
Design of DCO-OFDM System for VLC on Chip at the 

Register-Transfer Level 
 

Syifaul Fuada1, Angga Pratama Putra2, and Trio Adiono3 
1 Program Studi Sistem Telekomunikasi, Universitas Pendidikan Indonesia, Bandung, Indonesia 

2 VLC Research Group, Pusat Mikroelektronika, Institut Teknologi Bandung, Bandung, Indonesia 
3 School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia 

Email: syifaulfuada@upi.edu 

 

 

Abstract—This paper reports a System-on-Chip (SoC) 

architecture design for the DC-biased optical OFDM (DCO-

OFDM) Visible Light Communication (VLC) transceiver. The 

proposed SoC comprises several Digital Signal Processing (DSP) 

blocks, i.e., Fast Fourier Transform (FFT), Convolutional 

Encoder (CE), Viterbi Decoder, Quadrature Phase-Shift Keying 

(QPSK) Modulator/Demodulator, Interleaver/Deinterleaver, and 

Synchronizer. System was designed through the combination of 

two Intellectual Property (IP) types: designing IP from the 

scratch (custom-based IP) and employing available core 

accelerator IP served by the third party, which is Xilinx library 

(reuse-based IP). All DSP blocks were targeted for the FPGA 

development board (Xilinx Zynq SoC 7000), then combined with 

the ARM microprocessor. In this study, ARM microprocessors 

were used for various tasks, i.e., scheduling process, on-chip 

memory as a temporary data storage function, Analog-to-Digital 

Converter (A/D), Digital-to-Analog Converter (D/A), and 

Ethernet module as communication medium between SoCs and 

personal computer (PC). Testing was carried out on the Register 

Transfer Level (RTL) for hardware (H/W) and software (S/W) 

models implemented on ARM microprocessors. The system 

performances were measured through the point-to-point data 

communication scenarios between a PC transmitter and PC 

receiver. A 77 kbps of data communication speed and 2.9 ms of 

data processing latency were obtained using 100 MHz clock 

speed. The VLC on-chip was successfully demonstrated in RTL 

phase. This system is suitable for a low-rate communication 

system application, generally for joint VLC and Internet-things 

(IoT) technology, (then called as VLC/IoT). 
 

Index Terms—Visible Light Communication, DCO-OFDM, 

System-on-Chip, FPGA, Reuse-based Intellectual Property, 

custom-based Intellectual Property 

 

I. INTRODUCTION  

The development of Visible Light Communication 

(VLC) on-chip has attracted many researchers worldwide 

in the last five years [1]–[3]. The research topics on the 

chip development for VLC applications are very diverse, 

e.g., LED drivers/transmitters circuit [4], [5], the first stage 

of analog receiver circuit (amplifiers) [6]–[8], Digital 

Signal Processing (DSP) such as Orthogonal Frequency-

Division Multiplexing (OFDM) [9], [10], and many more. 

The OFDM technique is implemented through a digital 

computation approach embedded on a DSP [11], [12]. 

There are various DSPs for VLC, and the Field-

Programmable Gate Array (FPGA) is the best solution due 

to its wide range of capabilities that can meet the system 

design requirements.  

The FPGA can process complex computations and can 

speed up numerous functions. The processing on FPGA 

can be done on software (S/W) level or hardware (H/W) 

level with the trade-off. The S/W implementation has a 

lower complexity and more flexible to be modified than 

the H/W implementation [13]. However, the computation 

run on H/W level is more efficient in consuming power 

than S/W implementation. There are various benefits of 

using System-on-Chip (SoC) approach. The H/W 

implementation can be realized on an Application-Specific 

Instruction Set Processor (ASIP), where each H/W 

processing element (PE) is S/W-programmable. In 

addition, there is free reusable Intellectual Property (IP) 

provided by third parties to accelerate SoC design and 

development. This underlies why it needs to employ a SoC 

as a core in a digital processor for a VLC system [15]–[18]. 

The OFDM consists of several computational blocks, 

which are quite time-consuming such as Fast-Fourier 

Transform (FFT) and Viterbi Decoder [14]. Accordingly, 

some computations would be better implemented on a 

H/W level to minimize processing latency and other 

processes implemented as S/W running on a 

microprocessor.  

