
A Semantic-Based Middleware for Supporting

Heterogeneity and Context-Awareness Within

IoT Applications

Mohammed Lamnaour 1, *, Moundir Raiss 1, Yasser Mesmoudi 1, Yasser El Khamlichi 1,

Abderrahim Tahiri 1, and Abdellah Touhafi2

1 Sigl, Ensate, Abdelmalek Essaadi University, Morocco
2 Department of Engineering Technology (INDI), Vrije Universiteit Brussel (VUB), Belgium

Email: mohammedlamnaour@gmail.com (M.L.); raiss.moundir99@gmail.com (M.R.); ymesmoudi@uae.ac.ma (Y.M.);

yelkhamlichi@uae.ac.ma (Y.E.K.); t.abderrahim@uae.ac.ma (A.T.); abdellah.touhafi@ehb.be (A.T.)

*Corresponding author

Abstract—Internet of Things technology, or IoT, is changing

people’s lifestyles. Smartwatches, smart cars, smart homes,

smart farms, and more – IoT has already been incorporated

into a variety of products and services. To efficiently manage

interactions between currently deployed smart things and

applications, IoT vendors worldwide continually introduce

different middleware platforms to meet application

development requirements. Therefore, finding a suitable IoT

middleware is a major issue faced by developers, especially

when the system contains heterogeneous smart things and

generates a vast amount of heterogeneous data. Most existing

IoT middleware models do not satisfy all functional

requirements and are tailored to specific system layers. To

address these issues, this paper proposes a middleware model

based on semantic web technologies and context-aware

computing as an enhancement of the previously developed

middleware MSOAH-IoT (A Middleware based on Service

Oriented Architecture for Heterogeneity Issues within the

Internet of Things). It uses a low-level ontology to

automatically register, classify and then identify

heterogenous smart things. The developed middleware

provides a search engine to determine the appropriate smart

object to respond to incoming requests of real-time

measurements from the user/application layer.

Keywords—internet of things, semantic web technologies,

context-awareness, ontology, middleware

I. INTRODUCTION

The integration of IoT solutions into our daily lives

increases our capability to observe and report existing

phenomena around us. Their primary goal is to enhance

daily human interactions in various fields, including

transportation, healthcare, industry, environment, logistics,

security, home automation, farming, and more [1].

However, despite the high growth of IoT applications, this

technology is not yet mature due to the absence of unified

norms and standards. Therefore, to provide high-

performance IoT solutions, research efforts should focus

on addressing the most common challenges in IoT, such as

security, energy consumption, data processing, high-level

knowledge, and heterogeneity [2, 3].

• Security: The risk of home invasion is one of the most

concerning aspects of IoT solutions for home

automation. Since the system collects personal data

such as the user’s financial information, habits, and

working hours, it becomes a prime target for hackers

and malware. Many IoT devices do not support

security updates and cybersecurity measures.

• Energy Consumption: Maintaining and ensuring

connectivity to the network consumes a significant

amount of energy. Most connected devices consume

roughly the same amount of energy whether active or

in standby mode, especially when they remain

connected. Many procedures are being developed to

ensure low energy consumption and optimize the

device’s battery life.

• Data Processing and Management: The rapid

development of the Internet of Things and its

integration into various fields, along with the

proliferation of connected devices, has led to an

increase in the amount of collected data. This increase

makes the management, processing, and analysis of

data increasingly challenging. There are several

approaches to IoT data management systems. Some

facilitate the integration of generated data, while others

provide efficient storage and indexing of structured and

unstructured data.

• High-Level Knowledge: Machines cannot understand

information as intuitively as humans can. Hence, it is

critical to discover knowledge from raw data by

collecting, modeling, and reasoning within the context.

• Heterogeneity: Industries and research communities

have introduced a large number of IoT applications,

creating a vast amount of heterogeneous IoT data from

various sources in different formats.

In our research work, we focus on issues related to data

heterogeneity and high-level knowledge. We aim to

Manuscript received June 6, 2023; revised July 30, 2023; accepted

September 4, 2023; published January 2, 2024.

