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Abstract—Spoofing Attack (SA) is a challenging issue in 

mobile wireless communication especially with huge traffic 

in 5G and beyond where attacker inserts counterfeit data 

with false identification to intercept a valid transmission. 

Detection and corrective action become very important in 

these cases. A potential method to prevent identity spoofing 

threats is channel-based Physical-Layer (PL) privacy. It is of 

interest to a broad spectrum of people and organizations 

engaged in network administration and computer security. 

In this work, channel-based SA identification method is 

proposed to prevent serious consequences. The Physical 

Layer (PL) properties are utilized in order to detect SA. As a 

unique channel feature, the Prime Elements of a Digital 

Channel Representation (PE-DCR) are identified. In this 

work, a detection method is developed which is built on PE-

DCR to detect SA in stable and varying radio surroundings. 

The challenge of SA detection is changed into a 1st-Class 

Categorization (1-CC) issue for the changing radio setting 

where the channel covariance is fluctuating. An active 

detection system based on Bidirectional Long Short-Term 

Memory (BiLSTM) Neural Networks (NN) as Back 

Propagation Forward Scheme (BPFS) is proposed to 

effectively manage this issue. Results from simulations 

validate the viability of the proposed detection methods. The 

proposed method achieved detection accuracy of 80%. 

Keywords—spoofing attacks identification, bidirectional long 

short-term memory, 5G   

I. INTRODUCTION

5G and advanced mobile communication systems are 

being considered to form a fully connected network [1]. 

That is, very high dense network allowing large amount of 

traffic, heterogeneous networks, different kinds and 

priority of traffic with high degree of operational flexibility, 

scalability and so on. Additionally, because of large 

supported applications and services, this network is 

expected to provide high level of security, authenticity 

within limited time-bound and coverage area [2]. In fact, 

security and authenticity has always been a challenge in all 

networks. But currently, this challenge has become 

increasingly critical for societal interest. Conventionally, 

security has been executed in the intellectual levels of 

communications systems, above the levels of the 

mechanical data transmission [3]. Encryption is the 

primary technique for the data confidentiality in most of the 

current situation and networks. In highly dense networks, 

data encryption becomes difficult and computationally 

complex. Therefore, Physical Layer Security (PLS) has 

become very important for current and future networks. 

PLS provides an additional layer of safety on leading edge 

of cryptosystem and encryption [1]. PLS systems make use 

of the difference between the main and monitoring 

networks as well as the inherent irrationality and 

reciprocity of wireless media [1]. It also makes use of a 

difference in transmission strength received by legal and 

hostile networks, whereas the security feature of 

cryptographic relies on the (limited) processing capability 

of the adversary. According to communication theory, the 

quantity of data gathered by malware may be decreased if 

the transmission signals are created to increase the 

similarity measurement between the transmitters and the 

receiver. As a result, sensitive information included in 

transmissions cannot be intruded over due to PLS 

protections. 

Spoofing Attack (SA) is a kind of PLS threat as it tries 

to forge identity of the senders. The attacker uses false 

identities like an Internet Protocol (IP) address to appear to 

be a valid user. The attacker may then proceed illegally 

from this, to carry out more sophisticated threats, such as 

Denial-of-Service (DoS) attacks and Man in the Middle 

(MITM) attacks [4]. Therefore, detection of spoofing attack 

is important. SA detection uses the built-in characteristics 

of communication networks to identify various emitters in 

various places. Detection of identity of SA is done by 

exploiting wireless PL characteristics, such as Received 

Signal Strengths (RSS) [5], channel impulse responses [6], 

channel frequency responses [7], etc. Several specific 

physical layered security measures deal with fixed 

instances, and often need a collection of trained data 

identification [4]. Typically, wireless carriers use a 

communication security mechanism to verify the integrity 

of consecutive images on the premise that the images’ 

intervals fall inside the program’s calibration period [8]. In 

addition, the current monitoring systems for PL, SA only 

identify the hackers each individually. Rapid and effective 

identification is challenging to perform whenever a 
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massive proportion of Legitimate Users (LUs) must be 

considered, as in the case in denser communication 

networks and Internet of Things (IoT) devices. The SA 

could be determined if the monitoring system finds many 

transmissions with a certain identifier but originating from 

separate communication systems. Upon this, SA warning 

can be triggered and further countermeasures including 

resuming communication and changing the key might be 

used by authorized users. These SA detection techniques 

are already in use, however, still improvement is needed in 

future networks. Given the distinctive qualities of 5G 

communications, it is challenging to sustain good 

detectability using the traditional channel attributes 

included in current identification techniques [8]. In 

addition, the Signal-to-Noise Ratio (SNR) of the 

eavesdropper may be comparable to or even superior to that 

of the legal channel owing to the inherent unpredictability 

of the medium; particularly when the eavesdropper is 

nearer the source than the true recipient. Wyner’s theories 

thus may not work in such circumstances [9]. In the 

broadcast channel and the Gaussian channel, studies of the 

achievable theoretical level against eavesdropping were 

conducted in part as a result of Wyner’s work. These 

methods have motivated a significant amount of past study 

initiatives for various fading channels from an information-

theoretic perspective [10]. In particular, we examine the 

fading channel models that have successfully captured mm-

Wave situations in 5G. 