Many researchers studied OFDM design on FPGA for 

VLC, focusing on different issues. Yu et al. developed an 

FPGA-based OFDM adaptive system for VLC with 

Quadrature Amplitude Modulation (QAM). The system 

was claimed to be able to dynamically (adaptively) control 

the data transfer rate on OFDM according to the Signal-to-

Noise Ratio (S/N) value of optical channels. The 

simulation showed that the OFDM data format (M-

Subcarrier) has succeeded in converting 16 bits to 1024 

bits so that the communication speed can be increased 

from 24.11 to 60.28 Mbps [19]. Their study was proved on 

a simulation only. Huo et al. developed a VLC system with 

RGB LEDs as transmitters and positive-intrinsic-negative 

diodes (PINs) as receivers. Simple modulation, On-off 

Keying (OOK), was implemented. The demonstration 

results showed that the FPGA can be used for high-speed 

data transmission: a 120 Mbps at 1 meter of optical 

 
Manuscript received February 22, 2022; revised July 13, 2022. 

Corresponding author email: syifaulfuada@upi.edu 

doi:10.12720/jcm.17.8.608-624 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 608



      

  

  

   

   

  

   

    

  

 

 

 

  

 

  

 

  

 

 

 

 

    

  

By looking at the opportunities and potential for further 

development of this research areas, we still want to explore 

the FPGA-based OFDM for VLC system. The VLC 

models have been made in previous studies, but only 

simulated on MATLAB. This study is a continuation of 

previous work, which is to realize the OFDM models that 

have been successfully computed on MATLAB [14], [26], 

[27]. This research aims to design an SoC functioned to 

run a digital computing process using DCO-OFDM 

modulation on a directional VLC system (one link 

communication). The PE modules on the FPGA are 

designed through two approaches: IP core available in 

Xilinx environment as the third party (reuse-based IP) and 

custom-made IP. The 64-point FFT was implemented in 

this study. As a research limitation, the proposed system is 

prioritized for a digital computing architecture at the 

transmitter and receiver in which the data communication 

was carried out between two personal computers (PCs). A 

Prior work reported a Wi-Fi/VLC hybrid network strategy 

for auto-sharing data on Wi-Fi to light-fidelity (Li-Fi) 

channel or vice versa [28]. They have successfully proven 

the proposed architecture in a simulation phase, which is 

RTL. Instead, in this study, we will exhibit the RTL 

simulation to examine the proposed SoC transceiver 

design for OFDM-based VLC system. 

II. ARCHITECTURE DESIGN 

In this study, the SoC system is designed to modulate 

input data using DCO-OFDM for VLC application. The 

proposed system is divided into several primary 

components: Data transmission application on source PC, 

SoC platform for transmitter (SoC Tx), Digital-to-Analog 

Converter (D/A) [29], analog LED driver [30], [31] and 

Analog Front End (AFE) receiver [32], [33], that are 

separated module from this study, Analog-to-Digital 

Converter (A/D) [34], SoC platform for receiver (SoC Rx), 

and a specific application for receiving data on a 

destination PC. Fig. 1 illustrates the connection between 

these blocks in the proposed system. 

Data transmission begins by sending a data bitstream on 

the PC source to the SoC Tx platform through an Ethernet 

cable. The data is then modulated digitally using DCO-

OFDM. Afterward, the modulated data is transformed into 

an analog signal by a D/A module. The LED driver 

converts the analog signal into an optical signal. The data 

is transmitted by LED and received by the photodiode [35]. 

Afterward, the received signal enters the AFE circuit 

before being converted to the digital domain by an A/D 

module. Data from the A/D sampling are then 

demodulated on the SoC Rx platform and sent as a data 

bitstream to the PC destination. The PC displays the 

received data.  

The SoC transceiver platform was designed to modulate 

data following DCO-OFDM standard employing FPGA as 

a DSP. The DSP was built by the integration of H/W 

(FPGA accelerator) and S/W (the firmware driver of the 

proposed system).  

 

Zynq SoC Board 

(Transmitter)

Digital Block

Digital to Analog 

Converter

Analog Block

LED Driver

Zynq SoC Board 

(Transmitter)

Digital Block

Analog to Digital 

Converter

Analog Block

Analog 

Front-End 

Circuits

LED Photodiode

Destination PCSource PC

 
Fig. 1. Illustration of a system model designed for data transmission 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 609

channel with a Bit-Error Rate (BER) <10-3 was reached

[20]. It is showed that FPGA-based VLC systems can be 

used as solutions for real-time applications and contribute 

to system miniaturization if further explored intensively 

(towards specific chips). However, in [20] study used a 

classical modulation, OOK, which is more bandwidth-

intensive than the OFDM technique. Figueiredo et al. 

successfully demonstrated OFDM-based VLC where the 

system’s physical layer (PHY) was implemented on a 

Xilinx Virtex-6 FPGA. Through 25 MHz of bandwidth and 

64-QAM modulation, a successful transmission speed of 

150 Mbps (BER <3.8 x 10-3) has been obtained in a real-

time at 50 cm distance [21]. These results indicated that 

FPGA platform is a digital processor solution for high-

speed indoor VLC systems by utilizing ready-to-use LEDs 

(which are often found in standard lighting applications). 

