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Abstract —Spectrum resources are becoming extremely scarce 

in modern wireless communication. However, the majority of 

the currently available spectrum resources have not been fully 

utilized. To mitigate this problem, we suggested Machine 

learning-based Adaptive Gaussian Mixture Model (AGMM) for 

cooperative spectrum sensing in cognitive radio networks for 

pattern classification. We employ the energy level of secondary 

users to build a feature vector in the proposed method. The 

training feature vectors for classification are well defined by a 

combination of Gaussian density functions that are obtained 

using the proposed method. The proposed method performance 

is evaluated in terms of accuracy, recall, F1 score, and Receiver 

Operating Characteristics (ROC) curves. The performance 

parameters of the proposed method are compared to the existing 

K-mean clustering approach. As evidenced by the results, the 

proposed method performs better than an existing method in all 

comparison parameters, according to the simulation findings in 

the MATLAB version. 
 
Index Terms—Cooperative spectrum sensing, adaptive 

gaussian mixture model, cognitive radio networks 

 

I. INTRODUCTION 

Cognitive Radio (CR) has been applied to wireless 

communication systems to alleviate the scarcity of radio 

spectrum by enhancing spectrum utilization [1]. CR is an 

intelligent wireless device, it can be used to dynamically 

sense and alter the operational parameters of a radio 

environment. One of the most essential aspects of CR is 

spectrum sensing [2]-[4], which allows secondary users 

(SUs) to access the primary user's licensed frequency 

band when it is idle. With limited resources, SUs 

continuously monitor the condition of the Primary Users 

(PUs) channel and access opportunistically without 

interfering with PUs. As a result, the efficiency of 

spectrum sensing is critical in CR. In cooperative 

spectrum sensing (CSS) CR devices work together to 

produce better sensing reliability than individual sensing 

[5], It helps to mitigate PUs issues related to multi-path 

fading and shadowing [6]-[9]. Cooperative sensing entails 

the interchange of sensing data between CR devices and 

the fusion center for decision-making purposes. 
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II. RELATED WORK 

Researchers have looked at machine learning 

algorithms [10]–[17] to enable CR users to learn from 

their surroundings. It becomes a task in spectrum sensing 

for machine learning algorithms to extract an input 

pattern’s feature vector and then classify it into a 

hypothesis class that either shows PU activity is absent or 

present. As K-Nearest Neighbors (KNN) belongs to the 

family of supervised learning methods, they solve the 

regression and classification problems, it uses training 

instances to generate K neighborhood classes. Since this 

algorithm has low complexity for spectrum sensing, it 

satisfies the needs of CR users. This paper presents a new 

CSS scheme that is based on machine learning that uses 

the Expectation Maximization (EM) approach largely 

because it allows the dimensionality reduction of data 

feature during the training of the Adaptive Gaussian 

Mixture Model (AGMM). In pattern classification, 

feature vectors are extracted from patterns and then fed to 

a classifier, based on this classifier assigns the pattern to 

one of the classes. Specifically, the suggested approach 

has the benefit of implied having to learn the 

surroundings in an online setting, including the topology 

of the PU, cognitive radio networks, and channel fading, 

among several other aspects. 

III. PROPOSED MODEL 

This study employed a total of N PUs, each of which 

alternated between inactive and active states. We 

evaluated a CSS with M SUs, each SU calculating the 

energy level and transmitting it to another SU that acts as 

the Fusion Center (FC). After collecting information 

regarding allowed channels, SUs send it to a Fusion 

Center (FC) via a channel for reporting. The FC performs 

a combined processing step and makes decisions [18], 

[19]. We illustrate the model of a cooperative spectrum 

sensing system in Fig. 1 (below). The signals gathered by 

M SUs in a CRN may create a signal vector-matrix X = 

[x1, x2, . . ., xM] T. All SUs communicates their energy 

levels to the fusion center (FC), which calculates the 

channel availability based on this information. A SU 

performs energy detection for the period equal to τ, 

assuming a frequency band of w, the energy detector 
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collects wτ complex signal samples over the period. 

