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 Abstract—One of the massive machine type communication 

(mMTC) applications for monitoring and sensing in 5G 

cellular network is the Internet of Things (IoT) based 

wireless sensor network (WSN). Non uniform battery usage 

by the nodes in these networks often results in creating 

energy holes or voids in the network making the network 

disconnected. An effective solution is to deploy multiple 

mobile nodes throughout the network, however finding 

optimal path for these mobile nodes is reported to be an NP 

hard problem. This paper proposes MAACH (Mobility 

Assisted Adaptive Clustering Hierarchy), an efficient 

mobility assisted clustering and routing framework for IoT 

based sensor network in 5G and beyond. Also, an elaborate 

method to calculate the exact path optimally for multiple 

mobile nodes is presented to alleviate non uniform energy 

dissipation of the sensing nodes. Simulation results show 

that our algorithm effectively finds the optimal trajectory of 

multiple mobile nodes in a distribute manner and also 

improves network stability period by 60-70% and the 

network lifetime by 70-90% across multiple network 

deployments.    

 

Keywords—IoT based sensor network, mobile nodes, 

clustering, routing, energy efficiency, network lifetime, 5G 
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I. INTRODUCTION 

Technological innovation and socioeconomic change 

are transforming the 5G cellular network business, which 

is expected to carry information quickly and support 

many applications. One use case for the 5G network is 

the massive Internet of Things (IoT) [1]. Massive 

Machine Type Communication is included in this 

(mMTC). One of the mMTC applications is the Wireless 

Sensor Network (WSN) for monitoring and sensing [2, 3]. 

In WSN, energy efficiency becomes a major problem. 

The limited power of each sensor node limits the 

utilisation of WSN. The research community is becoming 

increasingly interested in the scalability and load 

balancing problems for Wireless Sensor Networks 

(WSN), which serve as the enabling perception layer for 
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Internet of Things (IoT) networks, as a result of the IoT 

applications' unprecedented growth [4, 5]. 

As nodes in WSNs operate on finite battery power and 

have a finite transmission range, energy-efficient 

methods of relaying data from the network's sensing 

nodes to the base station is crucial [6]. Uneven battery 

usage of the sensing node, can result in the channel or a 

portion of network area being disconnected owing to 

energy constraints and prevent WSN from successfully 

transmitting end-to-end data, creating a network hotspot 

or energy hole within the target area of interest of the IoT 

deployment [7]. For multi-hop communication, eg., the 

nodes nearer to sink needs to forward data from the nodes 

far apart from the sink. As a result, they are the first 

nodes to deplete their battery power, whereas the other 

sensor nodes still have plenty of energy. In case of direct 

transmission or one hop communication from sensing 

nodes to the sink, nodes far apart from the sink depletes 

their energy more quickly than the other nodes due to 

considerable path loss of the transmission signal due to 

the long distance involved [8]. Such non uniform energy 

usage creates energy hole after few rounds of network 

operation that in turn causes network partitioning further 

restricting the coverage of the whole network for its 

entire operational lifetime [9]. 

In IoT based WSN, hierarchical communication 

paradigm emerged as a practical solution to deal with 

scalability, the node’s limited energy and computational 

capabilities as hundreds of nodes are distributed over an 

area of interest to sense the environment and then report 

on it [10]. Such a hierarchical communication framework 

for 5G IoT based WSN is illustrated in Fig. 1. 

In hierarchical communication framework viz. 

clustering, one node assumes the role of the coordinator 

or cluster head (CH) during each round [11-13]. The CH 

then gathers the data packets from each cluster member 

(CM) node, assembles them, and transmits them to either 

a distant base station (BS) or the next hop node on the 

path to the BS. The role of the CH is frequently shared 

across several cluster nodes in order to reduce this 

uneven energy consumption. Although such cluster-based 

schemes significantly minimize the overall energy usage 

by the individual nodes, overhead of cluster formation 

and optimal cluster head selection is a challenge in these 
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protocol [14]. Moreover, considerable computational 

requirement and energy wastage occurring due to the 

overhead involved in cluster formation and maintenance 

remains a major concern. Also, the problem of uniform 

energy usage by all nodes in the network still could not 

solved adequately by the clustering protocols because of 

the static nature of the cluster head nodes [15].  

 

 
Figure. 1. Hierarchical network of IoT nodes in 5G. 

One solution to mitigate the above problem involves 

each sensor node workout a suitable method to choose its 

next relay node towards the base station depending upon 

its remaining energy and distance from the best station or 

relay node [10]. Another approach is to using one or 

more mobile sink(s) or data collector(s) to collect sensed 

data from the sensing nodes and relay the collected data 

to the distance base station [16, 17]. While the former 

approach further burdens the limited battery powered 

energy constrained sensing nodes with huge 

computational and communication overhead, because of 

the many constraints must be considered, determining the 

optimal trajectory of the mobile data collector (s) and 

successively finding and appropriate routing strategy in 

itself post a difficult challenge [18-20]. Also, though such 

MDCs (Mobile Data Collectors) shares some load of the 

CHs and aids in conservation of the cluster head’s energy 

reserve by relieving CHs from long distance packet 

transmission to the BS, synchronizing the communication 

between the CH and the MDCs are often become the 

bottle neck for such communication framework [21, 22]. 