Journal of Communications, vol. 19, no. 1, 2024

19doi:10.12720/jcm.19.1.19-27

mailto:mohammedlamnaour@gmail.com
mailto:yelkhamlichi@uae.ac.ma
mailto:t.abderrahim@uae.ac.ma
mailto:abdellah.touhafi@ehb.be

address these challenges by developing a middleware

capable of receiving data through the physical layer,

managing and processing it within the middle layer, and

making decisions in the high-level layer. To date, IoT

middleware with sufficient stability and efficiency has not

been realized yet [4]. One of the most commonly used

solutions to overcome the heterogeneity issue is the

implementation of semantics within IoT middleware. This

approach provides common information models using

heterogeneous sources of information that can interoperate

using the same concepts and relationships [3]. The

ontology and modeling capabilities provided by the

Semantic Web enable resources in the Internet of Things

to be described in a unified, machine-understandable

manner. Semantic ontology can also effectively address

the challenges posed by the dynamic expansion of physical

network system resources [5]. Semantic interoperability

refers to the ability of different parties to access and

interpret unambiguous data, as connected objects can

exchange data with each other and with other users [6].

In our work, we integrate Semantic Web and context-

awareness technologies into the MSOAH-IoT middleware

previously developed by our research team. This

integration allows us to integrate smart services into the

system. The developed middleware introduces a sensor-

level ontology to automatically register and classify smart,

heterogeneous objects based on their types, roles, and

embedded sensors. Subsequently, we utilize context-

awareness to extract knowledge from collected

information data through the data processing module.

Moreover, the request processing module permits

responding to the user/application layer to determine the

appropriate objects for real-time measurements.

The structure of this paper is as follows: Section I

defines the basic concepts and provides an overview of

related work. Section II presents the middleware

architecture in detail. In Section III, we delve into the

design and implementation of the proposed middleware.

Section IV discusses the results through a case study.

Finally, in Section V, we present concluding remarks and

outline avenues for future work.

II. BASIC CONCEPTS AND RELATED WORK

A. Semantic and Context-aware IoT Middleware

Numerous achievements have been made in the design

of IoT middleware; nevertheless, none of them

comprehensively addresses all IoT challenges. Each

approach has its unique strengths and weaknesses,

highlighting the need for new and innovative approaches.

To date, there have been excellent surveys in the field of

IoT middleware, with references [6−16] providing an

overview of the most recent semantic and context-aware

middleware solutions for IoT, as summarized in Table I.

TABLE I. SUMMARY OF SEMANTIC MIDDLEWARE FOR IOT
Semantic middleware Approach Context-aware Data management

OpenIOT Cloud based middleware yes Data Storage

UbiROAD Agent oriented middleware yes Data Storage

Ubiware Agent oriented middleware yes Data Processing & Aggregation

Hermes Event driven middleware yes Data Processing & Filtering

CHOReOS Service oriented middleware yes Data Processing & Aggregation

Hydra Service oriented middleware yes Data Storage

FIWARE Service oriented middleware yes Data Storage

CA4IOT Cloud based middleware yes Data Storage

CAMPUS Service oriented middleware yes Data Storage

CASF Service oriented middleware yes Data Storage

CoCaMAAL Service oriented middleware yes Data Storage, Processing & Aggregation

TABLE II. CHARACTERISTICS OF MQTT, COAP, XMPP, AMQP AND HTTP

Protocol

MQTT (Message

Queuing Telemetry

Transport)

COAP (Constrained

Application Protocol)

XMPP (Extensible

Messaging and

Presence Protocol)

AMQP (Advanced

Message Queuing

Protocol)

HTTP (Hypertext

Transfer Protocol)

Year 1999 2010 1999 2003 1997

Architecture publish/subscribe client/server client/server client/server client/server

Header size 2 bytes 4 bytes undefined 8 bytes undefined

Transport Protocol TCP UDP TCP TCP TCP

Security SSL/TLS DTLS SSL/TLS SSL/TLS SSL/TLS

Quality of

service/Reliability

QoS 0 - At most once

QoS 1 - At least once

QoS 2 - Exactly once

Confirmable, Non-

confirmable
XML-Stanzas

Settle format, Unsettle

format

Limited (via TCP

protocol)

Encoding format Binary Binary XML Binary Text

Licensing Model Open source Open source Open source Open source Free

Organizational

support

IBM, Facebook,

Eurotech, Cisco, Red

Hat,Amazon web service

(AWS), InduSoft,

Fiorano

Cisco, Contiki, Erika.
Facebook, Microsoft,

Apple
Microsoft, JP Morgan.