Consider the ith signal sample, denoted by the symbol 

Zn(i), occupied by the nth secondary user. We create 

signal samples from the sum of the signals from all active 

PUs and thermal noise. The resultant sampled signal is 

the summation of all PUs signals in presence of thermal 

noise is. 
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Here, hm,n represents the PU m to SU n channel gain, 

Sm represents a state of the primary user m (m=1 for 

active state, m=0 for inactive state), and the signal from 

PU m is Xm(i), the thermal noise present at SU n is Nn (i). 

The estimated energy level at nth SU is with 

normalized power spectral density is expressed in terms 

of samples as    
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The "energy vector" generated by the fusion center can 

be expressed as.                          

( ),...,1 M
T

X X X=                    (3) 

 
Fig. 1. A high-level overview of the proposed framework. 

We can accurately estimate the channel availability A 

from an energy vector X using the proposed technique. 

To build a classifier in machine learning terms, creating 

an energy vector X that correctly maps to channel 

availability A is the same. The word “energy vector” in 

our problem corresponds to the machine learning term 

“feature.” First, collect as many training energy vectors 

as feasible for the classifier [20]. In this instance, x(l) is 

the lth learning energy vector, and a(l) is the connection 

accessibility linked with x(l). The set of learning energy 

vectors, defined by the variables X = {x (1), . . ., x(L)} in 

which L signifies the amount of training data is applied to 

the classifier for training, and 20% of energy vectors are 

used for testing purpose. Once the training of the 

classifier is completed then a test energy vector is applied. 

Assume x∗ be the test energy vector that it has received 

and assume a∗ represent associated channels availability. 

Consider a~ represents the classifier’s determination of 

the channel’s availability. The classifier categorizes the 

energy vector x* into two classes: “available channel 

class” (a~ = 1) and “unavailable channel class” (a~ = -1), 

CR users may access the channel if there is no PU in the 

active state. Channel is available when the condition a~ = 

a∗ is met, but misdetection takes place when a~ is 1, and 

a∗ is -1. Fig. 2 depicts the proposed framework modular 

structure, which is divided into two parts: training and 

classification. The training and classification stages may 

work independently under this design. A test energy 

vector is generated and sent to a classification module 

whenever the channel availability has to be determined 

by the CR network [21], [22]. When deploying the CR 

network for the first time or during the change in the 

radio parameters the training module may be activated 

[23]. To stay informed of the ever-changing environment, 

CRN may occasionally activate the training module.  

Training Phase Classification Phase

Training Energy Vector
Testing Energy Vector

Trained Classifier

AGMM

Channel Availability / 

Channel Unavailability
 

Fig. 2. The CSS framework modular structure  

A. Proposed Adaptive Gaussian Mixture Model for CSS  

To train a classifier using unsupervised learning, first 

sufficient training energy vectors (i.e., X = {x (1), . . ., 

x(L)}) are collected, these vectors are used to train the 

model, and each time it gains a test energy vector for 

classification. As long as the test energy vector is a 

member of cluster 1, the classifier considers it to be a 

member of the channel available class. We typically 

estimate GMM parameters from the training energy 

vector using the iterative Expectation-Maximization (EM) 

technique. We made the following assumptions while 

considering a mixture model: example xi represents the 

awareness of a trained energy vector whose allocation is a 

combination of many classes trained distributions [24]: 

( ) ( )|  |
1

C
P x xi c i

c
  = 

=
  (4) 

In Equation (4), the term xi represents energy vector 

(i.e. features in classification terminology) for D-

dimension, C represents the model’s population and αc 

provides cth probability class in the given sample set 

acquired. Similarly, Equation (5) represents the Gaussian 

distribution density function that can be rewritten in 

Equation (6) as 
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where the mean value is µc, and the deviation is σ2
c , the 

equation is a complete Gaussian mixture model that is 

normalized by taking the average the mean value, 

variance, and weights of all modeling, and these 

parameters are stated a 

  ( ), 1,...,2, , c Cc cc
  = =                 (7) 