However, in [21] did not reveal the OFDM architecture

design in specific discussion, includes the strategy to 

develop SoC whether to use reuse-based IP (Third party IP)

or create it from scratch. Chui-hu et al. explored OFDM 

for high-speed and stable real-time VLC applications.

System verification has been carried out on Register-

Transfer Level (RTL) simulation and real implementation.

RTL simulation was done using ModelSim and 

implementation was conducted on FPGA (Xilinx Kintex-

7) with Verilog language [22]. System testing was limited 

to signal delivery. Moreover, their research focuses on 

time-domain synchronization and channel equalization. 

Astharini et al. and Yuniati et al. modified OFDM 

implemented on a FPGA (Xilinx Artix-7). Simulations on 

RTL have been successfully carried out to evaluate the 

proposed design [23], [24]. Levent et al. designed an 

FPGA-based VLC system that focuses on the PHY layer

with DC-biased Optical OFDM (DCO-OFDM)

modulation [25]. However, it was not explained in detail 

the crucial part, which is H/W & S/W portion embedded 

on the SoC side.



A.  FPGA Accelerator Design 

The accelerator design on the FPGA was intended to 

speed up the computation process in DCO-OFDM 

modulation. In this system, several modular accelerators 

were used for SoC Tx and SoC Rx, in which it can be 

divided into two types: accelerators that are already 

available in the Xilinx IP library and custom-made IP that 

are designed from scratch because they are not available 

on the library. Besides, several custom IPs were also 

designed to perform as support functions, e.g., interface 

signals activation.  

The proposed SoC platform consists of two types: 1) 

H/W-based SoC (FPGA accelerator), 2) S/W-based SoC 

(applied on source PC and destination PC). The H/W – 

S/W partition model should be identified and defined 

carefully to obtain the best performance with a less trade-

off, include: 1) all DCO-OFDM modules, 2) Ethernet 

communication modules as clients on the SoC Tx platform 

and on destination PC, and 3) Ethernet communication 

modules as servers on the SoC Rx platform and on source 

PC. There are several considerations in designing these 

mentioned models: computational complexity of the 

module, resource availability, processing speed 

requirements, computing time of the model and the 

model’s criticality level. These factors are considered to 

determine whether a module function is implemented on 

programmable H/W as a PE or as a function in the S/W 

system run on the processor.  

In this study, the scheduling process between modules 

will be run on the S/W. Some modules also need to be 

considered in the relationship between the S/W and 

interfaces available on the H/W (e.g., modules on Ethernet 

communication) and other modules that require external 

interfaces (e.g., UART communication).  

The proposed system model is shown in Fig. 2. It can be 

seen that all DCO-OFDM modules were implemented on 

H/W level within the SoC platform instead of the S/W 

level. The DCO-OFDM modules are a critical function of 

VLC system. For this reason, DCO-OFDM modules are 

implemented on a programmable H/W for better 

processing performance, especially for processing the 

digital blocks with the highest latency (e.g., FFT/IFFT and 

Viterbi Decoder blocks). The Ethernet communication 

module between PC and TCP-based SoC platforms was 

implemented on S/W. This module was divided into two 

sections: modules implemented on PCs & on the SoC 

platform. The S/W on a PC, TCP communication is 

programmed to access and receive files to be transmitted 

on a PC. In S/W on the SoC platform, TCP communication 

was implemented using the lwIP library.

SoC Tx Platform

LED Driver 

+ LED

External 

Module

TCP 

Server

GUI

Source PC

TCP 

Client
TxBufferInput

Convolutional 

Encoder
Interleaver

Symbol 

Mapper
IFFT + CP

OFDM Framer 

Assemble
Training Symbol

Preamble

Digital to 

Analog 

Converter

SoC Rx Platform

Analog 

Front-End + 

Photodiode

External 

Module

TCP 

Client

GUI

Destination PC

TCP 

Server
RxOutBuffer

Symbol 

Demapper
Deinterleaver

Channel 

Estimation
Equalizer

Analog to 

Digital 

Converter

Time 

Synchronizer
IFFT

Viterbi 

Decoder

Note:

Digital data transfer Stream data transfer Analog Signal Software ImplementedHardware Implemented  

Fig. 2. System model of H/W - S/W partition (color illustration can be obtained and read at the online version of this Journal) 

In data communication scheme between PE of DCO-

OFDM, the data transfer was done through a stream 

interface between IPs of each PE. This is due to the PE 

implementation for this system uses available IPs from the 

third parties, which is Xilinx Vivado IP (Zynq-7000 SoC). 