Global web protocol

standard.

Journal of Communications, vol. 19, no. 1, 2024

20

OpenIOT is a cloud-based middleware for IoT that

leverages the W3C Semantic Sensor Networks (SSN)

ontology to enhance the sharing of common semantics

among all IoT stakeholders. The key issues addressed by

OpenIoT middleware include data management, service

discovery, and semantic interoperability.

UbiROAD is specifically designed for smart traffic

monitoring and employs a multi-agent architecture.

Ubiware is a multi-agent-based middleware that

integrates software agents into each IoT resource. These

software agents are responsible for controlling the state of

the resource and employ ontologies to address

interoperability issues.

Hermes is an event-driven middleware that employs a

peer-to-peer architecture. It supports fault-tolerance, event

discovery, event delivery, and security. However, it has

limitations in terms of mobility and does not support

composite events or persistent storage for events.

CHOREOS is designed to provide large-scale services

for the Future Internet. It includes eXecutable service

composition (XSC) for service composition, eXtensible

service access (XSA) for IoT service access, and

eXtensible service discovery (XSD) for discovering

IoT/embedded services.

Hydra (LinkSmart): Initially funded by the European

Union and later renamed LinkSmart in 2014, Hydra aims

to integrate sensors into ambient intelligence systems. It

treats IoT devices as services and utilizes a Service-

Oriented Architecture (SOA) to manage IoT devices,

events, context, storage, and security.

FIWARE is based on a public cloud platform and offers

a rich library of modules known as Generic Enablers,

which provide various added-value functions (referred to

as services). Cognitive Enablers within FIWARE use

semantically abstracted metadata through well-defined

Restful APIs to make decisions.

CA4IOT (Context Awareness for Internet of Things) is

a sensing-as-a-service middleware primarily focused on

selecting the most suitable sensors based on specific tasks

or problems, rather than providing a comprehensive

middleware solution for managing context data.

CAMPUS (Context-Aware Middleware for Pervasive

and Ubiquitous Service) is designed to automate context-

aware decisions. It incorporates compositional adaptation,

ontology, and description logic/first-order logic reasoning.

CASF (Context-Aware Services Framework): CASF is

built upon semantic web services, known for their support

in automatic service discovery and integration.

CoCaMAAL short for Cloud-oriented Context-Aware

Middleware for Ambient Assisted Living (AAL), serves

multiple purposes, including context modeling for raw

data, context data management and adaptation, context-

aware service mapping, service distribution, and service

discovery. FIWARE, CA4IoT, CAMPUS, CASF, and

CoCaMAAL achieve the highest levels of context

awareness. However, it's important to note that they may

differ in their real capabilities, which are directly related to

their respective levels of context awareness [14]. The

desired awareness means that middleware could

adequately understand any change of current environment.

The majority of current context aware middleware

proposals only reach a very limited level of cognition and

awareness for their involved circumstances. Efforts should

be put to reach higher levels of context awareness [11].

B. Communication Protocols

Several instant messaging (IM) protocols permit

connecting devices in a distributed network and supporting

the next generation of IoT applications. The most famous

IM protocols used are MQTT and CoAP. These two

protocols connect devices through small-sized messages

and have lightweight message overhead [16].

Communication protocols such as HTTP, XMPP, and

AMQP are implemented in various IoT applications.

TABLE II demonstrates the advantages and disadvantages

of these protocols, as compared and presented by authors

in [17−19].

III. ARCHITECTURE OF THE IOT SYSTEM

There is an ongoing discussion about the layers in the

architecture of the IoT. Some approaches consist of a

three-layer architecture defined as the sensing layer, the

network layer, and the application layer. Others include a

four-layer architecture by introducing a service layer

between the application and the network layer for data

management.