Failure to verify the communication’s source is a typical 

error in the detection of spoofing attacks. In other words, 

failing to verify if an incoming message is coming from a 

reliable source or whether it has been faked. Neglecting to 

observe user behavior in order to spot abnormalities is 

another error. Attacks that use spoofing sometimes entail 

strange activity, including signing in from an odd place or 

at an odd hour. Utilizing single-factor authentication only: 

While it may effectively stop spoofing attacks, multi-factor 

authentication is often not employed in many systems. 

Spoofers may easily acquire access by stealing or guessing 

passwords in the absence of multi-factor authentication. 

Many algorithms and methods, including as signature-

based detection, Machine Learning (ML), Bayesian 

networks, deep learning, and biometric authentication, are 

used to identify spoofing attacks. 

This work proposes a new SA identification approach 

for mmWave 5G networks. The prime elements of digital 

channel virtual representation PE-DCR are recognized as a 

distinctive channel property. To recognize SA in both 

steady and dynamic radio environments, two detection 

techniques are considered based on PE-DCR. For the stable 

radio environment, Neyman-Pearson (NP) testing-driven 

SA detection is proposed, where the channel link is steady 

based on the l2-norm of PE-DCR. To enable channel-based 

SA detection in 5G communications, PE-DCR is 

introduced which is inspired by the newly developed 

signal-processing technology in mmWave communication 

namely, channel virtual representation. PE-DCR is more 

responsive to the transmitter’s position. The main 

contributions in this work are as follows: 

• Proposed a new channel characteristic called

channel virtual representation to prevent SA in

mmWave 5G communications.

• Developed NP testing-based SA detection based on

the 12-norm of PE-DVR in a static radio

environment.

• Proposed an active detection system based on

“Bidirectional Long Short-Term Memory (BiLSTM)

Neural Networks (NN)” as Back Propagation

Forward Scheme (BPFS) to effectively manage

Cross-Correlation Spectral Magnitude Learning

(CCSML) issue. In fact, CCSML is related to SA

detection for the dynamic radio environment.

The rest of the paper is structured as follows. State of art, 

the most recent and relevant literature is briefly included in 

Section II. The system framework and proposed 

framework/methods is described in Section III. Simulation 

findings are presented and discussed in Section IV. The 

study’s conclusion is presented in Section V.  

II. RELEVANT LITERATURE

Recently, PL authentication/security in wireless 

communication has attracted significant research interest. 

It provides information-theoretic security by exploiting the 

randomness of PL characteristic of wireless channel. PLS 

analysis across a variety of 5G supporting technologies has 

been carried out. It includes massive MIMO, millimeter 

wave communications, network information, non-

orthogonal multiple access, and full-duplex. Unlike 

encrypted communication approaches which assume an 

investigator lacks the computational power to solve 

complicated mathematical tasks in a specific timeframe [11, 

12]. 

An in-depth investigation at 5G networks, with an 

emphasis on how to use machine intelligence to fix the 

most pressing issues. Many issues, including subpar beam-

forming and slow synchronization with large time spans 

[13], must be considered via signaling methods before the 

resulting data transmission rates can be determined. A 

complete analysis of the state of HetNets cybersecurity, 

including the numerous underlying techniques and 5G 

developments are reviewed. Most PLS strategies may be 

used in harsh environments and with restricted embedded 

platforms [14]. There is a lack of an extensible, general, and 

theoretical methodology for classifying many PLS methods 

presently in use to prevent remote active surveillance. This 

is developed into a broader idea and strong alternative that 

can supplement or even replace cryptographic techniques, 

which present its own set of challenges and difficulties [15]. 

Focus has been given to hostile ML oriented attacks on 

transmission schemes with the central server using a Deep 

Neural Network (DNN) to serve a large number of User 

Equipment’s (UEs) and dividing the transmission capacity 

across many symmetrical sub bands. 