    With the development of M2M (Machine-to-Machine) 

communication and 3GPP communication, hierarchical 

communication framework in IoT based WSN where a 

set of static sensing nodes senses and a set of mobile 

nodes collects and sends the data to distance bases station 

becomes feasible and promising [23]. However, 

calculating the optimal path for the mobile nodes while 

ensuring uniform energy usage by all the static sensing 

nodes has been reported to be a NP-hard problem [24].  

Several schemes and interesting works were reported 

in literature, that enables one or more MDCs to move 

around the network for data collection and reporting [15, 

16, 22, 25-27], though no work shows exactly how the 

path for such mobile collectors can be calculated 

optimally in a distributed manner. 

To the best of our knowledge, this is the first attempt 

to use mobile and static sensing nodes for IoT data 

collecting in 5G without clustering methods. Also, this is 

the first attempt to establish the exact ideal path of 

multiple mobile nodes in a distributed manner.  Our 

approach assists efficient data gathering by the mobile 

nodes while maintaining uniform energy dissipation at 

the static sensing nodes. In our framework the mobile 

nodes self-propagate to maximize network coverage and 

minimize interference based on local information and 

network state. 

Such framework can be effectively be utilized for 

Internet of Things (IoT)-based precision agriculture, 

where static sensing nodes could monitor soil parameters 

like humidity [28] and mobile sensing nodes could be 

deployed in vehicles like tractors and drones to collect 

data [29]. A mobile robot might collect data from 

stationary sensors in an Internet of Things (IoT)-based 

health monitoring system, such as one in a hospital, and 

deliver it to a base station in a doctor's office.      

The paper is organized as follows. In section II, we 

discuss the related literature review. In section III we 

describe our proposed framework and methodology with 

network model, energy model and description of the 

optimal path calculation formulation and analysis. 

Section IV presents the simulations results. Finally in 

section V we conclude. 

II. RELATED WORK 

IoT based wireless sensor network has been the focus 

of research for recent years due to their common potential 

in numerous applications. Mobility in wireless 

environment is now considered with great depth as an 

advantage rather than being considered as a disturbance 

[12]. 

 In [8] authors proposed Low energy adaptive 

clustering hierarchy (LEACH) which is the first 

distributed clustered-based communication protocol 

where CH selection is done out using a random 

probabilistic model and the entire network is divided into 

many non-overlapping clusters.  

Later, a number of deterministic clustering and routing 

protocols that use different network characteristics for the 

topology setup have been presented [30]. Compared to 

the conventional LEACH protocol, the author of [4] 

significantly reduces network energy usage by combining 

the concepts of LEACH, mobile sinks, and rendezvous 

nodes. However, because it uses a single-hop data 

forwarding strategy, this type of methodology results in 

increased transmission energy. 

In the author of [24], authors suggested a heuristic 

technique to calculate directions and distances. The 

proposed method drives the data collectors in an 

undesired direction—that is, toward the nodes that 

produce the most data packets.  

In the authors of [31], authors proposed PEGASIS 

(Power Efficient Gathering in Sensor Information 
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Systems) which improves on the energy required to 

receive packets from multiple member nodes in the 

cluster. In PEGASIS forms nodes communicate to their 

nearest neighbor using greedy search forming a chain 

among the nodes and one of the nodes serves as the 

cluster head to send the packet finally to the base station.  

However, as the chain is formed selecting the neighbour 

nodes successively algorithm, it will generate long-chain 

causing considerable delay in forwarding packets for the 

nodes at the far end of the chain.  

In the author of [32] Proposed a location and lifetime 

biased clustering algorithm for large scale sensor network. 

They select and rotate the cluster head position based on 

the distance of the node from the base station and the 

elapsed operational lifetime of the network with respect 

to the expected lifetime of the network.   

When three-tier architecture was developed in [33], the 

idea of mobile collectors was first offered. The top tier is 

made up of WAN-connected devices, the middle tier uses 

data MULEs i.e. (Mobile Ubiquitous Local area network 

Extensions), or mobile transport agents, to establish 

connectivity in sparse WSNs, and the bottom tier is 

stationary sensor network nodes. MULEs used to move 

erratically, gather data from stationary sensor nodes, and 

then dump the information to the base station. Mobility 

of the collector is now introduced, which lowers traffic 

due to relaying of the traffic from sensor network, to 

solve the hotspot problem and balance the energy 

consumption among the sensor nodes. The key goal in 

this situation is to work with the original nodes in order 

to conserve energy and extend their lifespan without 

causing any network disconnections. 

In the authors of [34], the base station is mobile and 

the cluster head is chosen from additional common nodes 

rather than being part of a separate collection of bodies. 

In that paper, the BS (Base station) roams the CHS 

(Cluster Head Station) in a random fashion, gathering 

data about the positions, and then delivers the data in a 

table. Now, the routing of the path is based on the priority 

mentioned in the table, and the BS channels the 

communication when it is in range of the CH. 

In the authors of [35] proposed a distributed algorithm 

for mobile sink. Their algorithm is executed locally at 

each node. As it is a distributed algorithm the 

computational overhead is low, although their algorithm 

works for only for single sink and depends of 

computation of the sink trajectory by the resource 

constrained sensing nodes and substantial message 

exchange overhead between the sensing node and mobile 

sink.  