According to the International Telecommunication

Union, each IoT architecture should be divided into five

layers: sensing, accessing, networking, middleware, and

application. However, more advanced models, such as

cloud-based architectures, and various six-layer models,

can also be found in the literature [13].

Fig. 1. Interactions between the proposed middleware layers and components.

Journal of Communications, vol. 19, no. 1, 2024

21

The proposed architecture shown in Fig. 1 is designed

to facilitate the collection of data from various sensors (e.g.,

wearable devices) and then manage this data to derive

meaningful information. Additionally, it enables real-time

interactions with the system and supports real-time

decision-making by analyzing sensor values. Besides the

Things Layer and the Application Layer, the proposed

architecture consists of the following layers:

Communication Layer, Controllers Layer, Storage Layer,

and Decisional Layer.

Moreover, the system interacts with two external layers:

The Users/Applications Layer and the Things Layer. It

describes the roles, functionalities, and components of

each layer, as well as their interactions, starting from the

low-level Things Layer to the high-level end Users and

Applications Layer.

A. Things Layer

The Things Layer is an external layer that represents

physical and virtual objects, whether they contain sensors

or actuators embedded within the environment. We define

different types of messages exchanged between these

objects and the smart gateway:

Registration-msg: This is an authentication message

sent to the smart gateway during the initial pairing process.

It allows objects to share their properties, such as ID, name,

location, and communication interface.

Sending Data-msg: After registration, data collected

from the environment is transmitted to the smart gateway

via a Sending Data-msg.

Applying action-msg: The smart gateway sends this

message to objects to trigger an action or request real-time

measurements.

Unregistration-msg: When an object is powered off, it

sends an Unregistration-msg to the smart gateway. This

message enables the smart gateway to remove the

registered object from the database."

B. User Layer/ Applications

This layer represents human users, applications or

services interacting with the system.

C. Communication Layer

The Communication Layer permits the retrieval and

sending of data from/to things. It should handle the

heterogeneity of communication protocols (BLE, WiFi,

etc.). The chosen protocol for transmitting data between

the smart gateway and things is MQTT; thus, the principal

component of this layer is the MQTT broker. The MQTT

protocol runs over TCP/IP, allowing things equipped with

WiFi to exchange data. For things equipped with BLE or

ZigBee, an additional module must be installed within

them to enable communication with the MQTT broker

D. Controller Layer

This middle-level layer is responsible for the following

functionalities:

• Receiving data from the lower-level layer and

transmitting information to the database or the end-user

application.

• Processing data to identify information/measures from

the data.

• Receiving requests from the decisional layer, allowing

the identification of things when additional measures

need to be collected for the decisional layer.

• Applying requests to send requests for measures or

apply decisions.

E. Data Management Layer:

This layer manages information after the data

formatting process through the controller layer. It serves as

a database that can be used by both the decisional and

application layers. It not only provides real-time values but

also historical values for further processing in the

decisional layer, utilizing machine learning algorithms or

high-level ontologies. Diene et al. [20] has classified data

into five categories as described in Fig. 2.

Fig. 2. Data types in IOT.

F. Decisional Layer

This component analyzes stored data, creates patterns,

and uses predefined thresholds and rules to make decisions.

For example, if an elderly individual is accustomed to

opening the door at 7 o’clock and fails to do so, certain

actions must be triggered, such as checking proximity

sensors, sending alerts to his phone to determine his

whereabouts, and monitoring his heartbeat, among others.

IV. DESIGN AND IMPLEMENTATION OF THE PROPOSED

MIDDLEWARE

A. Design of the Controller Layer

The controller layer in our architecture comprises two

principal functions: data processing and searching for

things. In this layer, we propose an ontology to describe

the things installed within the environment. As depicted in

Fig. 3, the controller layer is positioned as a middle-level

layer between the data management layer, the decisional

layer, and the communication layer.

We have designed a low-level ontology that describes

things and their characteristics. The proposed ontology is

updated through the data processing function, while the

search things function extracts information and performs

searches within the ontology based on SPARQL requests.

Journal of Communications, vol. 19, no. 1, 2024

22

1) Module 1: Data processing

This module is responsible for retrieving received data

from the communication layer, updating the designed

ontology, and sending values to the Data Management

Layer for storage.

