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Abstract—Recently, unmanned aerial vehicles (UAVs) have 
found numerous telecommunication applications due to 
their high feasibility and low cost. Optimizing the UAV 
communications system requires determining the 
characteristics and sensitivity of wireless signals to 
propagation effects in different environments, and 
frequency bands. Hence, accurate path loss prediction 
models are vital for planning, evaluating, and optimizing 
UAV-based communication networks. This research 
proposes a path loss prediction model for UAV-to-UAV 
channels using two variants of the LSTM deep learning 
algorithm: bidirectional long short-term memory (LSTM) 
and encoder-decoder LSTM with hyperparameter tuning. 
The proposed model has been assessed using metrics such as 
mean absolute error (MAE), root mean square error 
(RMSE), and R-squared (R2). The proposed model has 
higher accuracy when compared with a traditional 
empirical model, and earlier machine learning models. 

Keywords—air to air, bidirectional LSTM, deep learning, 
LSTM, encoder-decoder LSTM, path loss, UAV 

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) 
have been increasingly utilized in telecommunications, 
thanks to their high mobility and deployment flexibility. 
Future wireless systems will require more diverse 
applications with orders-of-magnitude capacity 
improvement than current systems. So leveraging UAVs 
for wireless communication shows great promise as an 
essential element in upcoming wireless systems. UAV 
communication links differ significantly from terrestrial 
links. Key factors influencing UAV links include Line of 
Sight (LoS), Non-Line of Sight (NLoS), Doppler 
frequencies, and carrier frequency...Therefore, thoroughly 
studying the UAV links in communication is essential [1]. 

The propagation channel in a communication system 
refers to the reduction in signal power between the 
transmitter (Tx) and receiver (Rx). Accurately modeling 
this channel is crucial for evaluating wireless coverage 
and analyzing interference. Parameters such as path loss, 
propagation delay, Doppler frequency shift, and the 

arrival and departure angles of individual multipath 
components are derived from the channel impulse 
response (CIR). Path loss modeling is essential for 
assessing both the signal strength of the desired 
transmission and the interference levels from unwanted 
signals in wireless communication systems. Path loss 
values are typically obtained using a channel sounder or 
through simulations based on ray-tracing principles [2]. 

Various established statistical path loss models in 
typical environments, such as outdoor urban-macro, 
urban-micro, rural, and indoor settings, have been 
introduced in previous works [3–7]. These models have 
achieved standardization in both 3GPP and the 
International Telecommunication Union (ITU) [8, 9]. 
Among them, the floating-intercept (FI) model and the 
close-in (CI) model stand out as the two most widely 
used statistical path loss models [10, 11]. Typically, these 
models have been constructed based on the one-
dimensional (1D) affine function of a log-scaled distance 
between the transmitter (Tx) and receiver (Rx), with the 
residue from the fitted line further modeled as shadow 
fading. However, traditional log-distance path loss 
models fall short of capturing the complete complexity of 
the propagation environment, primarily due to their one-
dimensional structure. For instance, path losses are 
considered identical for receiving points situated at the 
same distance from a fixed transmitter (TX) along the 
fitted line. Additionally, in traditional path loss models, 
the shadow fading of closely located receiving points is 
regarded as independent [12]. These traditional models 
might not adequately represent particular environments or 
circumstances since they are frequently generalized. 
Because of this, their forecasts could not be entirely 
accurate and could cause issues when put into practice. 
Furthermore, path loss models usually consider perfect 
circumstances and ignore dynamic phenomena like 
multipath propagation, fading, and shadowing. These 
elements have the potential to greatly affect signal 
reception and quality, which is why the current models 
need to be substantially improved and expanded upon [13, 
14]. 

To enhance both accuracy and efficiency, machine 
learning (ML)-based propagation models have emerged 
as promising tools. Achieving offline training for these 
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models can be realized through the utilization of either 
measured or synthetic (simulated) data. Moreover, their 
distinctly non-linear characteristics position them as 
excellent candidates for predicting propagation 
parameters, such as path loss [15]. Various algorithms, 
including Random Forest and KNN, Support Vector 
Regression (SVR), Artificial Neural Network (ANN), and 
Long Short-Term Memory (LSTM) have been applied to 
train predictive models for path loss in UAV 
communication scenarios [16–18]. Besides, Mohamed et 
al. compared the major machine-learning-based path loss 
models for enclosed indoor channels. Their findings 
indicate that the RNN-LSTM algorithm achieves the best 
root-mean-square error (RMSE) performance [19]. This 
paper focuses on using deep learning to construct 
prediction models for path loss in the A2A scenario. The 
feasibility of the proposed models is assessed using MAE, 
RMSE, and R2 parameters. Additionally, the prediction 
accuracies of proposed models are also compared with 
the log-distance path loss model in the same public 
dataset. The results indicate that the models proposed in 
this study outperform traditional empirical models. 