A sink relocation strategy based on the Queen Honey 

Bee migration process is proposed in the authors of [36]. 

Their algorithm works for cluster-based network whereby 

energy consumption balancing is attempted through an 

active scanning phase during the cluster setup. However, 

their algorithm considers restriction of too many 

variables for example confidence factor etc. which are 

calculated in a random manner. 

In the authors of [37] proposed a strategy for gathering 

data upon determining the energy expense for each 

sensor node, a genetic algorithm is used to select sink 

sojourn points. Though their algorithm is simple to 

implement, suitable for high density WSN, it entirely 

depends on base station to run GA algorithm for 

calculating next sink sojourn point and communicate the 

same to the mobile sinks in every round of network 

operation. 

In the authors of [38], the authors used ant colony 

optimization algorithm (ACOA) for calculating the path 

for mobile sinks for collecting data from the cluster based 

WSN with satisfactory energy consumption. They 

proposed to use multiple mobile sink one in each cluster 

for the network which clustered using LEACH algorithm. 

Then using ACO they find trajectory for these mobile 

sinks that move to and fro with respect to some starting 

point to collect data from a designated set of cluster 

heads. While the clustering the network itself is 

randomized, using computationally intensive ACO to 

computer the trajectory for the MS once and for all do not 

take in to account the dynamic nature of the network. 

In the authors of [39] proposed MEEC (Multiple data 

sink-based Energy Efficient Cluster-based routing 

protocol) where network is first clustered where the 

cluster head is selected depending on the node density, 

distance and remaining energy of the nodes. then multiple 

mobile sinks are deployed to share the burden of data 

forwarding by the relaying cluster head nodes. 

In the author of [40], authors proposed dynamic relay-

assisted clustering (DRAC) where sink deploys a mobile 

relay node that locates isolated nodes and chooses a new 

CH among them to preserve communication and 

coverage when a significant number of CHs in the system 

die or become unavailable. The system will reconfigure 

the network once it has attempted count times. 

A fuzzy logic-based MDC data collection technique is 

also used in the authors of [41]. The network is divided 

into zones in this case, and each zone has an MDC for 

data collection. To determine the competition radius of an 

alternative CH, the use fuzzy logic approach with various 

inputs viz. the closest node, energy, and density. As a 

result, CHs that are nearer to the MDC trajectory have 

larger clusters.  

However, most of the reported works resorted to 

restrictive path planning instead of finding a continuous 

optimal trajectory on the fly based on the dynamic state 

of the network. Thus, given a static deployment of the 

sensing network, calculating the optimal trajectory of 

these MNs that ensures the uniform energy usage across 

all nodes in the network over the entire operational 

network lifetime remains an open research problem.    

III. PROPOSED METHODOLOGY 

In this section, we describe our proposed framework 

viz. Mobility Assisted Adaptive Clustering Hierarchy 

(MAACH) for IoT based Sensor Networks in 5G. Our 
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framework consists of two types of nodes in the network, 

viz. a large number of static sensing nodes and a smaller 

number of mobile nodes that were distributed over the 

entire network to collect and process the data from the 

static sensing nodes and dispatch the data to base station 

via multi hop communication among the mobile nodes. 

The whole network is divided into multiple grids and 

initially the mobile nodes were transported to the 

approximate center of the grids before the network starts 

to operate. We also describe the detailed method for 

distributed calculation of exact optimal trajectories that is 

followed by the multiple mobile nodes distributed over 

the entire network in order to equalize the energy 

consumed by the static sensing nodes for communicating 

their data to the mobile nodes over the successive rounds 

of network operation.  

A. Network Operational Model 

The network consists of 𝑛  number of static sensing 

nodes (SNs) distributed over a region of interest using 

uniform random distribution and 𝑚  number of mobile 

nodes (MNs) (𝑛 > 𝑚). We assume the SNs are limited 

battery powered and disposable. The MNs do not have 

any such power restrictions or MNs have higher battery 

reserve than the static SN. The network is divided into 

multiple squared grid cells and each grid is assumed to be 

serviced by one MN. The SNs have a finite fixed constant 

delectable energy E0. Each SN will have a minimum 

fixed threshold energy Eth, below which it will be 

considered as a dead node. The SNs can tune their radio 

and invest only the amount of energy that is needed to 

reach the nearest MN, while transmitting. The base 

station (BS) is situated somewhere outside the network, 

and all sensed information by all the SNs are sent to the 

base station via the MNs in their respective network grid 

cells.  

Before the start of network operation the MNs are 

dispatched and placed to the approximate center of each 

grid. The network operation is distributed in rounds, 𝑟 =
{1,2,3, … , 𝐿}, where L is the expected operational lifetime 

of the deployment. On reaching at each sojourn point the 

MNs broadcast a “ADV(Advertisement)” packet to all 

static sensing nodes of the grid. The ADV packet 

contains the ID of the MN, and its updated location of 

MN. In response to the ADV packet, the SNs reply with a 

“RESPONSE” packet send to the MN by single hop or 

multi-hop transmission depending upon its range and 

remaining energy level. The “RESPONSE” packet 

contains ID of the SN, its location and current remaining 

energy level. On receiving the “RESPONSE” packet 

from the SNs in the grid, the MN broadcast a “Schedule” 

packet to all SNs. 