Various types of messages are received and processed

by this component. Each object/thing sends an

identification message in JSON file format, which includes

their ID, name, device type (fixed or ambient), topic (set

to /device/on for this type of message), location where the

device is placed, and user information if the device is

associated with a person, such as in the case of a

smartwatch. Finally, the message includes a list of sensors

and actuators embedded in the device.

Fig. 3. Components of the controller layer.

For each detected event, the smart thing sends a

message in JSON file format that contains the following

information: topic, type (sensor/actuator), value of the

measured phenomenon, date of detection, and the unit of

measurement. This information is used to update the

created ontology.

2) Module 2: Request processing

This module contains a search engine that allows it to

determine the appropriate object and sensor to respond to

incoming requests for real-time measurements from the

decision layer. For instance, if the system requires the

user's location or heart rate, the module provides a list of

suitable things to fulfill the request by searching through

the designed ontology.

B. Implementation Tools

Building IoT solutions in real life is not an easy task due

to the heterogeneous nature of its IoT components. It is

highly recommended, before developing an IoT

application, to utilize simulation and testing tools at

various stages [21]. This ensures the application's

performance, reliability, and security [22]. Simulations are

frequently employed to monitor the system's behavior over

time, mitigating risks and avoiding the costs associated

with real-world testing.

IoT simulation tools allow the evaluation of real-life

scenarios in practice before implementing systems in

operational environments. They are vital for various

reasons, including ensuring the performance, efficiency,

and reliability of applications. Numerous simulation tools

are utilized in the IoT domain.

Journal of Communications, vol. 19, no. 1, 2024

23

In our case, we use Node-RED, which is an open-source,

flow-based development tool for integrating IoT hardware

devices, Application Programming Interfaces (APIs), and

online services. Node-RED is a free JavaScript-based tool

built on the Node.js platform, providing a visual, browser-

based flow editor [22, 23].

The programming language employed in our project is

Python. Python is a high-level programming language

known for its code readability and open-source licensing.

Its simplicity allows developers to focus on problem-

solving, requiring less code to achieve more. However, in

our model, we need to access the ontology for consultation

and modification. Python lacks a built-in library capable of

such operations. Therefore, we use Owlready, a Python

module designed for ontology-oriented programming.

Owlready enables the loading of OWL 2.0 ontologies as

Python objects, modification, and saving them to OWL

XML format. It also facilitates reasoning through HermiT

(included) [24].

C. Ontology Model

The proposed ontology serves two primary purposes:

firstly, modeling the entities' environment, and secondly,

establishing direct relations between the Application

domain, Device, Location, and User. We argue that this

relation is essential as it allows any IoT middleware to

extract knowledge about the environment and classify

every detected smart object. The process of designing the

ontology consists of eight steps: Specify the domain –

Consider reuse – List of terms – Specify classes – Specify

properties – Define instances. The first step in ontology

development is defining the ontology’s domain and scope,

answering some fundamental questions [25]: What

subjects will be covered by the domain ontology? What is

the use of the ontology? What types of questions could be

answered by the information in the ontology? The answers

to these questions may evolve during the ontology-design

process, but they help limit the scope of the model [26].

The primary goal of our ontology is to represent and

classify installed devices by application domain within the

covered environment. It must be capable of addressing the

following purposes: What is the list of covered devices?

What are the characteristics of each device? Is the device

linked to a location or user? What is the list of sensors,

actuators, and protocols embedded in each device? What

are the domains/sub-domains of the device application?

The second step involves considering the reuse of

existing ontologies if the model needs to interact with

specified ontologies or controlled vocabularies [26]. In our

case, we have skipped this phase. The next step involves

defining a list of terms. It is useful to list all the keywords

or terms that we want to use, whether in the form of

statements or explanations to the user [25]. What are the

terms we would like to discuss? What properties do these

terms have? What would we like to convey about those

terms? These questions are based on competency and the

elaboration of the questions in more detail. An example of

a list of terms for the case of a smart home includes:

Device/Sensor/Actuator/Domain/Sub-domain/User

/Location/communication protocols.