Available interface is the AXI stream interface [36]. It is 

necessary to create a specific custom-made IP as a link 

between the AXI stream interface with AXI memory-

mapped interface. Thus, it can be connected to the Zynq 

processing system (PS).  

The TxinputBuffer IP is custom-based IP lies on the SoC 

Tx. It has functioned to receive and buffer 7 x 32 bits data 

from Zynq PS via AXI memory-mapped interface, then 

stream that data per one bit to the Convolutional Encoder 

(CE) accelerator via AXI stream interface. Whereas in the 

SoC Rx, the RxOutBuffer IP (custom-based IP type) is 

functioned to receive and buffer data per one bit from the 

Viterbi Decoder IP accelerator until it reaches a 

predetermined number (for interrupt to Zynq PS). Later, 

the user can access the data via the address on the AXI 

memory-mapped interface. 

The proposed SoC architecture was divided into two 

parts: SoC Tx and SoC Rx as depicted in Fig. 3(a) and Fig. 

3(b) respectively. The connection of each PE in H/W was 

defined along with the data path and also the interface used 

to connect with external devices. The main thing that needs 

attention is the data transfer mechanism between each PE. 

In this system, PE architecture with stream interfaces was 

connected to the AXI interconnect stream bus. PE was 

controlled by scheduling S/W on the ARM microprocessor 

through Stream-to-Memory-Mapped (S2MM) interfaces. 

This interface is part of the custom-made IPs, which is 

TxBufferInput IP and RxOutBuffer IP. For IP with a stream 

interface, the processing data needs to be stored first in a 

buffer until the process for one data is complete because it 

does not have a temporary register storage. In this study, 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 610



the buffer was implemented by Block Random Access 

Memory (BRAM). 

BRAM is realized by several custom-based IPs 

integrated into one part of the IP within the RTL design. 

Whereas for the reuse-based IP, the buffering process was 

done by adding a specific IP, which is AXI stream data 

FIFO (First-in-First-out) between interfaces to 

synchronize communication signals. Therefore, data can 

be received correctly.

 

TxBufferInput

Convolutional 

Encoder
Interleaver QPSK

Hermitian 

Buffer

OFDM 

Framer 

Assemble
Stream Stream Stream Stream IFFT

AXI Interconnect

UART UART ETH
ARM 

Microprocessor

On-chip 

Memory

Std I/O PC

D/A

FPGA Accelerator

M
em

o
ry

-
M

ap
p

ed

Stream

 

RxOutBuffer

Viterbi  Decoder Deinterleaver QPSK

Channel 

Estimation 

& Equalizer

Stream FFT

AXI Interconnect

UART UART ETH
ARM 

Microprocessor

On-chip 

Memory

Std I/O PC

A/D

FPGA Accelerator

Hermitian 

Remover

Time 

Synchronizer

Stream

St
re

am

Stream

 
(a) (b) 

Fig. 3. Architecture of: (a) SoC Tx and (b) SoC Rx 

B. Convolutional Encoder (CE) and Viterbi Decoder IPs 

In this system, CE IP from Xilinx was used as the 

convolutional coding accelerator on the SoC Tx. This IP 

has an AXI stream interface for the master and slave ports 

and it was employed to do encryption by adding redundant 

data. Accordingly, the data bits were doubled from the 

original data according to the IP configuration. The 

redundant bit was used for forward error correction (FEC) 

in the SoC Rx to correct the bit error after getting a noise 

effect when it was transmitted through the channel. In the 

SoC Rx, these redundant bits were decoded using the 

Viterbi Decoder IP, which was served by Xilinx.  

The decoding process for FEC was done using the 

Viterbi Decoder IP. Similar to the CE IP, this IP has an 

AXI stream interface for its master – slave ports. This IP 

was used to eliminate redundant data bits and correct data 

if there is an error. A trellis diagram was used as a method. 

In this study, this IP was configured to disable an optional 

pin, which is “BER symbol count”. Thus, the slave and 

master ports will not appear on this IP to display the BER 

status. 

C. Interleaver/Deinterleaver IP 

The Interleaver/Deinterleaver IP also employs IP 

available from Xilinx. This IP has an AXI stream interface 

for its master and slave ports. The configuration of this IP 

is presented in Table I. The symbol width was set to 2 bits 

because this IP has 2 bits of input data from the CE IP with 

a bit rate of 0.5. Therefore, in the rectangular block of this 

IP, each block contains 2 bits of data. 