As the fundamental optimizing technique is a 

challenging topic that can’t be effectively handled by 

methodological tools [16], a data-driven deep learning 

solution is usually necessary. Making available ubiquitous, 

security, and almost real-time communication is the 

primary challenge to creating a smart integrated society 
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[17]. It includes a summary of the state of research in 

Intelligent Reflecting Surface (IRS)-aided wireless 

technology with an emphasis on feasible outcomes to real-

world technical challenges. Using a large number of active 

reflectors, data may be reflected in real time [18]. 

Therefore, it is important to prevent the SA in mmWave 

5G environment and to apply the NN tool for detection and 

optimize performance analysis. 

III.  PROPOSED METHODOLOGY   

In spoofing assaults, the adversary inserts fictitious 

messages into a conversation that is otherwise genuine 

while using a false identity. This false message will 

contaminate the original messages and by using false 

identity they can steal the information. Channel-based PL 

detection is one potential solution towards this PL threat. In 

this work, it is suggested to use the special properties of 

virtualized channels to effectively implement channel-

based identification in mmWave and Single Input Single 

Output (SISO) 5G communications.  For the purposes of 

this discussion, let’s consider a 5G Wireless Network (WN) 

consisting of a Base Station (BS), a Legitimate Client (LC), 

potentially Spoofing Hackers (SHs), and users as shown in 

Fig. 1. Once a message has already been obtained, the BS 

might analyze its network parameters. It could be possible 

to deduce the frequency of the connected transmitters (Tx) 

from the planes or preambles of this message.  SISO and 

mmWave technology would be installed in transmitters and 

Receivers (Rx). Standardized 5G communication methods 

between Base Stations (BS) and Logical Nodes (LNs) may 

benefit from beamforming technology. Moreover, all LCs 

are permanently installed in the network at predetermined 

nodes, while SHs are placed at random but cannot be at the 

same nodes as LCs. The 5G massive Multiple Input 

Multiple Output (MIMO) deployment is shown in Fig. 2 

but Single Input Single Output (SISO) is considered as 

initial work before implementing MIMO. It aids in 

boosting transfer speeds, expanding network reach, and 

strengthening wireless connections’ dependability.  

 

 
Fig. 1. 5G Massive MIMO application setting [19]. 

 
Fig. 2. Framework of the Bi-LSTM modal. 

 

Furthermore, let’s assume that SH is a skilled subscriber-

spoofing hacker. The SH has the ability to change a variety 

of data, including the IP/MAC addresses of the sending and 

receiving nodes, the sequence number, the frames 

validation, and more. For identifying the key to be 

compromised, it would need persistent monitoring of the 

channel in between BS and the permitted users. Even if the 

victim can never be replaced, the SH can find relief from 

the identical mmWave SISO. Any time during the 

transmission session, the intruder may launch the attack 

under a fake identity and send bogus packets during that 

time. 

Identification framework: Hypothesis analysis is often 

used in channel-based spoofing identification studies to 

determine whether the identity data package was indeed 

sent by the intended transmitter. Let’s suppose that a 

package containing the channel data H is sent by a 

transmitter, with the identity data i(H) announcing the real 

emitter. The channel-based spoofing attack identification 

may be developed using Eq. (1) because H can be identified. 

 

𝐻0: ζ(H) = 𝜖                 (1) 

 𝐻1: ζ(H) ≠ 𝜖                 (2) 

where the neutral hypothesis 𝐻0 indicates that ϵ is the 

actual transmitter of this packet. The transmitter ϵ did not 

send the package, according to the contrary hypothesis  𝐻1. 
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The uniqueness of channel modes is the foundation for H 

identification. The propagation idea states that when the 

transmitter’s location moves by the degree of a frequencies, 

the channel decorrelation will occur rapidly. Theoretically, 

relevant channel conditions will change greatly as long as 

the spacing between the transmitters exceeds the frequency, 

which would be 10mm for devices at 50GHz. As a result, 

the transmitter of such acquired data packet is believed to 

remain unchanged if the receiver may retain the channel 

state for the most latest transmissions and the channel 

information of the data obtained and the channel recordings 

are similar. Nevertheless, the spoofing attack may be 

identified since the acquired packets might come from 

several broadcasters. The spoofing attack warning is 

produced when the spoofing attack identification is 

effective, enabling authorized clients to take extra 

safeguards like continuing communication and modifying 

the code. It is crucial to note that even the spoofing 

assailant’s channel is included in the channel record, the 

identification technique still works as the acquired packets 

and the channel account will alter dramatically when a real 

user sends packets. The obtained signal may be identified 

by BS using a machine learning based identification system 

and the ML technique might execute in the application 

layer process while the objective indicators and training 

dataset (TD) arrive from the PL. Moreover, both a steady 

radio field and a mobile dynamic radio setup are taken into 

consideration. The channel connection between the packets 

that are acquired and those that are recorded is constant in 

a stable radio situation, but it will change frequently in a 

dynamic radio settings. 