Step four begins by defining classes. From the list

created in Step three, terms are selected that either describe

related objects or other objects with independent existence.

These terms are classified in the ontology and become

anchors in the class hierarchy. Classes are also organized

into a hierarchical taxonomy. As shown in Fig. 4, the main

classes of this ontology are:

Fig. 4. Classes and properties of the proposed ontology.

Journal of Communications, vol. 19, no. 1, 2024

24

• Domain: This includes all application domains covered

by the received data. For example, the collected data in

a smart home can provide information about Health,

Security, Comfort, Energy, and Multimedia.

• Subdomain: Each domain has a list of subdomains, and

each subdomain is associated with a unique application

domain.

1) Health: Body temperature, Vitals (Heart rate,

blood pressure), accelerometer data, sleeping

hours, and step count.

2) Security: Intrusion detection, gas leak detection,

and fire detection.

3) Comfort: Light monitoring, outdoor weather

information, air conditioner control.

4) Energy: Electricity consumption, water

consumption, gas consumption.

5) Multimedia: Multi-room audio control.

• Device: This represents a real-world component that

incorporates a list of sensors, actuators, and

communication protocols.

• Actuator: An actuator allows a device to perform an

operation or control a physical entity.

• Sensor: The sensor is the device's module that

measures a physical property of the real world.

• Communication protocols: These protocols enable the

device to communicate with other devices.

• Location: This class is used to determine the location

of a device or the list of devices associated with each

location. For example, the list of locations in a smart

home may include the living room, guest room,

parents' bedroom, children's bedroom, and kitchen.

• User: This class is used to determine the list of devices

associated with each user.

Classes alone may not provide enough information to

address the competency questions from Step one [26].

After defining some classes, it’s necessary to clarify and

reflect on the internal structure of concepts. The extracted

properties are illustrated in Fig. 4, where “Individuals”

represent views and display types of Class Assertions,

which are instances of each class. In the proposed ontology,

the system creates individuals automatically.

V. RESULTS AND DISCUSSION

A. The Use Case

Using Node-RED, we simulated a smart home scenario,

specifically focusing on kitchen monitoring. Fig. 5

illustrates how the list of devices in this use case was

implemented in a flow within Node-RED. Once initiated,

each device sends a single message to the MQTT broker

(Mosquitto MQTT broker) with /device/on as the topic.

This message includes a list of properties such as ID, name,

a list of sensors, actuators, and embedded communication

protocols.

Fig. 5. Part of the Node-red Flow designed to represent the list of devices in the kitchen.

Fig. 6. Received messages in Mosquitos MQTT Broker.

In the proposed use case, we employed approximately

100 smart objects to simulate a smart home. We

programmed many smart devices to send measurements of

various phenomena, as demonstrated in Figure 5. These

measurements included temperature (Celsius), humidity

(percent), gas consumption (m3), smoke detection (m3),

Journal of Communications, vol. 19, no. 1, 2024

25

and motion detection (yes/no). Additionally, we used

actuators such as a door actuator and a lamp actuator

(On/Off).

To monitor the messages generated by this Node-RED

flow and received by the MQTT broker, there are various

tools available, as presented in [27]. These tools can be

highly useful when dealing with numerous devices and a

multitude of topics. For tracking all the received messages

and maintaining a history of these messages, we selected

MQTT Explorer due to its ability to display message

updates. Fig. 6 provides an example of messages captured

by MQTT Explorer. Nodes in Node-RED are programmed

using the JavaScript programming language. The

developed program embedded within nodes enables the

generation of random values between 0 and 100 for the

kitchen's temperature. These values are then sent within

the topic /location/kitchen/temperature to the MQTT

Broker.

B. Results

Fig. 7 illustrates the ontology created automatically

using Protégé once the system started. Fig. 8 displays a list

of instances for the sensor class.

Fig. 7. The proposed Ontology generated by the system.

Figure 8. Properties of the temperature’s sensor.

The system integrates all the information about the users

in the environment, domains, sub-domains, devices,

sensors, actuators, communication protocols, and locations

within a JSON file. It then saves instances of all the sensors

embedded within the smart objects in the same file format.

In the last figure, the properties of the temperature sensor

embedded within the instance 'device 1' are shown in detail.