In this study, we investigate the use of deep learning 
for modeling path loss in air-to-air communication 
networks. Our main contributions are: 

i) Identifying suitable features for the deep learning 
model based on an analysis of the impact of system 
parameters on channel loss. 

ii) Proposing a path loss prediction model for channel 
estimation in A2A-based UAV communication, utilizing 
Bidirectional LSTM and encoder-decoder LSTM 
algorithms. This model has been implemented and its 
accuracy evaluated on a publicly available dataset. 

The rest of the paper is structured as follows: Section 
II delves into problem formulation. Section III provides 
details proposed approach. In Section IV, a thorough 
analysis of the numerical results is conducted. Finally, 
Section V serves as the conclusion of the study, 
summarizing key findings and insights. 

II. PROBLEM FORMULATION 

 
Fig. 1.  A2A Chanel in UAV communications. 

The air-to-air (A2A) communication channel refers to 
the communication between two unmanned aerial 
vehicles (UAVs), where one acts as the receiver and the 
other as the transmitter, with a direct line of sight 
between them. The A2A link is illustrated in Fig. 1. This 
study focuses on predicting the path loss of the A2A 
communication channel between two UAVs operating at 
the same altitude above the ground. 

A. The Log-distance Path Loss Model 

The most used model for calculating path loss is the 
log-distance path loss model. In this model, path loss 
depends greatly on the distance between the receiver and 
the transmitter [20]. This value on a dB scale is calculated 
according to the following formula: 

𝑃𝐿ூሺ𝑑, 𝑓ሻ ൌ 𝑃𝐿ሺ𝑑ሻ  10𝛼𝑙𝑜𝑔ଵ ቀ
ௗ

ௗబ
ቁ  𝜒ఙ      (1) 

where: 
𝑃𝐿ሺ𝑑ሻ is the path loss value at distance d 
𝑃𝐿ሺ𝑑ሻ is path loss at the reference distance 𝑑 
𝜒ఙ  is a shadow fading term that follows Gaussian 

distribution with zero mean and deviation σ the path loss 
exponent set as α 

If 𝑑=1m; 𝑃𝐿ሺ𝑑ሻ can be calculated using Friis’ law 
by: 

             𝑷𝑳ሺ𝒅𝟎ሻ ൌ 𝟐𝟎𝒍𝒐𝒈𝟏𝟎 ቀ
𝟒𝝅𝒇

𝒄
ቁ.                (2) 

where f: carrier frequency 
c: light’s speed 
According to UAV communication, the height of the 

UAV is also a parameter that affects the channel loss. 
Zhu et al introduced the altitude-dependent mmWave 
path loss model as follows: 

𝑃𝐿ሺ𝑓, 𝑑, ℎሻ ൌ 𝑃𝐿ሺ𝑑ሻ  10𝐴ℎ
 𝑙𝑜𝑔 ቀ

ௗ

ௗబ
ቁ  𝜒ఙ  (3) 

where: 𝒉𝑼𝑨𝑽 is the altitude of the UAV 
The parameters A and B are dependent on the 

environment [21]. 

B. Path Loss Model Using Machine Learning  

In recent years, machine learning has seen significant 
advancements, with AI technology being applied across 
various fields to address challenges involving big data or 
problems where precise formulas are difficult to establish. 
The development of path loss models using machine 
learning has also garnered attention from researchers [17, 
22]. 

Table I presents results from recent studies that have 
addressed the prediction of path loss in UAV 
communication using machine learning. These findings 
demonstrate that machine learning techniques offer 
greater accuracy compared to traditional channel loss 
prediction methods. This study proposes two machine 
learning models based on the Bidirectional LSTM 
algorithm and the encoder-decoder LSTM to estimate 
path loss in UAV-to-UAV communication.  
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TABLE I.  RESULTS OBTAINED FROM SOME RECENT STUDIES 

Study Scenario Algorithm 
Evaluation error (dB) 
MAE RMSE 

Yan Zhang et al. [16] Helsinki urban scenario Random Forest 2.27 3.06 
A2A communication 

KNN 4.56 8.9 Frequency 
f = 2.4Ghz 

Ashraf Tahat et al. 
[22] 

Urban Environment KNN 3.515 4.49 
A2G communication ANN 3.306 4.616 

Frequency 
f = 433 MHz 

Regression Trees (RT) 3.726 5.373 

Frequency 
f = 900MHz 

KNN 3.155 4.465 
ANN 3.766 5.466 
RT 3.869 6.413 

Frequency 
f =5.8GHz 

KNN 4.705 6.383 
ANN 5.408 7.265 
RT 5.475 7.317 

Sarun Duangs-uwan et 
al. [17] 

Napier cenarios for GS-to-UAV SVR 2.125 4.782 
Frequency 
f= 2.4 Hz ANN 2.025 4.439 

Altitude = 5m 
Guanshu Yang et al. 