The SNs sends their data packets to respective MNs as 

per the “Schedule” received. The MNs after collect the 

data packets from all SNs in the network grid cell, 

aggregate the packet and sends to the base station (BS) or 

to the next hop MN on the path towards the BS. 

The MNs normally move to the next sojourn point at 

every 𝑘/𝐿 round [42], where 𝑘 is the number or SN in its 

grid cell being serviced by the respective MN, and L is 

the expected operational lifetime of the deployment. In 

special circumstances if a SNs remaining energy level 

reaches to a level such that it is unable to send its packet 

to the MN, then MN also moves to next sojourn point 

closer to that particular SN. 

The path followed by the MNs are calculated and 

governed by a greedy cost pruning method with the 

objective to minimize the variance in the average squared 

distance between all SNs in a network grid cell or cluster 

from the respective MN over the entire operational 

lifetime of the network, as well as to maximize the 

distance of an MN from the other MNs in the network to 

avoid interference among the MNs.  

 

 

Figure. 2. Network data packet flow diagram 

Fig. 2 depicts the node deployment, data flows in the 

network in our framework along with the mobility 

patterns of the mobile nodes. 

   Energy model 

Considering first order radio model, the energy 

expended by a node to transmit a k bit packet over a 

distance d is given by Eq. (1) as below: 

𝐸𝑡𝑥(𝑘, 𝑑) = {
𝑘(𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠𝑑2), 𝑑 ≤ 𝐷0

𝑘(𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑝𝑑4), 𝑑 > 𝐷0

  (1) 

 

where 𝜀𝑚𝑝  and 𝜀𝑓𝑠  are constant coefficients for multi-

path & free-space propagation respectively.  

If the distance between the transmitter and receiver, is 

smaller than the threshold distance, D0 free space 

propagation model is used, otherwise multi-path 

propagation model is opted.  

The energy expended to collect a k-bit packet, is given 

by Eq. (2) as below: 

𝐸𝑟𝑥(𝑘) =  𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐    (2) 

The energy expended to transmit a k-bit packet in a 

hop to hop multi path fashion can be calculated by Eq. (3) 

as shown belo:: 
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𝐸𝑡𝑥(𝑛, 𝑛 + 1) = ∑ 2𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐
𝑁
𝑛=1 + 𝑘 ∗ 𝜀𝑚𝑝𝑑4        (3) 

where n is the node that wants to send a k bit packet to 

the next node n+1. 

Given d as the distance between two nodes, the 

optimal hop count for data transmission from SN to MN 

and MN to the BS can be calculated by Eq. (4) as in the 

author of [36]: 

 

𝐻𝑜𝑝𝑡 =  √𝑑
3𝜀𝑚𝑝

2𝐸𝑒𝑙𝑒𝑐

4
   (4) 

B. Calculation of Optimal Trajectories of the Mobile 

Nodes 

Trajectory finding involves the plotting of the route 

between two points [43]. Optimal path finding is not the 

same as simple path finding. Optimal path finding takes 

factors other than the shortest path into account [44]. 

Other factors include presence of obstructions, energy 

considerations, node fidelity, etc.  

We divide the problem of finding the next optimal 

sojourn point for MN route at rth round of network 

operation into two sub problems. The first problem is, for 

any 𝑟 = {1,2,3, … , 𝐿} , where L is the expected 

operational lifetime of the deployment, we find the 

destination sojourn point of the MN after the rth round 

such that each MNs successively moves closer to the SNs 

who are at far apart in the previous rounds and move 

farther from the SNs that are closer to the MNs in the 

previous rounds, so that the squared distance between the 

MNs and SNs at each network grid cell can be equalized 

as far as possible over the entire operational network 

lifetime. The 2nd problem is to find the optimal path 

between two given points viz. current coordinate of the 

MNs and next destination sojourn points of the respective 

MNs, such that the MN should avoid coming in the 

wireless range of other MNs [45]. 

Our problem domain consists of a problem of finding 

the shortest path between two coordinates in a plane. 

Let P = (x1, y1) and Q = (x2, y2) be two points on the 

Cartesian plane, then the distance between P and Q is 

given by the following Eq. (5): 

𝑃𝑄 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2   (5) 

 

Energy E is dissipated by SNs according to the 

following relations as in Eq. (6): 

𝐸(𝑑[𝑀𝑁,  𝑆𝑁]) = 𝑘1(𝑑[𝑀𝑁,  𝑆𝑁])𝑤 + 𝑘2     (6) 

where 𝑑  is the squared Euclidean distance between the 

MN and SN, 𝑤 is the path-loss exponent, and 𝑘1 and 𝑘2 

are the parameters determined by the characteristic of the 

transceiver design and the channel [46]. 

𝑑 can be defined as in Eq. (7): 

      d[MN, SN]=[| x(t)-ai |2 + | y(t)-bi |2]1/2    (7) 

where 𝑥(𝑡),  𝑦(𝑡) are the two dimensional coordinates of 

the MNs at time instant t and 𝑎𝑖  and 𝑏𝑖  are the two 

dimensional coordinates of the static SNs. 