A. Channel Virtual Representation 

It is possible to build a channel virtual description for 

mmWave communications by using a geometrical 

distribution channels. Considering the fragmented 

multipath layout in mmWave, as shown in Eq. (3), a 

geometrical channel notion with dispersion caused by ray 

tracing could be utilized to explain the network. 

𝐻 = √
𝑁𝑇𝑥𝑁𝑅𝑥

σ
∑ 𝜔𝑎 𝛼𝑅𝑥(φ𝑅𝑥 , 𝑆)𝛼𝑇𝑥

∗ (φ𝑇𝑥 , 𝑆)
𝐷
𝑖=1   (3) 

where 𝑁𝑇𝑥  and 𝑁𝑅𝑥  indicate the antenna numbers of the tx 

and rx, correspondingly. The mean direction is denoted by 

σ. 𝜔𝑎  is the appropriate attenuation factor for a 

complicated Gaussian distribution with a 0 averages, and D 

stands for the number of dispersion. The actual “angel of 

departure and angle of arrival” angles on the broadcast and 

receiving sides are indicated by the symbol  φ𝑇𝑥, 𝑆 

and φ𝑅𝑥 , 𝑆. The antenna matrix replies are represented by 

vectors 𝛼𝑅𝑥  and  𝛼𝑇𝑥
∗ . The mmWave SISO channel is 

represented by defined simulated reception and broadcast 

orientations using channel digital modeling. The virtual 

recognition correlates to the network description about 

evenly spaced temporal angles if the antenna arrangement 

is a 𝐷𝑚  directional uniform linear matrix. Discrete 

Fourier transform (DFT) matrix obtained as: 

𝑀 =
1

√𝐷𝑚
[𝑏(𝜃0), . . . , 𝑎(𝜃𝐷𝑚−1)]

𝑇                      (4) 

The digital channel description illustrated in Eq. (5) is 

predicated on this DFT unified matrix. 

𝐺 = 𝑈𝑟𝐺𝑉𝑈𝑡
∗ =∑∑𝐺𝑉(𝑥, 𝑦)𝑎𝑟(𝜃𝑟,𝑞)𝑎𝑖

∗(𝜃𝑡,𝑝)

𝑁𝑡

𝑦=1

𝑁𝑟

𝑥=1

(5) 

where,  𝑈𝑟  and 𝑈𝑡  are unified DFT matrix that may 

represent the constant digital obtain angle and constant 

digital transmission angle that evenly sampled the unit 

angular space, respectively. The item 𝐺𝑉  in the digital 

channel matrix 𝐺𝑉(𝑥, ) captures the gains of the respective 

pathways. Virtual bins are denoted by the letters  𝜃𝑟,𝑞 , 

and 𝜃𝑡,𝑝 . Eq. (6) may be used to express the connection 

between the actual channel model and the route virtual 

description based on Eqs. (3)−(5). 

𝐺𝑉(𝑥, 𝑦) = ∑ ∝𝐿 𝑓(𝑁𝑟 , φ𝑟,𝑙 −
𝑞

𝑁𝑟

𝐿

𝑙=1

)𝑓 

      (𝑁𝑡 , φ𝑡,𝑙 −
𝑃

𝑁𝑇
)                   (6) 

𝑔(𝛽, 𝛾) =
1

𝛽
∑ 𝑒−𝑗2𝜋𝛾𝑙
𝛽−1
𝑙=0   (7) 

where the 𝑔(𝛽, 𝛾)function is denoted in Eq. (7). 

The Eq. (6) conclude that datasets of a flattened form of 

scattering at digital orientations make up the digital 

image 𝐺𝑉(𝑥, 𝑦). This means that the PC-location CVRs on 

the digital angle matrices will display the characteristics of 

the angles of all primary scatter. A SISO channel is 

investigated, operating at 60GHz with 1 × 1 antenna and 

the number of main scatters is 7. Typical channel 

characteristics illustrate a chaotic environment, which 

makes it hard to depict the mmWave channel’s direction 

and sparseness. Instead, the channel virtual portrayal might 

be used to denote scatter characteristics, as the PE-DVR 

can characterize scatters of different orientations using 

corresponding sets of virtual bins. All scattering can be 

detected once the antenna separation is large 

enough  (𝑁𝑟 , 𝑁𝑇) . These characteristics might be more 

useful than conventional channel qualities for identifying 

mmWave SISO channels. 