TABLE I.  THE INTERLEAVER IP CONFIGURATION 

Variable Description 

Memory Style Automatic 

Symbol Width 2 

Mode Interleaver 

Symbol Memory Internal 

Type Rectangular Block 

Number of Rows 28 

Number of Columns 8 

Block Size 224 

Pipelining Maximum 

BLOCK_START Delay 224 samples + 7 cycles 

Latency 7 

D. IFFT/FFT IP 

Multi-carrier modulation of all active subcarrier data 

signals at the SoC Tx was carried out using an IFFT IP 

served by Xilinx IP library. It was implemented on the 

FPGA accelerator. In the SoC Rx, demodulation was done 

using a FFT IP. Both of these IPs were implemented using 

the same IP (i.e., xFFT block) in different mode. This IP 

also uses the AXI stream interface as a port in the master 

and slave parts. At the SoC Tx, the xFFT IP was 

configured with config mode as “inverse FFT” whereas in 

the SoC Rx, xFFT IP was configured with config mode as 

“forward FFT”. The receiver does not require cyclic 

insertion prefix because the FFT on SoC Rx functions as a 

demodulator. Moreover, it follows the xFFT IP 

configuration on the SoC Tx. 

E. AXI Stream Data FIFO IP 

Besides using native IP served by Xilinx, custom IP 

which was not available on the Xilinx IP library was used. 

Native IP from Xilinx and custom IP should be integrated 

through appropriate interface communication signal. This 

study uses AXI standard. Buffering process is needed 

between these IP. Therefore, the communication process 

can run properly and also the data can be conveyed entirely. 

This buffering process was implemented using a native IP, 

which is AXI stream data FIFO IP. This IP was placed as 

a connector between multiple IP. The configuration of AXI 

stream data FIFO IP is presented in Table II. 

TABLE II.  CONFIGURATION OF AXI STREAM DATA FIFO IP 

SoC Tx 

QPSK Mapper – Hermitian 

Buffer 

FIFO depth 256 

TDATA width (bytes) 2 

Hermitian Buffer – IFFT 
FIFO depth 512 

TDATA width (bytes) 2 

SoC Rx 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 611



ShapiroRudinPark TimeSync 

– FFT 

FIFO depth 1024 

TDATA width (bytes) 2 

Hermitian Remover – 

Channel Estimator Equalizer 

FIFO depth 512 

TDATA width (bytes) 2 

Channel Estimator Equalizer 

– QPSK Demapper 

FIFO depth 256 

TDATA width (bytes) 2 

F. QPSK Mapper and QPSK Demapper IPs 

The QPSK mapper IP is categorized as a custom IPs 

because they are not available on the Xilinx IP library [37]. 

The IP was designed based on the Gray-code mapping of 

QPSK. This IP integrates the logic interface for slaves and 

masters based on the AXI stream interface to communicate 

following to the standard. There are three sub-modules of 

QPSK Mappers IP: 1) AXI stream slave, 2) QPSK logic 

mapper, 3) and AXI stream master. Xilinx Vivado has 

provided a template code containing the logic of interface 

signals. The template code is then modified to fit the 

requirements of the QPSK logic mapper. The abstraction 

design of the QPSK mapper IP is shown in Fig. 4(a). 

It can be seen that only two signals need to be bypassed, 

i.e., signals from the AXI stream slave interface to the 

QPSK mapper logic and signals from the QPSK mapper 

logic to the AXI stream master. The mentioned signal is in 

the form of bus signal for the output ready signal and data. 

The output ready signal was used to declare to the AXI 

stream master that the output data is ready. In this study, 

the output and input of the top-level IP still follows the 

AXI interface standard without any additions or reductions. 

But only few signals used to be connected to the QPSK 

mapper logic. Fig. 4(b) shows the input data consists of 8 

bits. But, the number of bits to be processed is only 2 bits 

of LSB (Least Significant Bit). The data output consists of 

16 bits (8 bits of MSB represents imaginary numbers + 8 

bits of LSB represents real numbers). MSB stands for 

“Most Significant Bit”. These real and imaginary numbers 

determine the QPSK mapping which follows the Gray-

code constellation. 

 

  
(a) (b) 

Fig. 4. (a) Top level of QPSK Mapper IP Model and (b) QPSK Demapper IP Model 

The QPSK Demapper IP was used to reverse the QPSK 

Mapper IP effect using the Gray-code constellation also. 

The QPSK Demapper IP only needs to see the sign bits of 

the imaginary and real numbers. This process has an 

advantage, which is the high tolerance of bit errors because 

it visualizes a sign bit only. Moreover, it is not influenced 

by changes in magnitude values caused by channel noises. 