Let, in any particular network grid cell, there are m 

static sensing nodes (SN) and the energy spent by these 

SNs for the rth  round be 𝐸1𝑟, 𝐸2𝑟  ,….,𝐸𝑚𝑟. Suppose the 

coordinates of the SNs be SN1(x1, y1), SN2(x2, y2),…, 

SNm(xm, ym). We define the Center of Energy (CE) within 

a network grid cell or cluster as the Center of Gravity 

equivalent of the energy spent by an SN for 

communication /transmission with the MN at rth round as 

obtained from the transmission energy equation described 

in the energy model. Thus the coordinate for Center of 

Energy (CE) within the network cell at the rth round 

among all the SNs is represented by the following Eqs. 

(8)-(9): 

 

𝐶𝐸𝑟𝑥 =
𝐸1(𝑟−1)𝑥1+𝐸2(𝑟−1)𝑥2+⋯.+𝐸𝑚(𝑟−1)𝑥𝑚

𝐸1(𝑟−1)+𝐸2(𝑟−1)+⋯+𝐸𝑚(𝑟−1)
   (8) 

 

𝐶𝐸𝑟𝑦 =
𝐸1(𝑟−1)𝑦1+𝐸2(𝑟−1)𝑦2+⋯.+𝐸𝑚(𝑟−1)𝑦𝑚

𝐸1(𝑟−1)+𝐸2(𝑟−1)+⋯+𝐸𝑚(𝑟−1)
   (9) 

 

Thus the optimal sojourn point coordinate for the 

mobile node in the grid cell at the (r+1)th round is given 

by Eq. (10) as:  

 

(𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ,  𝑦𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = (𝐶𝐸𝑟𝑥, 𝐶𝐸𝑟𝑦)  (10) 

 

That is the next sojourn point coordinate for the mobile 

node in the grid cell at the (r)th round biased towards the 

SNs which have spent maximum energy in 

communicating with the MN in the (r-1)th round of 

network operation. This ensures that the SNs which were 

far from the MN, and hence had to spend more energy 

while transmission will be closer to the MN in the next 

round and vice versa. Thus, the average energy spent by 

the SNs will be uniform, which solves our 1st problem. 

The 2nd problem involves finding an optimal path 

between the source coordinate of the MN found at (r-1)th 

round and the destination coordinate of the MN found at 

(r)th round, such that the distance between the MNs of all 

the network grid cells is maximized to minimize the 

interference among the MNs [47]. For solving this, we 

use a cost based mathematical function and Dijkstra’s 

path finding algorithm. 

After we get the source & destination sojourn 

coordinate points of the MN at a particular round of 

network operation, we construct a rectangle such that the 

two points become the diagonal points. After 

constructing the rectangle matrix of dimension 𝑛𝑚, we 

divide the matrix into many individual cells of dimension 

𝑘𝑙, such that 𝑘 << 𝑛 and 𝑙 << 𝑚. Now starting from 

the source sojourn point coordinate, we follow Dijkstra’s 

algorithm to reach from the source sojourn point 

coordinate to the destination sojourn point coordinate. 

Supposing that there are some m fixed points for the 

places where other MNs are present, centred at points 

𝐸𝑡 =  (𝑎𝑡 ,  𝑏𝑡), t = 1,..., m, on same xy-reference plane. 

Additionally, supposing that there is MN moving in this 
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plane at a fixed velocity v, tracing a curve 

𝑧(𝑡) =  [𝑥(𝑡),  𝑦(𝑡)], which is dependent on time t.  

The benefit derived per unit incremental time at time t 

with respect to existing MN location i, by virtue of this 

path, is given by some function 𝑓(𝐷([𝐸,  𝑧(𝑡)])) of the 

distance 𝐷(∙) between the current MN and the other MNs, 

where, as obtained from Eq. (2), 

𝐷(𝐸, 𝑧(𝑡)) = [(𝑥(𝑡) − 𝑎𝑖)
2 + (𝑦(𝑡) − 𝑏𝑖)

2]
1

2 (11) 

 

Hence, the total cost derived over some time 

framework 𝜏 is given by 

               ∫ 𝑓(𝐷(𝐸,  𝑧(𝑡))𝑑𝑡
 

𝜏
         (12) 

In our framework, for the nature of the problem 

situation and the constraints placed on the MN (that it 

needs to be as far as possible from the other MNs at all 

times of network operation), it is more appropriate to 

consider a normalized objective function, namely, the 

total cost per unit time as below, 

∫ 𝑓(𝐷(𝐸, 𝑧(𝑡))𝑑𝑡
 

𝜏

∫ 𝑑𝑡
 

𝜏

   (13) 

Now, supposing that with respect to same frame of 

reference the path traced by the MNs can be represented 

as 𝑍(𝑥) =  [𝑥,  𝑦(𝑥)], and let Z denote the feasible set of 

functions 𝑍(∙) that satisfy any functional form restrictions 

and boundary conditions imposed on the path.  

We assume that y(x) is a twice continuously 

differentiable function of x. Now considering the MN 

moves with a uniform velocity 𝑣 we have,  𝑣 =  𝑑𝑠/𝑑𝑡, 

where ds is the incremental distance travelled in the 

incremental time dt. Thus, we obtain. 

𝑑𝑠 = √(𝑑𝑥)2 + (𝑑𝑦)2 =  √1 + (𝑦′(𝑥))
2

  𝑑𝑥 (14) 

where 𝑦′(𝑥) =  𝑑𝑦 /𝑑𝑥. 