We used the expectation-maximization algorithm to 

repeatedly estimate the parameters of the GMM. The 

trained energy vectors are determined by the expectation-

maximization process. If we assume each vector is 

independent of the others and if N training vectors xi = 

[x1n, x2n... xin…, xDn] are used, we can state the GMM 

probability as 
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                 (8) 

Now, use the logarithm of the likelihood function and 

then maximize it as 
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Rather than explicitly optimizing parameters θ, 

iterative maximization likelihood parameter estimation is 

used to generate a maximized expectation in a particular 

situation for the non-linear functions of the parameter 

discussed above [25]. In the EM method condition used is 

( ) ( )| |p pX Xi i                        (10) 

This process continues until we reach a particular 

convergence threshold, at this point, we use the new 

parameter as the starting values. In the clustering 

procedure, we predetermined the number of clusters C in 

advance. The variable ( )Pr | ,c xn   added shows the 

likelihood of the nth preparation data from the cth replica 

being used in the final model. The following is the 

formula for calculating the posterior probability: 
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To guarantee the likelihood value of the parameter 

increases monotonously, for each EM iteration, apply the 

re-estimation methods as shown in equations (12), (13), 

and (14) 
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where, µc, σ2
c, and xn denote its elements separately. 

Once the optimum parameter θ has been determined, the 

classifier gets the test energy vector x∗ for classification 

and uses it to determine the next optimal parameter. 

Using the test energy vector x∗, the classifier evaluates 

whether it belongs to cluster 1. We assign the unavailable 

channel class to x∗ (i.e., a~ = −1) only if for a specified 

threshold δ. With an increase in δ, we may reduce false 

alarm probabilities while also improving misdetection 

probabilities. The AGMM classifier’s role is to assign 

input energy vectors to various clusters based on their 

features. 
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In Equation (15), xi signifies the d-component feature 

vector, µc and σc are the d-component vectors containing 

the mean and standard deviation of each feature, 

respectively. In addition, we assume the features to be 

independent of one another. To put it another way, P(xi) 

may be expressed as a product of multivariate probability 

densities for every element of xi, AGMM is a modified 

version of GMM with two extra parameters, n, and N. 

Also, N represents the total number of energy test vectors 

in the data. N represents the number of samples in each 

cluster. σc is identical to GMM in that the probability 

density is a function of xi, µc. 
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Each sample xi is a D-dimensional vector, which is the 

probability density function of the Adaptive GMM. We 

compute separately mean and standard deviation since the 

features are distinct. The mean µc and standard deviation 

of each feature xi in a cluster of n samples are computed 

by adding the xi values from all the samples in that 

cluster together and N represents the total number of 
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energy test vectors in the data. Equations (17) and (18) 

provide the mean and standard deviation, respectively. 

1

n xi
c ni

 = 
=

                                     (17) 
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                       (18) 

The weighted standard deviation, equivalent mean is 

computed by dividing the proportion from every sample 

to the Gaussian distribution by the number of samples in 

the group. Thereafter, until the approach converges to the 

local optimal or until we reached the maximum number 

of iterations, the original parameters of the Gaussian 

distribution are updated. Based on the AGMM, 

Algorithm 1 gives a detailed description of the clustering 

procedure. 