[23] 
Ottawa urban/ Helsinki urban Random forest  1.64 

Frequency 28 GHz; 2.4; 5.8; 28; 37 GHz KNN  3.85 
P.T.Q. Trang et al. [18] Full LOS conditions 

LSTM 1.48 1.98 
A2A communication 

 
Frequency 
f = 60GHz 

 
III. PROPOSED APPROACH 

A. The Dataset 

The data utilized in this paper is sourced from a 
publicly available dataset hosted on GitHub [24]. This 
dataset was collected during a measurement campaign 
lasting over three days using Facebook Terragraph 
channel sounders. The communication system operated 
between two UAVs at a 60 GHz carrier frequency under 
full line-of-sight (LOS) conditions. The measurement 
results were compared with 3GPP channel models to 
verify the data's reliability [25]. 

The dataset comprises 6,889 rows saved in a CSV file. 
The data preprocessing involved two steps. First, records 
with errors or missing fields were filtered out, and the 
empty or erroneous cells were filled with the median 
values of the respective fields. Next, the dataset was 
divided into two sub-datasets: 80% for training and 20% 
for testing, achieved through uniform random sampling. 
In the second step, the sub-datasets were normalized to 
reduce processing time and mitigate bias. 

B. Features Selection 

In traditional path loss prediction methods, signal 
strength loss is primarily determined by the distance 
between the transmitter and receiver. However, other 
factors—such as the characteristics of the transmitting 
and receiving antennas and the surrounding 
environment—also impact the communication channel. 
In UAV (unmanned aerial vehicle) communication, the 
altitude of the drones further influences this factor. 
Moreover, selecting the appropriate features is crucial in 
determining the effectiveness of a deep learning model.  
To achieve an accurate model, meticulous data analysis is 
crucial in crafting a suitable learning model. In this 
section, the data is analyzed to determine the influence of 

each parameter on path loss. The primary goal is to select 
appropriate features to input into the model. 

Fig. 2. depicts the impact of various parameters on 
path loss within the dataset.  

 

 

a) 

b) 
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Fig. 2. The relationship between distance and path loss considering 

other parameters of the system. 

In Fig. 2a, the influence of UAV altitude on path loss 
is demonstrated. The dataset encompasses channel 
parameters at three distinct altitudes: 6m, 12m, and 15m. 
The line graphs indicate that changes in the UAV's 
altitude do not alter the path loss trend, but there is a 
noticeable deviation in this value with varying drone 
altitudes. 

TABLE II.  THE SELECTED FEATURES 

Features name Description 

distance  The distance between 2 UAV (m) 
altitude  The altitude of UAV compared to ground (m) 

tx beam  Transmitter beam indices used for scanning 
rx beam  Receiver beam indices used for scanning. 
tx gain idx  Transmitter gain indices. 
rx rf gain idx, 
rx if gain idx 

The receiver gains indices from the Automatic 
Gain Control (AGC). 

tx temp  Transmitter junction temperature 
rx temp  The receiver node’s junction temperature 

 
Fig 2b illustrates the impact of temperature at the 

transmitter/receiver positions on path loss. The bar graph 
shows that most data were collected within the 
temperature range of 24 °C to 28 °C. In temperatures 
below 24 °C, path loss values tend to be lower compared 
to those in temperatures above 30 °C. Fig 2c and 2d 
demonstrate that alterations in the receive and transmit 
antenna beam index do not impact the transmission loss 
trend with distance. However, a significant change in 
transmission loss is observed when the index of the 

antenna beams is altered. This change is more 
pronounced at the receiver and slightly less prominent at 
the transmitter. Based on these findings, selected features 
for the learning and testing model are defined and 
presented in Table II. 