Let 𝑋 denote the permissible variation in 𝑥, the total 

cost maximization problem based on (12) may be 

formulated as follows (where the constant scaling by v 

has been ignored). 

  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑧(𝑥)∈𝑧  

               ∫ 𝑓(𝐷(𝐸,  𝑧(𝑡))√1 + (𝑦′(𝑥))
2

  𝑑𝑥
 

𝑋
 (15) 

In a similar manner, using (13), we can formulate the 

problem of maximizing the total cost per unit time (or 

distance) as follows: 

 
𝐶𝑜𝑠𝑡  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   𝐹 =

                 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑧(𝑥)∈𝑧 

∫ 𝑓(𝐷(𝐸, 𝑧(𝑡))√1+(𝑦′(𝑥))
2

  𝑑𝑥
 

𝑋

∫ √1+(𝑦′(𝑥))
2

  𝑑𝑥
 

𝑋

   (16) 

 

Now, according to the problem in hand, we consider 

the cost problem using distance measures, when the path 

is restricted to begin and end at certain designated end-

points. More specifically, we restrict the path function to 

lie in the following set, where 𝜃 > 0, and ℎ  are given 

constants. Thus, 

𝑍 = {𝑍(𝑋)} = [𝑥, 𝑦(𝑥)]: 0 ≤ 𝑥 ≤ 𝜃,          (17) 

where 𝑦(0) = 0,  𝑦(𝜃) = ℎ𝜃,  and 𝑦(∙)  is twice 

continuously differentiable. 

Note that the analysis of this problem includes the 

situation in which MNs needs to "optimally" traverse 

from one point location to another, in some designated 

sequence. We consider the cost problem. 

As before, the existing coordinate of MNs are assumed 

to be located at the coordinates (𝑎𝑖 ,  𝑏𝑖),  𝑖 =  1, . . . ,  𝑚. 

The algorithm we proposed finds an optimal polynomial 

path for the MNs of degree n. Then we iteratively 

perturbs the path found via piecewise linear functions, 

using a progressively finer perturbation discretization. 

Each perturbed problem is equivalent to a shortest path 

problem, and is readily solved. From Eqs. (16)-(17), the 

cost function becomes 

 

 
∫ 𝑓(𝐷(𝐸, 𝑧(𝑡))√1+(𝑦′(𝑥))

2
  𝑑𝑥

 𝜃
0

∫ √1+(𝑦′(𝑥))
2

  𝑑𝑥
 𝜃

0

        (19) 

where, 𝑦(0) = 0,  𝑦(𝜃) = ℎ𝜃 . The above equation may 

be represented as 

∫ [(𝑥−𝑎)2+[(𝑦(𝑥)−𝑏]2+𝐾]√1+(𝑦′(𝑥))
2

  𝑑𝑥
 𝜃

0

∫ √1+(𝑦′(𝑥))
2

  𝑑𝑥
 𝜃

0

  (20) 

Consider a discretization of x in the interval [0,  𝜃] 
given by 𝑥 =  𝑘∆  for k = 0,1,..., N, N + 1, where 

(𝑁 +  1)∆ =  𝜃  for some integer 𝑁 ≥ 1 . Next, select 

some odd integer 𝑀 ≥  3 , and for each k = 1,..., N, 

choose M function perturbation values 𝑦𝑘𝑗 , 

𝑗 =  1, . . . ,  𝑀,  about the value 𝑦(𝑥𝑘),  where y(x), 

0 ≤  𝑥 ≤  𝜃.  

The solution obtained, 𝑦𝑘𝑗 = 𝑦(𝑥𝑘) + 𝛿[
𝑀+1

2
− 𝑗]  for 

𝑗 = 1, . . , 𝑀,  and where 𝛿 > 0  is some perturbation 

parameter.  

For example, with 𝑀 = 5 , we have 𝑦𝑘1 = 𝑦(𝑥𝑘) +
2𝛿,  𝑦𝑘2 = 𝑦(𝑥𝑘) + 𝛿,  𝑦𝑘3 = 𝑦(𝑥𝑘),  𝑦𝑘4 = 𝑦(𝑥𝑘) − 𝛿,  

and 𝑦𝑘5 = 𝑦(𝑥𝑘) − 2𝛿, for all 𝑘 = 1, … 𝑁. 
The problem posed is to determine the best piece wise 

linear function 𝑦𝛿(𝑥) as a solution of the problem of cost, 

where 𝑦𝛿(0) = 0, 𝑦𝛿(𝜃) = ℎ𝜃 , and 𝑦𝛿(𝑥𝑘) = 𝑦𝑘𝑗 ,  for 

some 𝑗 ∈ [1, … , 𝑀] , for each 𝑘 = 1, … , 𝑁,   are the 

breakpoints of 𝑦𝛿(𝑥), and where the integral in equation 

(20) is evaluated separately for each linear segment. 

The above problem is essentially the following shortest 

path problem.  