 

Algorithm 1: AGMM based Clustering operation 

Input: xi = [x1n, x2n... xin…, xDn], Sample number N 

and Cluster number C,  

Output: Segment Xi into c group {C1, C2..., Cm}, where  

1
c

C X iii ==  

1. Initialization of the parameters of the Gaussian model  

 ( )2, , 1,...., ,c Cccc   = =  

2. repeat 

3. for n ← 1 to N do 

4. for c ← 1 to C do 

5. Compute the probability of nth training data xn from 

the c model 

6. end for 

7. end for 

8. for c ← 1 to C do 

9. Computing the parameters of the cth Gaussian model  

2, , ccc    

10. Update the parameters  

2, , ccc    

11. end for 

12. until the termination condition is satisfied 

 

B. Analysis of Two Cases of User Locations 

To show the usefulness of the CSS methodologies we 

used two evidence of energy vector scatter plots from 

both SUs in two different scenarios. The PUs in case 1 

are located in two different locations, which are 

represented in Fig. 3 (a) and in case 2 PU is located in 

one location only as shown in Fig. 3(b). 

In case 1, the PUs is triggered based on the likelihood 

of u ((0, 0) T) = 0.55, u ((0, 1) T) = 0.32, u ((1, 0) T) = 

0.2428 and u ((1, 1) T) = 0.18 respectively. The PU in 

Case 2 is the only one, it triggered PU in this case with a 

probability of u (1) = 0.4 and we depict its location in Fig. 

3(b). 

 
(a) 

 
(b) 

Fig. 3. Locations of users in two different scenarios (a) PU and SU 

locations in case 1 (b) PU and SU locations in case 2 

IV. RESULTS AND DISCUSSION  

This section includes the results of a simulation study 

and assesses the proposed scheme’s performance. 

According to our calculations, we considered the 

secondary users to be 5×5 total of 25 SUs with a network 

size of 4000m × 4000m area. Here, Table I shows the 

values of critical simulation parameters. Each PU has a 

transmission power of 250 mW and 300 mW. Assume 

two PUs, each with a predetermined location at (−1500, 0 

m) and, (500 m, 500 m) respectively. The probability of 

PU's active state is 0.5, and each PU’s state is 

independent of the other PU’s. MATLAB (R2016a) is 

used on a 64-bit computer with a Core i5 (clock speed:2.8 

GHz) and 8 GB RAM to implement the algorithms. 

TABLE I. NETWORK SIMULATION PARAMETERS 

Parameter name Value 

Bandwidth 5MHz 

Sensing duration τ 100μs 

Noise spectral 

density η 
-174 dBm 

Path-loss exponent α 4 
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We illustrated two SUs energy vectors in two distinct 

situations as scatter plots in Fig. 4-5 to show CSS 

performs well. The surface splits the energy vectors into 

two decision regions to decide whether channels are 

available or unavailable. We showed the decision surface 

using the Adaptive Gaussian mixture model (AGMM) 

approach. Fig. 4-5 have a classification threshold of 0 in 

the AGMM (i.e., δ). Case 1 uses transmission power of 

300 mW, plots are shown in (Fig. 4 (a) and (b)), whereas 

case 2 uses a transmission power of 250mw, plots are 

shown in (Fig. 5 (a) and (b)). 

 
(a) 

 
(b) 

Fig. 4. The distribution of energy vectors in case 1 when the 

transmission power is 300 mW (a) for original data. (b) for clustered 

data. 

 
(a) 

 
(b) 

Fig. 5. The distribution of energy vectors in case 2 when the 

transmission power is 250 mW (a) for original data. (b) for clustered 

data. 

As listed in Table II, we observed the power for every 

PU is 300mW in this case and applied two classifiers 

apply to see the performance. 

TABLE II. PERFORMANCE COMPARISON CLASSIFIERS WHEN TRANSMIT 

POWER IS AT 300MW  

Classifier 

name 

Accuracy in % Recall in % F1-score in % 

K-means 96.67 99.13 91.05 

AGMM 99.38 99.84 98.77 

TABLE III. PERFORMANCE COMPARISON CLASSIFIERS WHEN TRANSMIT 

POWER IS AT 250MW  

Classifier 

name 

Accuracy in % Recall in % F1-score in % 

K-means 96.46 99.71 93.33 

AGMM 97.92 99.72 95.97 

 

Table II shows that the proposed AGMM is 99.38% 

more accurate than conventional K-means when the PU 

transmits power is 300mW. AGMM outperformed the 

traditional K-means classifier, where recall was 99.84%, 

and F1-score was 98.77%, proving that the proposed 

AGMM is adaptable to changing environments without 

requiring further training. Table III shows that the 

proposed AGMM has a better accuracy of 97.92% when 

the PU transmit power is set to 250 mW than 

conventional K-means. The AGMM classifier also 

outperformed the traditional K-means classifier, where 

recall was 99.72%, and F1-score was 95.97%, because of 

the flexibility of the proposed AGMM to the changing 

environment without having to train it all over again. 