C. Performance Evaluation Criteria 

To investigate the performance of the path loss model, 
R2 (R-squared), MAE (mean absolute error), Mean 
Squared Error (MSE), and RMSE (root mean square error) 
have been used [26]. These performance indicators can be 
calculated by formulation following: 

𝑀𝐴𝐸 ൌ  
ଵ

ே
∑ |𝑦 െ 𝑦ො|

ே
ୀଵ  .                    (4) 

𝑅𝑀𝑆𝐸 ൌ  ටଵ

ே
∑ ሺ𝑦 െ 𝑦ොሻଶே

ୀଵ .                  (5) 

𝑀𝑆𝐸 ൌ  
ଵ

ே
∑ ሺ𝑦  െ  𝑦ොሻଶே

ୀଵ                (6) 

𝑅2 ൌ  1 െ  
∑ ሺ௬ ି ௬ොሻమಿ

సభ

∑ ሺ௬ ି ௩ሺ௬ሻሻమಿ
సభ

               (7) 

where: 𝑦ො is the ith predicted value, 𝑦 is the ith observed 
value. 

D. Proposed Path Loss Model  

A sequence model featuring two LSTM layers—one 
processing input in the forward direction and the other in 
the backward direction—is commonly known as a 
"Bidirectional LSTM" or "BiLSTM." Frequently applied 
in NLP-related tasks, this method involves processing 
data in both directions, enabling the model to enhance its 
understanding of relationships within sequences. The 
Encoder-Decoder LSTM, designed for forecasting 
variable-length output sequences, is particularly tailored 
for sequence-to-sequence problems in prediction tasks. 
Comprising two fundamental sub-models—the decoder 
and the encoder [26, 27]—this model addresses the 
challenges of such tasks. As recommended, LSTM, 
Bidirectional LSTM, and Encoder-Decoder LSTM 
algorithms are suitable for solving sequential problems. 
Notably, input data presented in different orders will 
yield varying effects on the output results. Leveraging 
this characteristic, we employ these algorithms to 
estimate path loss in UAV communication. Given that the 
output data (path loss) is primarily influenced by the 
transmission distance, this parameter holds a central 
position in the "long-sort" series of LSTM. 

Two models based on Algorithm 1 have been 
developed to address path loss prediction. The creation of 
this model involved three key steps: (i) Data 
Preprocessing—this includes normalization, and splitting 
the data into training and testing sets; (ii) Model 
Training—involving the training of bidirectional LSTM 
and encoder-decoder LSTM models specifically designed 
for path loss prediction; and (iii) Hyperparameter 
Tuning—where appropriate hyperparameters were 
selected for the bidirectional LSTM and encoder-decoder 
LSTM models to achieve targeted performance metrics, 
such as a specific RMSE value. 

 

c) 

d) 
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Algorithm 1: Algorithm for developing a path loss model based on 
deep learning 

Input: Draw: Raw dataset 
RMSEmax: Maximum acceptable Root Mean Square Error 
(RMSE) 

Output: Mpred: Predicted path loss model 
Preprocessing Data: 

Randomly split Draw into: 
𝒟train: Training dataset, 𝒟test: Testing dataset 

Normalize 𝒟train and 𝒟test: 
𝒟train_norm=Normalize(𝒟train) 
𝒟test_norm=Normalize(𝒟test) 

Set initial values for parameters: 
N← Initial number of neurons, LR← Initial learning rate 
Epochs← Initial number of epochs, RMSEinitial←∞ (initialize 
RMSE to a large value) 

Training Phase: 
Train the model M using 𝒟train_norm with parameters {N, LR, 
Epochs}. 
Calculate the initial performance metrics: 
   MAEinitial according to formula (4) 
   RMSEinitial according to formula (5) 

Hyperparameter Tuning and Model Optimization: 
While RMSEinitial>RMSEmax do: 

Tune the hyperparameters {N, LR, Epochs} using Random 
Search: 

Nnew,LRnew,Epochsnew} ← RandomSearch(N, LR, 
Epochs) 
Retrain the model M using 𝒟 train_norm with the new 
hyperparameters: 
M←Train_Model(𝒟train_norm,Nnew,LRnew,Epochsnew) 
Predict the path loss on 𝒟test_norm: 
Predictions←M(𝒟test_norm) 
Update the performance metrics: 

         MAEupdated according to formula (4) 
         RMSEupdated according to formula (5) 
      Update RMSEinitial←RMSEupdated 
End while 

 
The proposed model predicts path loss through the 

utilization of the Bidirectional LSTM algorithm and the 
Encoder-Decoder LSTM algorithm, as depicted in Fig. 3a 
and 3b. Although the Bidirectional LSTM model is less 
intricate, it demonstrates lower prediction accuracy 
compared to the Encoder-Decoder LSTM model. 