Despite the number of bits represented in a QPSK symbol 

is limited to only 2 bits, this QPSK modulation is quite 

robust against errors. The bit width data of the QPSK 

Demapper IP output is 8 bits in spite of the actual data is 

only found on 2 bits of LSB. Other bits on MSB (6 bits) 

are padding filled with zero values; this is due to the IP 

output is connected to the Deinterleaver IP input which has 

8 bits of data width. In this system, the data width to be 

processed on the Deinterleaver IP and Interleaver IP were 

set to 2 bits. 

G. Hermitian Buffer IP 

The transmitted data in the VLC system must be real 

value (without imaginary components). Several 

procedures should be done to meet the requirements. 

Before the data is modulated by the IFFT IP, it must be 

arranged carefully to ensure the IFFT transformation 

results are real value. Therefore, the Hermitian Buffer IP 

was used to implement the Hermitian symmetry 

characteristic in IFFT resulting the overall output have real 

values. This IP is categorized as a custom-based IP with 

the stream-based type AXI interface on the master and 

slave ports. The hierarchy of this IP is depicted in Fig. 5(a). 

This IP uses BRAM blocks in the data buffering process. 

Three BRAMs were used: 1) for input data (denoted as 

BRAM data-in), 2) conjugate input data (BRAM Conj.), 

and 3) output data (BRAM data-out). The process of data 

buffering using a memory block requires to follow the 

rules found in the Xilinx synthesis guide. Accordingly, the 

synthesizer can distinguish whether the proposed design 

needs to be synthesized by using BRAM or Lock Up Table 

(LUT). 

In this work, The Hermitian Buffer IP is designed by 

using BRAM as a memory block as a temporary data 

storage in the form of memory block. The hardware-

description language (HDL) program consists of two core 

parts working in parallel: 1) a program for regulating the 

data flow on BRAM data-in along with its conjugates and 

2) programs for regulating the data flow on BRAM data-

out. The input data is first entered into the BRAM data-in 

and BRAM Conj. Afterward, the in_buff_full flag is then 

active once the filling data process on these two BRAMs 

is complete. Finally, the BRAM data-out is filled in certain 

index in sequence with a DC bias value.  

The DC value can be given a zero value on the active 

subcarrier zero index for each data packet in the burst 

frame. The distance between the DC bias index with 

another is 64, includes main data, zero padding, and 

Hermitian conjugates. In the burst frame, there are 8 data 

packet symbols in which each symbol has 28 active 

subcarriers. When DC_bias flag is active, the filling data 

process will begin from BRAM data-in to BRAM data-out 

on the BRAM index to store active subcarrier data. Along  

QPSK Mapper Logic

(din == 2'b00)? dout <= 8'd1, -8'd1} :

(din == 2'b01)? dout <= -8'd1, -8'd1} :

(din == 2'b10)? dout <= 8'd1, 8'd1} :

(din == 2'b11)? dout <= -8'd1, -8'd1} : dout

AXI 

Stream 

Slave

Data In

Write 

Enable

AXI 

Stream 

Master

Data Out

Output 

Ready

QPSK Demapper Logic

({din[15], din[7]} == 2'b00)? dout <= 6'b0, 2'b10} :

({din[15], din[7]} == 2'b01)? dout <= 6'b0, 2'b00} :

({din[15], din[7]} == 2'b10)? dout <= 6'b0, 2'b11} :

({din[15], din[7]} == 2'b11)? dout <= 6'b0, 2'b01} : dout

AXI 

Stream 

Slave

Data In

Write 

Enable

AXI 

Stream 

Master

Data Out

Output 

Ready

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 612



with it, there are two processes run in parallel: accessing 

data on the BRAM data-in and copying it on the BRAM 

data-out. The delay in accessing data needs to be 

considered until it can be copied to BRAM data-out with 2 

clock delay. After 28 active subcarrier indexes for each 

packet in the burst frame are filled with data from the 

BRAM data-in, the inf_data flag is activated. The next 

process is to fill zero padding on the BRAM data-out. Zero 

padding filling is done on an empty index between two 

data subcarriers: 28 active data and 28 conjugate data.  

After the zeros signal flag is active, conjugate data 

filling from the BRAM Conj. to the BRAM data-out is 

done in a parallel processing. Afterward, data arranged 

according to Hermitian symmetry characteristic is then 

issued by following the signal interface communication 

between Hermitian Buffer IP with IFFT IP. The address 

data index is accessed by the read_ptr signal. The finite 

state machine (FSM) of Hermitian Buffer IP is shown in 

Fig. 5(b). 

 

 
(a) (b) 

Fig. 5. (a) Model of Hermitian Buffer IP; (b) FSM of Hermitian Buffer 

H. Hermitian Remover IP 

Hermitian Remover IP was used to remove the data that 

contains conjugate component and zero padding after the 

FFT process. This IP performs a simple data processing, it 

is only taking data on certain data index, which is 1st to 28th 

index, to be forwarded as output whereas other indexes are 

eliminated. Fig. 6(a) shows the hierarchy model of the 

Hermitian Remover IP. 