As demonstrated, the system correctly classified all

devices and their properties as defined in the designed

ontology. Data and characteristics were collected from

smart things, and measures were extracted and transmitted

to the database.

VI. CONCLUSION

The overarching goal of this work is to develop a smart

gateway capable of automatically registering

heterogonous smart IoT objects, collecting measurements,

and processing data. In this paper, we introduced key

concepts related to semantic web and context awareness

technologies. We then conducted a survey of recent

Journal of Communications, vol. 19, no. 1, 2024

26

middleware approaches proposed by the research

community. Finally, we demonstrated the proposed

middleware's architecture and implementation. The main

components of the system are the data processing and the

request processing, each developed around a low-level

ontology model. The ontology implemented in the

middleware enables the automatic classification of each

registered object based on its type and role, ensuring high

performance and rapid response within the system. The

data processing module is responsible for retrieving data

received from the communication layer, updating the

designed ontology, and transferring measurements to the

data management layer for storage. The request-

processing module implement a search engine to facilitate

the determination of appropriate objects and sensors to

respond to real-time incoming measurement requests from

the decision layer. In future work, we plan to focus on

designing and implementing the decision layer within the

proposed middleware. This layer will enable the smart

gateway to detect anomalies based on user habits and

predefined thresholds, make decisions, and act through IoT

system actuators. We will utilize technologies such as

Machine Learning algorithms and semantic web

technologies to analyze and process stored and real-time

data, allowing us to define user habits and make the entire

system smarter, more reliable, and efficient.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Mohammed Lamnaour carried out the software

programming. Moundir Raiss, Yasser Mesmoudi and

Yasser EL Khamlichi helped in the testing of the code

components. Abderrahim Tahiri and Abdellah Touhafi

conceived the original idea. All authors contributed to the

design of the research and to the writing of the manuscript.

All authors had approved the final version.

REFERENCES

[1] M. Javaid, A. Haleem, S. Rab, R. P. Singh, and R. Suman, “Sensors

for daily life: A review,” Sensors International, vol. 2, p. 100121,

2021.

[2] M. Lamnaour, M. A. Begdouri, Y. Mesmoudi, Y. E. Khamlichi, and

A. Tahiri, “A semantic MSOAH-IoT design for improving

efficiency and solving heterogeneity within IoT applications,”

Journal of Communications, vol. 17, no. 6, pp. 443-451, June 2022.

[3] T. Elsaleh, S. Enshaeifar, R. Rezvani, S. Acton, V. Janeiko, and M.

Bermudez-Edo, “IoT-Stream: A lightweight ontology for internet

of things data streams and its use with data analytics and event

detection services,” Sensors, vol. 20, no. 4, p. 953, 2020.

[4] J. Zhang, M. Ma, P. Wang, and X. D. Sun, “Middleware for the

internet of things: A survey on requirements, enabling technologies,

and solutions,” Journal of Systems Architecture, vol. 117, 2021.

[5] G. Chen, T. Jiang, M. Wang, X. Tang, and W. Ji, “Modeling and

reasoning of IoT architecture in semantic ontology dimension,”

Computer Communications, vol. 153, pp. 580−594, 2020.

[6] A. Rhayem, M. B. A. Mhiri, and D. J. F. Gargouri, “Semantic web

technologies for the internet of things: Systematic literature review,”

Internet of Things, Vol 11, 2020.

[7] D. A. Cec, M. Novak, and D. Oreski, “Using semantic web for

internet of things interoperability: A systematic review,”

International Journal on Semantic Web and Information Systems,

vol. 14, no. 4, pp. 147–171, 2018.

[8] G. Fersi, “Middleware for internet of things: A study,” in Proc.

IEEE Int. Conf. Distrib. Comput. Sens. Syst. DCOSS, pp. 230–235,

2015.

[9] S. Hachem, T. Teixeira, and V. Issarny, “Ontologies for the internet

of things,” in Proc. 8th Middleware Doctoral Symposium

(MDS ’11), Association for Computing Machinery, pp. 1–6, 2011.