For PU transmission power of 250mW and 300mW, 

we show the classification error of two classifiers in 

Table IV. Compared to conventional K-means, the 

suggested AGMM has low error rates of 0.62 for 300mW 

and 2.08 for 250mW. For example, training the AGMM 

classifier takes just a short time. As a result, this classifier 

is suitable for CSS, requiring constantly updating the 

training energy vectors. 
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TABLE IV. PERFORMANCE COMPARISON TWO CLASSIFIERS FOR 

CLASSIFICATION ERROR 

Classifier 

name 

Classification 

error for 

300mW 

Classification 

error for 

250mW 

K-means 3.33 3.54 

AGMM 0.62 2.08 

 

As shown in Fig. 6(a) compares the receiver operating 

characteristic (ROC) curves for proposed and k-means 

methods (500 m, 500 m). These results reveal AGMM 

classifier’s performance improves as the number of SUs 

increases. The proposed AGMM method outperforms the 

K-means technique, It displays the ROC curves when the 

AGMM Classifier reaches a high detection probability at 

pf = 0.7 with 3 × 3 SUs (i.e., 9 SUs). 

 
(a) 

 
(b) 

Fig. 6. (a) ROC curve for 3×3 secondary users, (b) ROC curve for 5×5 

secondary users  

As shown in Fig. 6(b), when just a single PU (500 m, 

500 m) is available, the suggested CSS schemes perform 

better than the k-means, as measured by receiver 

operating characteristic (ROC) curves. It displays the 

ROC curves when there are 5 × 5 SUs in total (i.e., 25 

SUs). The AGMM Classifier has a good detection 

probability even when low pf =0.4 is used. To train each 

classifier, we use 500 training energy vectors. 

In Fig. 7(a) AGMM with a more extended training 

phase outperforms K-means by 15% when SNR is -9 dB, 

outperforms K-means by approximately 35% when SNR 

improves to -6dB. When SNR circumstances improve, 

the suggested method beats K-means in terms of 

detection performance.  

 
(a) 

 
(b) 

Fig. 7. (a) System detection performance with fading channels, (b) 

System error performance with fading channels  

Using the proposed method in a fading environment, 

Fig. 7(b) illustrates how well it performs in terms of 

errors. The inaccuracy decreases as the signal-to-noise 

ratio (SNR) rises. The error probability is slightly over 

one with a sensitivity of -10dB. The K-means error 

probability is 1.1 because of fading, making it much 

higher than our suggested solution. Graph illustrating the 

distribution of energy vectors in case 2, where the 

transmit power of each primary user is 250 mW for 

clustered data. 

V. CONCLUSION 

In this paper, a machine learning-based reliable 

spectrum sensing scheme is proposed. We have used an 

unsupervised classifier Adaptive Gaussian mixture model 

(AGMM) for CSS. In this channel, availability is 

determined by using energy vectors measured at the SUs. 

We estimate the performance of the classifier in terms of 

accuracy, recall, F1-score, classification error, and the 

ROC curves. To get accurate decisions we need an 

adequate number of training vectors. The proposed 

approach can be further boosted by gradually training the 
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classifier with training vectors obtained one by one. This 

permits the classifier to adapt to the varying conditions 

without training all over again. Simulation results show 

that our proposed scheme has better detection 

performance and better spectral hole exploitation 

capability than the conventional K-means. 
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