 

 
(a) (b) 

Fig. 6. (a) Model of Hermitian Remover IP; (b) FSM of Hermitian Remover 

This IP also uses BRAM as a memory for buffering 

processes. Two BRAMs were used: BRAM data-in and 

BRAM data-out. The BRAM data-in was used to 

temporarily store raw data from FFT processing. BRAM 

data-out was used to temporarily store the data input which 

has passed two critical cores: 1) process of conjugating 

data and removing zero padding and 2) process of 

rearranging the data index. The first process, input data is 

stored in the BRAM data-in. Then the data on certain index 

are transferred from BRAM data-in to BRAM data-out. 

This data transfer is done without including three 

components, i.e., DC bias, zero padding and conjugate data. 

Accessing data at the BRAM data-in and filling data at the 

BRAM data-out were processed on parallel. Thus, the 

AXI 

Stream 

Slave

Data In

Hermitian Symmetry Logic

BRAM 

Data Input

BRAM 

Data 

Conjugate

BRAM 

Data 

Output

Write 

Enable

AXI 

Stream 

Master

Data Out

Read 

Pointer

Transmit 

Done

Reset variables & 

IDLE

Fill and arrange 

DC component 

into output BRAM
zeros

Inf_data

NUMBER_OF_OUTPUT_WORDS 

!= 512

Fill and arrange 

data from BRAM 

data-in and BRAM 

data-out

Wait until BRAM 

data-out is full

Stream Data 

output from 

BRAM_out_buff

Fill and arrange 

data conjugate into 

BRAM data-out

Fill and arrange 

middle zero 

padding into 

BRAM data-out

!zeros

!conj

conj

!out_buff_full

out_buff_full

tx_done

!Inf_data

DC_bias

!DC_bias

In_buff_full

wren && !in_buff_full

Fill BRAM data-in 

and BRAM Conj.

wren

!wren

AXI 

Stream 

Slave

Data In

Hermitian Remover Logic

BRAM 

Data Input

BRAM 

Data 

Output

Write 

Enable

AXI 

Stream 

Master

Data Out

Read 

Pointer

Transmit 

Done

Reset 

variables & 

IDLE

Fill Data input into 

BRAM_buff

Stream Data 

output from 

BRAM_out_buff

Get active 

Subcarrier Data 

from BRAM_buff 

then put into 

BRAM_out_buff

In_buff_full

out_buff_full

!out_buff_full

wren

!wren

wren && !in_buff_full

tx_done

NUMBER_OF_OUTPUT_WORDS 

!= 336

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 613



BRAM data-out only contains main data on 28 active 

subcarrier signals. The FSM of Hermitian Remover IP is 

shown in Fig. 6(b). 

I. Time Synchronizer IP 

Time Synchronizer IP used several BRAM as memory 

to store the calculation results when the time 

synchronizing process was performed. The total BRAM 

used in this IP was 6 units (consists of 2 BRAMs for input 

data, 1 BRAM for output data, 1 BRAM for calculating P 

value, 1 BRAM for calculating R value and 1 BRAM for 

calculating M value). The calculation process requires 

multiplication between index in the input data. If the 

BRAM is used at one time, there is only one data that can 

be taken and will add a delay of two clocks. That is why 

the input data uses 2 BRAMs so that the calculation 

process can run faster despite there is a trade-off, which is 

the number of resources used. The Time Synchronizer IP 

hierarchy is shown in Fig. 7. 

 

Fig. 7. Model of time synchronizer IP 

 
 

(a) (b) 

Fig. 8. (a) Model for P, R, and M calculation; (b) FSM of time synchronizer IP 

The Time Synchronizer IP performs as a core to 

calculate three variables, which are P, R and M (Fig. 8a). 

Then the sample index based on the calculation results of 

the M variable is determined and cyclic prefix in that data 

is eliminated. In the calculation process for the P variable, 

correlation was done by doing dot product multiplication 

between two-time synchronization symbols. 

Multiplication process is done from the last index of the 

first-time synchronization symbol with the initial index of 

+1 from the next time synchronization symbol. 

Multiplication continues to be carried out with the first 

index time synchronization symbol. Later, the second 

index continues to be added until the size of one window 

index is equal to the number of FFT points. This result is 

added to the initial index value of the second time 

synchronization symbol that is already squared. The R 

value is obtained by multiplying the square between 

sample data value at the index and then adding the squared 

results to the previous index until all additions to the 

window point are complete. Afterward, the index window 

point increases by one. 