[10] N. Seydoux, K. Drira, and N. Hernandez, “Autonomy through

knowledge: How IoT-O supports the management of a connected

apartment,” Semantic Web Technologies for the Internet of Things,

2016.

[11] E. M. Li et al., “Context aware middleware architectures: Survey

and challenges,” Sensors, vol. 15, no. 8, pp. 20570–20607, 2015.

[12] P. Temdee and R. Prasad, “Introduction to context-aware

computing,” in Proc. Context-Aware Communication and

Computing: Applications for Smart Environment. Springer Series

in Wireless Technology, pp. 1–13, 2018.

[13] Q. Alfalouji, T. Schranz, A. Kumpel, M. Schraven, T. Storek, S.

Gross, A. Monti, D. Muller, and G. Schweiger, “IoT middleware

platforms for smart energy systems: An empirical expert survey,”

Buildings, vol. 12, no. 5, 2022.

[14] D. Rathod and G. Chowdhary, “Survey of middlewares for internet

of things,” in Proc. 2018 International Conference on Recent

Trends in Advance Computing (ICRTAC), pp. 129–135, 2018.

[15] R. Zgheib, E. Conchon, and R. Bastide, “Semantic middleware

architectures for IoT healthcare applications,” Enhanced Living

Environments. Lecture Notes in Computer Science, vol 11369, 2019.

[16] T. M. Tukade, R. M. Banakar, “Data transfer protocols in IoT-an

overview,” Int. J. Pure Appl. Math., vol. 118, no. 16, pp. 121–138,

2018.

[17] B. H. C ̧ orak, F. Y. Okay, M. G üzel, Murt, S. Ozdemir,

“Comparative analysis of IoT communication protocols,” in Proc.

Int. Symp. Networks, Comput. Commun. ISNCC 2018, 2018.

[18] D. Bilal, A. U. Rehman, and R. Ali, “Internet of things (IoT)

protocols: A brief exploration of MQTT and CoAP,” Int. J. Comput.

Appl., vol. 179, no. 27, pp. 9–14, 2018.

[19] Y. Mesmoudi, M. Lamnaour, Y. E. Khamlichi, A. Tahiri, A.

Touhafi, and A. Braeken, “A Middleware based on service-oriented

architecture for heterogeneity issues within the internet of things

(MSOAH-IoT),” Journal of King Saud University - Computer and

Information Sciences, vol. 32, no. 10, pp. 1108–1116, 2020\.

[20] B. Diene, J. J. P. C. Rodrigues, O. Diallo, E. H. M. Ndoye, and V.

V. Korotaev, “Data management techniques for internet of things,”

Mech. Syst. Signal Process., vol. 138, 2020.

[21] E. Ojie and E. Pereira, “Simulation tools in internet of things: A

review,” in Proc. 1st International Conference on Internet of Things

and Machine Learning IML’17, pp 1–7, October 2017.

[22] M. Ashouri, F. Lorig, P. Davidsson, R. Spalazzese, “Edge

computing simulators for iot system design: An analysis of qualities

and metrics,” Futur. Internet, vol. 11, no. 11, 2019.

[23] M. Lekic, G. Gardasevic, “IoT sensor integration to Node-RED

platform,” in Proc. 17th International Symposium INFOTEH-

Jahorina (Infoteh), pp. 1–5, 2018.

[24] J. Lamy, “Owlready: Ontology-oriented programming in Python

with automatic classification and high-level constructs for

biomedical ontologies,” Artificial Intelligence in Medicine, vol. 80,

pp 11–28, 2017.

[25] S. Nandhinidevi, K. Saraswathi, M. Thangamani, and M.

Ganthimathi, “Design and development of bird ontology using

protégé,” Mater. Today, pp. 1–6, Mar 2021.

[26] N. F. Noy and D. L. McGuinness, “Ontology development 101: A

guide to creating your first ontology,” Stanford Knowl. Syst. Lab.,

p. 25, 2001.

[27] A. C. Cristian, T. Gabriel, M. Arhip-Calin, and A. Zamfirescu,

“Smart home automation with MQTT,” in Proc. 54th International

Universities Power Engineering Conference (UPEC), pp. 1–5,

2019.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Communications, vol. 19, no. 1, 2024

27

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