IV. NUMERICAL RESULTS  

In this section, the performance of the proposed 
approach is assessed. This includes evaluating path loss 

a) Bidirectional LSTM model 

b)  Encoder-Decoder LSTM model 

Fig. 3. The proposed path loss model 
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with distance, the cumulative distribution function (CDF) 
of path loss, mean absolute error (MAE), root mean 
square error (RMSE), and computation time 

Firstly, in Fig. 4, the path loss values are illustrated 
using the log-distance path loss model, the log-distance 
altitude-dependent model, and the proposed deep learning 
model. The green line and dotted line depict the 
relationship between path loss and the distance and 
altitude of UAVs based on the close free space model and 
altitude-dependent model. The results suggest that the 
path loss differences among these models are not 
substantial, but they deviate significantly when compared 
to the measured values. The red dots represent predicted 
values using the proposed model, and these values closely 
align with the true values. 

 
Fig. 4. The relationship between distance and path loss. 

Secondly, the discernible contrast in the accuracy of 
the deep learning model, as opposed to the log-distance 
model and KKN regression model, in predicting path loss 
is vividly portrayed in the cumulative distribution 
function (CDF) presented in Fig. 5. In a comprehensive 
comparison, both bidirectional LSTM and Encoder-
Decoder LSTM models outperform the benchmarks, 
encompassing path loss in free space, path loss altitude-
dependent, and KNN regression.  

 

 

Fig. 5. The CDF among models. 

Delving into specifics, the cumulative density of path 
loss errors smaller than 4 dB attains 100% when 

employing either bidirectional LSTM or Encoder-
Decoder LSTM models. In contrast, when utilizing the 
log-distance model, the cumulative density of errors less 
than 10 dB only reaches 80%. Achieving a path loss of 
less than 2 dB is confined to a cumulative probability of 
20% with the log-distance model alone. However, this 
figure significantly escalates to 80% when employing the 
bidirectional LSTM model and rises even further to 
approximately 90% with the use of the Encoder-Decoder 
LSTM model. 

Thirdly, the model's accuracy is evaluated using 
metrics: Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Square Error (RMSE). 
Table III compares the MAE, MSE, and RMSE values of 
the proposed model against those of the log-distance 
model. The proposed models demonstrate significantly 
higher accuracy, with an MAE of 1.183 dB for the 
bidirectional LSTM and 0.939 dB for the Encoder-
Decoder LSTM. In contrast, the log-distance model, 
Altitude dependent model, and KNN model result in 
much higher errors, with values of 6.521 dB, 6.944 dB, 
and 1.662 dB, respectively. The MSE, RMSE values of 
the proposed model also achieved better values than the 
traditional models. Furthermore, Table III also highlights 
the effectiveness of the proposed models through their R2 
values. The Encoder-Decoder LSTM model achieves an 
R2 of 0.979, and the bidirectional LSTM model achieves 
an R2 of 0.968, both indicating superior predictive 
performance in UAV communication path loss estimation. 

TABLE III.  THE MODEL'S ACCURACY 

Model MAE MSE RMSE R2 

Encoder-Decoder LSTM 0.939 1.511 1.229 0.979 
Bidirectional LSTM 1.183 2.357 1.535 0.968 
KNN 1.662 5.304 2.303 0.928 
Close Free Space 6.521 63.773 7.985 0.161 
Altitude dependent  6.944 73.684 8.583 0.018 

 

Finally, However, a drawback of machine learning 
methods, when compared to traditional approaches, is the 
computation time. Table IV presents the training time and 
predicting time of the proposed deep learning models. 
While the calculation time for the traditional model is 
negligible, the Bidirectional LSTM model requires 0.581 
seconds, and the LSTM Encoder-Decoder model takes 
0.821 seconds. (These results were simulated using the 
Python 3.9 programming language on a Lenovo 
ThinkPad with a Core i5 processor and 8GB RAM). 

TABLE IV.  EVALUATING ALGORITHM COMPUTATION TIME 

Model 
Number of records 

in test data 
Test time 
(seconds) 

Bidirectional LSTM 

1380 

0.581 
Encoder-Decoder LSTM 0.821 

KNN regression 1.219 

V. CONCLUSION 

This paper proposes two deep-learning models for path 
loss prediction of air-to-air channels in UAV 
communication systems, aiming to enhance the precision 
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of channel estimation. The outcomes underscore the 
superior accuracy of our proposed models in addressing 
the challenges of path loss prediction. The accuracy of 
our proposal has been assessed in terms of Mean 
Absolute Error (MAE) and Root Mean Square Error 
(RMSE), with the LSTM Encoder-Decoder model 
achieving the best performance at 0.939 dB and 1.183 dB, 
respectively. This proposal exhibits promise for the 
application of AI in UAV communication systems. 
Moreover, further research is needed to look into the 
intricacies of deep learning-based path loss predictions, 
specifically focusing on minimizing computation time to 
meet the real-time demands of upcoming applications. 
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