B. Identification Premised on Ml  for a  Dynamic Radio 

Field 

In order for ML-based approaches to accomplish 

classification, a classifier must be developed using both 

optimistic and pessimistic Training dataset. Two issues 

need to be addressed before using PE-DCR for SA 

detection in a dynamic radio environment. The most 

effective means of collecting information about 

unsuccessful training scenarios are discussed. (i) Valid 

clients have trouble obtaining samples of these hackers due 

to the difficulty of doing so in a radio setting where the 

network connection variables are dynamically changing; (ii) 

how to effectively upgrade the categorization modal to 

accommodate the varying radio setting where the network 

connection variables are dynamically changing. This work 

proposes a novel digital Bi-LSTM architecture and 
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recasting the problem of identifying spoofing attacks as a 

1-CC subject as a means to tackle this challenge. Structure 

of the Bi-LSTM modal is shown in Fig. 2. 

Five levels, including an input layer, a BiLSTM layer, 

and three completely connected layers, are proposed. 

Because of the restricted storage capacity of a PL, the input 

to the BiLSTM layer is a digital data series of length L. In 

addition, for each set of intricate information, a real two-

dimensional matrix is constructed. This results in a 2xTM 

size for the data sent into the BiLSTM layer. To construct 

a system for series-to-series regeneration, similar 

framework to that of a sequential analysis is used, but the 

process of producing the BiLSTM layer to a serial one is 

altered. The system’s output in series mode is a 2 × 𝐿 

array, however selecting a different mode has no effect on 

the architecture. The multiplexer of the system is the 

procedure of the sequenced phase to collect the intended 

output at each sample interval. 

One-class categorization identification: 1-CC 

identifies the intended messages by using an ML technique 

designed specifically for positive training dataset. Hence, 

the ML classifier can only use one kind of TD. For the 

spoofing attack identification training sets, only typical 

cases were allowed. 

Let 𝐴𝑡𝑓 = [𝑎𝑖 ,  𝑏𝑖]  denotes the training factors, 𝑎𝑖 ∈

ℝ𝑛 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… ,𝑀  and S is the amount of the 

instructing sets. The intended label is the single property of 

the related phase, i.e. 𝑦 = [𝑦𝑖] [2, … . ,2]𝑙×𝑀. As a result, 

the 1-CC seeks to build an appropriate machine learning 

system using the distance measure 𝑓 ∶ 𝑋 ⊆ ℝ𝑛 → ℝ. The 

one-class model may provide the appropriate prediction 

values for a group of testing information   𝐷𝑡𝑓.𝑎 =
[𝑎̂1, … . . , 𝑎̂𝐾]. 

Let 𝑋̂𝑘 = 0 represent the normal situation, and 𝑋̂𝑘 =
1 represent the spoofing attack scenario. Eq. (8) represents 

the illustration of the spoofing attack identification issue.  

 𝑝(𝑦̂𝑘) = {
𝑋̂𝑘 = 0       𝑓𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 

𝑋̂𝑘 = 1                 𝑓𝑜𝑟 𝑆𝐴
 (8) 

The Bi-LSTM based architecture will then be introduced 

to perform this ML-based spoofing attack identification. 

C. Proposed Spoofing Identification Using Bi-Lstm 

Framework 

Three processes make up the Bi-LSTM architecture 

which has been displayed: data processing, training, and 

digital updating. An illustration of this system is shown in 

Fig. 3. During data preparation, the original data are 

normalized and assessed. The generator and classifier are 

then built using these inputs in the training phase. 

Adjustments to the communication environment may be 

made to the classifier at any time throughout the 

identification process. The details of each step is discussed 

as follows:   

Data processing: Both measurement and normalisation 

are often used in data processing.  

 

Fig. 3. Proposed flow diagram. 

 

Normalization: The goal of normalization is to translate 

the relevant data from a specific data collection onto the 

virtual network channel array. To locate PE-DVR, filtering 

is used with a threshold of t. The array of a channel may be 

transformed into a vector and a particular data region.   

Measurement: Two different criteria are utilized to 

quantify the real division between the receiving channel 

and the channel record. The initial unit of measurement is 

the Euclidean distance (ED), which is given in Eq. (9). 

𝐼(𝐸𝐷)(𝐶, 𝐶∆) = ||ℎ, ℎ∆||
2  (9) 

where, C stand for the acquired channel, 𝐶∆  is for the 

channel history, and ||. ||2 is for the Frobenius standard. 

The Pearson correlation coefficient (PCC) is a second 

metric in Eq. (10). 