Consider a graph 𝐺𝛿  in which the coordinate 

(𝑥0, 𝑦01) = (0,0), represents the starting sojourn point 0, 

the coordinates (𝑥𝑘,  𝑦𝑘𝑗) for 𝑗 = 1, … , 𝑚 and 𝑘 = 1, … , 𝑛 

represent mn intermediate sojourn points, and the 
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coordinate (𝑥𝑛+1, 𝑦(𝑛+1)1) = (𝜃, ℎ𝜃)  represents the 

terminal sojourn point  t, 𝑡 ≈ (𝑚𝑛 + 1).  Then, construct 

a directed arc from point 0 to each of the intermediate 

points representing the coordinates (𝑥1, 𝑦1𝑗),  𝑗 =

1, … , 𝑚,  a directed arc from each points representing 

(𝑥𝑘+1, 𝑦(𝑘+1)𝑗),  𝑗 = 1, … , 𝑚,  for 𝑘 = 1, … , 𝑚 − 1,  and a 

directed arc from each sojourn point representing 

(𝑥𝑛,  𝑦𝑛𝑗), 𝑗 = 1, … 𝑚 to terminal sojourn point  t. 

Because of the structure of the graph, Dijkstra's 

algorithm, or equivalently, a dynamic programming 

routine, can be used to solve this problem in polynomial 

time of complexity in 𝑂(𝑀2𝑁). 
Hence, the principal task here is to compute the value 

of 𝐶𝑘[𝑦𝑘𝑝,  𝑦(𝑘+1)𝑞] via Eq. (20).  

Let 𝑠𝑘𝑝𝑞 ≈   [𝑦(𝑘+1)𝑞 − 𝑦𝑘𝑝]/∆  denote the slope of the 

corresponding straight line segment of 𝑦_𝛿(∙), we have 

from Eq. (20) that 

 

𝐶𝑘[𝑦𝑘𝑝,  𝑦(𝑘+1)𝑞] 

= ∫ [ (𝑘∆ + 𝑥 − 𝑎)2 + (𝑦𝑘𝑝 + 𝑠𝑘𝑝𝑞𝑥 − 𝑏)
2

+
∆

0

               𝐾] √1 + 𝑠𝑘𝑝𝑞
2 𝑑𝑥   (21) 

Thus by integration we get: 

  𝐶𝑘[𝑦𝑘𝑝,  𝑦(𝑘+1)𝑞] = 

   

  ({
[(𝑘+1)∆−𝑎]3

3
−

[𝑘∆−𝑎]3

3
+ 𝐾∆ +

∆

3
[3(𝑦𝑘𝑝 −

𝑏)
2

+ 𝑠𝑘𝑝𝑞
2 ∆2 + 3𝑠𝑘𝑝𝑞∆(𝑦𝑘𝑝 − 𝑏)]}√1 + 𝑠𝑘𝑝𝑞

2 )

  
(22)

 

 

We keep calculating the cost of each of the probable 

next sojourn point paths, choose the one with the 

maximum cost as with Eq. (22), and select it as the next 

point to go. We continue doing this until the destination 

sojourn point is reached. 

IV. PERFORMANCE EVALUATION 

To evaluate performance of our algorithm, we 

simulated along different similar important protocols 

recently reported in literature. We have used Matlab 

Simulink [48] for simulation of our algorithm under 

different deployment scenario for various different 

network parameters. Table 1 below enlists the network 

parameters used. 

We compared our framework viz. MAACH with 

various algorithms recently reported in literature having 

similar notion and network parameters setup, viz. 

Enhanced clustering and ACO-based multiple mobile 

sinks algorithm (ECACO) [38], Enhanced LEACH 

(EnLEACH) algorithm [30], Multiple data sink-based 

Energy Efficient Cluster-based routing protocol (MEEC) 

[39] and Dynamic Relay Assisted Clustering (DRAC) 

[40]. We tested our protocol along the various 

performance metrics like, Average squared distance of 

static sensing nodes from the mobile nodes, Average 

number of packets delivered or Throughput of the 

algorithms, Operational Network lifetime in terms of 

First Node Dies (FND), Half Node Dies (HND), and Last 

Node Dies (LND), and Network stability period.  Figs. 3-

10 reveals the performance comparison of our protocols 

with respect to other protocols having similar objectives, 

for different node distribution patterns and network 

deployments. While uniform normal distribution of nodes 

is applied mostly for various normal monitoring 

applications that requires continuous monitoring data, 

Gaussian distribution is more suitable for applications 

that requires special attention for some particular portion 

in the network for example to monitor a critical unit in a 

processing plant [19, 29]. 

Figs. 3-4 shows the Average squared distance of static 

sensing nodes from the MNs for different protocols for 

random and Gaussian distribution of sensing nodes 

respectively. As seen in the figure although during the 

start of network operation the average squared distance 

between the sensing nodes and the MN in our framework 

or CH in various protocols is governed by the network 

size and deployment patterns of the sensing nodes, as the 

network starts to operate the average squared distance in 

case of MAACH is lower than the other protocols in 

successive rounds of network operation. Also the average 

distance is more stable than the other protocols as in the 

case of MAACH, the respective MNs choose their 

successive sojourn points towards the center of energy of 

the network grids cluster of sensing nodes, whereas in 

other protocols data collectors actually tries only to 

minimize their distance with respect to respective CH and 

makes no attempt to minimize their average distance with 

respect to all sensor nodes in the cluster thereby aiding 

uniform energy dissipation among the static nodes.    

