the size of the network

by reducing the distance among agents. In the Multi-CoM-

Cohesion algorithm our approach integrates local position

and velocity cohesion feedbacks in oder to deal with the

noise. As a result the network connectivity preservation

is improved, and collision avoidance among agents is

guaranteed in both cluttered and noisy environments.

In addition, the stability of the proposed algorithms is

investigated.
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