𝐼(𝑃𝐶𝐶)(𝐶, 𝐶∆) =
∑ (𝐶𝑖−𝐶̂)(𝐶∆𝑖𝐶∆)̅̅ ̅̅ ̅𝑁𝑟𝑙
𝑖=1

√∑ (𝐶𝑖−𝐶)
2𝑁𝑟𝑙

𝑖=1
√∑ (𝐶∆𝑖−𝐶∆)̅̅ ̅̅ ̅2𝑁𝑟𝑙

𝑖=1

    (10) 
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where, 𝐶𝑖  and 𝐶∆𝑖  denote a channel vector component

and 𝐶∆ and 𝐶∆̅̅ ̅ represent the mean readings.

Training procedure: The training process includes both 

the preparation of the generator and the guidance of the 

classifier. Using the target information (i.e. positive 

training dataset (PTD)), the classifier distinguishes the SA 

condition from the average case, while the producer 

generates negative training data (NTD). The PTD’s 

characteristics are used as a basis for teaching the generator. 

If the recording data is to be used in an investigation of a 

spoofing attack, the PCC between the recording data and 

the NTD must be less than if the data were to be used in a 

trial of a spoofing attempt. The ED in a normal case also 

has to be larger than it would be in a spoofing attack. This 

finding may inspire the development of a system for the 

production of NTD based on the characteristics of PTD. Let 

Nd stand for the negative dataset shown in Eq. (11), and let 

R stand for an asymmetric region from which the NTD may 

be selected at random. 

𝑁𝑑 = [𝑁𝑑,𝑖
(𝑃𝐶𝐶), 𝑁𝑑,𝑖

(𝐸𝐷)]2×𝑛𝑑 ∈ R (11) 

Therefore, Eq. (12) may be used to depict the creation of 

the negative dataset. 

R subject to 

{

0 ≤ 𝐼𝑑,𝑖
(𝑃𝐶𝐶) < 𝐼𝐶

(𝑃𝐶𝐶)

𝑋 ≥ 𝐼𝑑,𝑖
(𝐸𝐷) > 𝐼𝐶

(𝑃𝐶𝐶)

||𝑁𝑑 − 𝑃𝐷||
2  ≤ 𝑅𝑠

𝑅𝑠 = 𝐷𝑠 + δ

    (12) 

The surface radius of the PTD is denoted by  𝑅𝑠, while

the center of the collection of the positive data is denoted 

by 𝑃𝐷. The 𝐷𝑠 value denotes the difference in size between

the positive and NTD. X is just intended as an empirical 

number and represents the potential upper limit of the 

produced NTD. δ may be improved during the training of 

the discriminator since it is a soft margin slack parameter. 

A solitary concealed layer of LSTM NN serves as the 

foundation for the classifier. To produce input weights X, 

output weights Y, and bias B, which are shown in Eq. (13), 

is the goal of training a NN with one hidden layer for 

categorization. 

𝑚𝑖𝑛
𝑋,𝐵,𝑌

𝑃𝑙𝑜𝑠𝑠 = ∑ (∑ 𝑌𝑖𝑔(𝑋𝑖 . 𝑎𝑖 + 𝐵𝑖) − 𝑏𝑗
𝐾
𝑖=1

𝑛
𝑖=1     (13) 

where K and N stand for the number of neurons in the 

concealed layer and the number of TD, correspondingly, 

and stand for the training samples. B is also the designation 

for the practice sample. 

Eq. (14) may be used to determine the output matrices of 

the concealed layer if the activity factor of the NN is g(H). 

⊝= [
𝑔(𝑋1, 𝑏1, 𝑎1) … . 𝑔(𝑋𝑘 , 𝑏𝑘 , 𝑎1)

⋮                               ⋮
𝑔(𝑋1, 𝑏1, 𝑎𝑛) … . 𝑔(𝑋𝑘 , 𝑏𝑘 , 𝑎𝑛)

]     (14) 

Hence, the task of solving a linear system may be 

reduced to the training of a single hidden layer NN. 

⊝𝑍 = 𝑏 ⊝⊝1⊝1= 𝑏    (15) 

where 𝑏 = [𝑏1, 𝑏2, … . 𝑏𝑛] is the label of the TD.

Eq. (16) may be used to compute the output levels of the 

NNs if the matrix ⊝ is established through activation and 

TD. 

𝑧 =⊝+ 𝐵 ⊝ 𝑍 =⊝+,⊝+ 𝐵   (16) 

where,  ⊝+ is the moores-Penrose generation inverse of

⊝. As a result, Eq. (17) may be used to express the training 

efficiency 𝜙 if the forecast attribute for the TD is 𝐵̂.

𝜙 =
‖𝑏−𝐵̂‖𝑙0

𝑛
(17) 

where‖. ‖ indicates 𝑙0 norm that detects the number of

non-zero values. 