TABLE I.  SIMULATION PARAMETERS 

Network Parameter Different Scenario / 

Values 

Length x Width of network 200200 (m2) 

No of Sensing Nodes 100 

Number of mobile nodes 3-6 

Sensing range of each node 20 m 

Radio range of nodes 50m 

Initial energy of sensing nodes 2 J 

Node distribution strategy Random, Gaussian 

Packet size 2000 bits 

Energy overhead of  amplifier 

(Eamp) 
100 pJ/bit/m2 

Path loss exponent 2-4 

 

Figs. 5-6 shows Average number of packets delivered 

(Throughput) till different rounds of network operation 

by different algorithms for random and Gaussian 

distribution of sensing nodes respectively. As evident 

there is a substantial increase in the throughput in case of 

our framework protocol viz. MAACH, with respect to the 

existing protocols. The various other protocols use 

mostly TDMA schedule for collecting sensing 

information packets from the member nodes at the cluster 

head (CH) node which then aggregates and sends the 

packet to data collectors, while MAACH do not use any 

cluster head as such, instead the member sensing nodes in 
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that zone sends their sensing information packet directly 

to their respective MN.  

Fig. 7 shows the FND, HND, LND for different 

protocols for various deployment scenario for random 

distribution of sensing nodes. Fig. 8 shows the same for 

Gaussian distribution of sensing nodes. It can be seen that, 

MAACH shows better performance for each of the 

metrics viz. FND, HND and LND for both the 

deployment scenario viz. Random and Gaussian 

deployment of sensing nodes. 

 

Figure 3. Average squared distance of sensing nodes from the MDCs 

for different protocols for Random distribution of sensing nodes. 

 

Figure 4. Average squared distance of sensing nodes from the MDCs 

for different protocols for Gaussian distribution of sensing nodes 

For random deployment it is however observed that 

while MAACH outperforms more than 100% with 

respect to other protocols as far as HND is concerned, the 

same is not happened for LND metrics. It can be 

attributed to the uniform energy expense by the various 

sensing nodes that enables maximum number of nodes 

remain alive for higher number of rounds during HND 

period while most of the nodes dies almost at the same 

time span during LND period. The situation can be 

further observed in our next experiment on network 

stability period analysis.    

 

 

Figure 5. Average number of packets delivered (Throughput) for 

different protocols for Random distribution of sensing nodes 

 

Figure 6. Average number of packets delivered (Throughput) for 

different protocols for Gaussian distribution of sensing nodes. 

 

Figure 7. FND, HND, LND for different protocols for Random 

deployment. 

Figs. 9-10 shows the operational network stability 

period where maximum number of nodes remained alive 

for minimum rounds of operational network lifetime for 

different algorithms for random and Gaussian distribution 

of sensing nodes respectively. It can be seen that, for both 

the deployment scenario viz. random and Gaussian 

deployment patterns around 80-90% of the nodes 

remained alive until the last node dies in case of 
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MAACH, while for the other protocols although they 

achieved nearly equivalent network rounds of operation, 

only around 20-30% of the network rounds have maximal 

number of active sensing nodes.   

This is because in MAACH, the mobile nodes in every 

step judiciously propagated towards the sensing nodes 

with lower remaining energy reserve so that every node 

even with minimum remaining energy level still remains 

connected to at least one of the mobile nodes to forward 

its data successfully. 

 

Figure 8. FND, HND, LND for different protocols for Gaussian 

deployment. 

 

Figure 9. Network stability period for different protocols for Random 

deployment of sensing nodes 

Such strategic movement of the mobile nodes delays 

the time period until a sensing node become unreachable 

from any of the mobile nodes and eventually declared 

dead, resulting in more number of nodes remain alive or 

connected to maximum portion of the operational 

network lifetime. Also it can be seen that MAACH 

increases the actual network lifetime with respect to other 

protocols. This is because in MAACH there is no 

clustering over head as such. As the mobile nodes 

successively drives towards calculated sojourn points 

such that distance of the sensing nodes from respective  

mobile nodes remains additively uniform throughout 

entire lifetime of the network and there is no cluster 

formation overhead as the sensing node sends their 

packets to their closest mobile nodes, so energy wastage 

of cluster head selection, members joining the cluster or 

cluster setup is significantly minimized which in turn also 

helps in achieving increase in the overall network 

lifetime of the deployment. 

 

 
Figure 10. Network stability period for different protocols for Gaussian 

deployment. 

V. CONCLUSION AND FUTURE WORK 

In this work we have formulated MAACH, a mobility 

assisted adaptive clustering hierarchy for IoT based 

sensor network in 5G and next generation networks as 

well as a distributed computational method to find online 

the optimal trajectory of multiple mobile nodes aiding 

data collection from the static sensing nodes in an IoT 

based large scale sensor network. Analysis and 

experimental results show our approach effectively 

solves the non-uniform energy usage of the static sensor 

nodes mitigating energy hole and network partitioning 

problem. The MNs efficiently computes their optimal 

path through fine-tuned calculation of their next sojourn 

points in a completely distributed manner minimizing the 

variance of average squared distance between the static 

sensing nodes and the mobile nodes as well as 

maximizing the distance among the mobile nodes thus 

avoiding interference among the mobile nodes. In future 

works we plan to augment our algorithm to work on more 

restrictive predefined path-map to accommodate more 

real world, smart city applications.   
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