Moreover, Eq. (18) defines a trade-off between 𝜙 and 

𝑅𝑠  that must be made to improve the classifier and

generator. Simple linear computing may be used to tackle 

this efficiency challenge. 

min 1 − Φ + 𝑅𝑠
Ψ 

(18) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

1 − Φ ≥ 0.99;
𝑅𝑠 = 𝑅𝐶 +Ψ

Ψ ∈ [0,∞); .
; 

Identification procedure: While the detection process 

progresses; the proposed system might periodically update 

the classifier to take into account new information about the 

surrounding environment. To illustrate, suppose that N is 

the total number of TD, Qx is the set of PTDs that have just 

been confirmed, 𝑌 ((0)) is the set of output levels for the 

previous hidden layer, and Y ((1)) is the set for the current 

hidden layer. As shown in Eq. (19), the original output 

matrix is ⨀ ((0)) , and a new one,  ⨀ ((1)) , may be 

generated using the new data. 

⨀(1) = [
𝑔(𝑋1, 𝑏1, 𝑎̃1) ⋯ 𝑔(𝑋𝐿 , 𝑏𝐾 , 𝑎̃1)

⋮ ⋱ ⋮
𝑔(𝑋1, 𝑏1, 𝑎̃𝑁) ⋯ 𝑔(𝑋𝐿 , 𝑏𝐾 , 𝑎̃𝑁)

] (19) 

Eq. (20) may be used to resolve the novel output 

weights 𝑋1, where 𝛾 = ⨀(0)
𝑇 ⨀(0) +⨀(1)

𝑇 ⨀(1).

𝑌(1) = 𝑌(0) + 𝛾
−1⨀(1)

𝑇 (𝐵(1) −⨀(1)𝑌(0)  (20) 

Algorithm 1 presents the suggested Bi-LSTM method’s 

pseudo-code. 

Algorithm 1: Proposed Framework 

Require Training sample GV.

Iterate for every cycle 

Data preparation 

i. Normalization; 

ii. Determine the PTD’s using Eq. (15) and (16); 

Training procedure: 

i. Acquire the NTD by Eq. (17);

ii. Train classifier based on Eq. (18); 

iii. Optimization based on Eq. (19);

Identification process: 

Depending on the classifier, determine the forecast value 
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        if y= 0 

                 Accept this message x̃ 

       else 

                Raise alarm. 

       end if 

 Adjust the classifier by eq. (20) 

End Repeat 

 

To simulate, MATLAB tool is used on a 64-bit Windows 

desktop with an i7-7700 processor, 16 GB of storage, and 

the “Monte Carlo experiment” data set. In this investigation, 

it is shown show that the practical angle of departure and 

angle of arrival (AoD/AoA), i.e., ∅_t, l, and ∅_r, l, can be 

uniformly generated arbitrarily without compromising 

generality (0, 2π). It is assumed that each scattering creates 

a new channel in the propagation matrix, and that L is the 

maximum number of scatters. The attacker’s channel in a 

spoofing assault is also distinct from the legitimate channel. 

In a typical setting, the channel correlation may be 

represented by Eq. (21) of Jakes’ model. 

𝐻𝑑(𝑘 + 1) = 𝑥𝐻𝑑(𝑘) + 𝜔(𝑘)          (21) 

where  𝐻𝑑(𝑘 + 1)and 𝐻𝑑(𝑘)  represent the channel data 

collected from two subsequent data from similar tx. A is the 

network connection variable, and  𝜔(𝑘)  denotes an 

independence of 𝐻𝑑  zero-mean complicated Gaussian 

procedure 𝜔(𝑘). Eq. (22) defines the variance of ω(k). 

𝜎𝜔
2 = (1 − 𝑥2)𝜎𝐴

2             (22) 

Practically stated, the phrase 𝐽0(2𝜋𝑣𝑇/𝜀), where 𝜀  is 

frequency, 𝑣  is the node’s velocity of motion, and 𝐽0 

stands for the Bessel functionality of the initial type and 0th 

type, may be used to denote the channel correlation 

coefficient  𝑥.  Consider a range of sustainable and 

communication factors, SNRs, the number of antennas, and 

the number of TD, to assess the efficacy of the suggested 

ML-based method. Hence, the 1-CC identification method 

is suggested. In addition, Eq. (23) efficiency is taken into 

account and used the detection accuracy 𝑃𝐷𝐴 as a quality 

criterion. 

𝑃𝐷𝐴 = 1 − (𝑃𝑀𝐷 + 𝑃𝐹𝐴)            (23) 

where 𝑃𝐹𝐴 stands for the false alarm rate and 𝑃𝑀𝐷 = 1 −

 𝑃𝐷  stands for the miss detection rate. 

The probability of detecting a signal accurately or event 

in a certain system or channel is referred to as probability 

detection accuracy (𝑃𝐷𝐴). On the other hand, the channel 

correlation parameter measures the correlation or 

connection between various parts or sections of a 

communication channel. 

IV.  RESULT AND DISCUSSION 

In this section, simulation results are described to verify 

the channel-dependent SA identification methods. In signal 

processing and communication engineering, the probability 

of detection accuracy 𝑃𝐷𝐴 vs SNR graph is often used to 

assess how well a detection system or a communication 

system performs in the presence of noise. The trade-off 

between the chance of detection and the probability of false 

alarms at various levels of SNR is examined by plotting the 

𝑃𝐷𝐴 against SNR.  

As the communication channel is not constant, the 

network connection variables are kept constant throughout 

training and testing of the proposed system in static 

scenario. Fig. 4 shows the detection accuracy 𝑃𝐷𝐴 results 

for various values of the channel correlation parameter. The 

findings demonstrate that the Bi-LSTM frameworks 

suggested model i.e. BPFS offers detection accuracy 

almost in the range of 60-80% with respect to the channel 

correlation value. For instance, it is observed that when 

channel correlation value is 0.7, then detection accuracy is 

about 80%. This indicates spoofing attack can be detected 

up to 80%.  As channel correlation increases, detection 

accuracy will improve. Detection accuracy will be slightly 

lower if correlation parameter is lower. Here bidirectional 

approach is discovered which has not been considered 

earlier by researcher to the best of our knowledge. Thus, it 

can be concluded that it provides reliable accuracy for the 

variety of channel correlations. 

 

Fig. 4. Detection accuracy vs channel correlation in static scenario. 

 

 
Fig. 5. PDA vs SNR performance in static scenario. 

 

Next, for the same static scenario, detection accuracy at 

different SNR ratios is seen in Fig. 5. In a communication 

system, the SNR is a crucial metric that measures how 

powerful the intended signal is in comparison to the 

ambient noise. In general, there is a significant correlation 

between SNR and the detection accuracy. It is observed 

from the simulation results that detection accuracy 

becomes better as the SNR rises. This is due to the fact that 
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a greater SNR makes it simpler to separate the signal from 

the noise since the signal power is stronger in comparison 

to the noise power. The proposed detection system with 

optimum SNR depicts that detection effectiveness is 

improved. For example when the SNR is 5 then the 

detection accuracy of the proposed BPFS framework 

reaches 60%. At the lower SNR of 20 dB to -15 dB 

detection accuracy is observed as 0% and it is gradually 

increases from −13 dB. 

Next, in dynamic scenario, the performance of SNR and 

detection accuracy is observed as shown in Fig. 6. A higher 

SNR results in more effective spoofing detection. The 

suggested approach has a high accuracy at higher SNR. The 

accuracy decreases at lower value of SNR. 

 

 
Fig. 6. PDA vs SNR performance in dynamic scenario. 

 

Furthermore, in dynamic scenarios, the networking 

environment might cause the system’s TD and 

identification input to come from different places. Fig. 7 

shows the detection accuracy 𝑃𝐷𝐴  results for various 

values of the channel correlation parameter. The findings 

demonstrate that the Bi-LSTM framework’s suggested 

model i.e. BPFS offers detection accuracy almost in the 

range of 68-80% with respect to the channel correlation 

value. For instance, it is observed that when channel 

correlation value is 0.9 then detection accuracy is about 

80%. This indicates spoofing attack can be detected up to 

80%. Compare to static scenario, in case of dynamic 

scenario, detection accuracy performance is improved at 

lower channel correlation. The proposed work is limited to 

SISO.  

 
Fig. 7. Detection accuracy vs channel correlation in dynamic scenario. 

V.  CONCLUSION 

The Bi-LSTM architecture is proposed for mmWave 5G 

network to prevent PL-SA. The proposed method manages 

ML-based SA detection based on prime elements of a PE-

DCR. Simulation results show that the detection rate of the 

proposed method is much superior to that of the standard 

methods. The detection accuracy of a traditional system is 

only around 60% in a static radio scenario and for the 

proposed approach is 80%. In terms of training 

effectiveness and detection accuracy, the proposed Bi-

LSTM framework outperforms the most well-known 1-CC 

classifiers, and the detection accuracy in a variable radio 

setting exceed 99%. The proposed work is limited to SISO 

and hence it can be extended further in future to implement 

the MIMO and massive MIMO scenario. The system can 

be also analysed using NN methods and performances can 

be compared. 
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