The M value calculation was done by dividing all data 

in BRAM P with all data in BRAM R were previously 

squared. This value was stored at BRAM M.  After all 

calculation operations were completed, the greatest value 

on BRAM M can be obtained. If the largest value in that 

index is found, it becomes an initial index of the time 

synchronization symbol. From this index, it can be 

specified other data indexes. The data is then transferred to 

the BRAM data-out without involving the cyclic prefix.  

From the FSM flow of this IP (Fig. 8b), it can be seen 

that the input data is loaded into BRAM_buff and 

BRAM_buff_1 until the BRAM is full. Then, the 

in_buf_full signal becomes active. Finally, the calculations 

for variables P, R and M, are done. There is a flag signal 

for each of these calculations indicating the calculation 

process is complete and ready to proceed to the next state. 

Afterward, the detection process of the initial frame-index 

is done. Further, the frame_index_detected signal becomes 

active. The data is then saved to BRAM_out_buff. When 

this BRAM is full, the out_buff_full signal becomes active 

and the data is streamed out up to 768 samples of output. 

AXI 

Stream 

Slave

Data In
ShapiroRudin_Park Time Synchronizer Logic

BRAM 

Data 

Input_0

BRAM 

Data 

Input_1

BRAM 

Data 

Output

BRAM P BRAM R BRAM M
Write 

Enable

AXI 

Stream 

Master

Data Out

Read 

Pointer

Transmit 

Done

div

BRAM_buff
12

8

CLK

EN_0

WE_0

ADDR_0

DIN_0

BRAM_buff_1

12

8

CLK

EN_1

WE_1

ADDR_1

DIN_1

8

8

DOUT_0

DOUT_1

BRAM_buff_1

12

8

CLK

EN_2

WE_2

ADDR_2

DIN_2

* + **232 32 32

DOUT_MUL DOUT_P DOUT_3

**2 + **232 32 32

DOUT_q DOUT_R DOUT_4

8

32

DOUT_M

Calculate M
Calculate P

Calculate R

DOUT_2

Reset variables & 

IDLE

Calculate P value 

and then store the 

results into 

BRAM_P M_done

R_done

NUMBER_OF_OUTPUT_WORDS 

!= 768

Calculate R value 

and then store the 

results into 

BRAM_R

Put data into 

BRAM_out_buff 

without Cyclic 

Prefix (CP)

Stream Data 

output from 

BRAM_out_buff

Frame index 

detection

Calculate M value 

and then store the 

results into 

BRAM_M

!M_done

!frame_index

_detected

!out_buff_full

out_buff_full

tx_done

!R_done

P_done

!P_done

In_buff_full

wren && !in_buff_full

Fill Data input into 

BRAM_buff and 

BRAM_buff_1

wren

!wren

!frame_index_detected

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 614



Then the tx_done signal becomes active and enter the 

IDLE state. Afterward, all variables are re-initialized. The 

process will recur when there is a wren signal (write enable) 

for input data on the slave port. 

J. Channel Estimator & Equalizer IP 

The hierarchy of Channel Estimator & Equalizer IP is 

shown in Fig. 9 This IP uses 8 BRAMs which consists of: 

4 BRAMs to store a channel estimation symbol in the 

OFDM package. The remaining 1 BRAM each for storing 

real components from input data, storing imaginary 

components from input data, storing the equalizer 

coefficient, and storing output data. The reason of BRAM 

separation for each channel estimation symbol, real and 

imaginary components from the input data is to speed up 

the calculation process accompanying with a trade-off, 

which is resource utilization. This IP has the same purpose 

as the Time Synchronizer IP. 

 

Fig. 9. Model of channel estimator & equalizer IP 

 

 

(a) (b) 

Fig. 10. (a) Model of computation on the channel estimator & equalizer IP; (b) FSM of channel estimator & equalizer IP 

The FSM of this IP is depicted in Fig. 10(b). It can be 

seen that in the first process, the data filled in the BRAM 

is in the order of channel estimation symbol, i.e., from the 

first to fourth symbol. Each of these symbols are filled on 

each BRAM with the reason for the averaging process of 

these four symbols can be done by accessing BRAM in 

parallel to save process latency. Symbols filled on each 

BRAM have own flag signal indicating the filling process 

was complete. Afterward, it is processed with the input 

data until the in_buff_full flag is activated. Finally, channel 

estimating and equalizing process are done and 

channel_est_done signal will active and data will be 

buffered at BRAM_out_buff until out_buff_full signal is 

activated. Later, the data is streamed out until the total 

sample reaches 768 samples. In the next process, the data 

will enter the IDLE state and all variables will be re-

initialized. The process will be repeated when the slave 

port receives a wren signal. 

This IP combines two functions: to run the channel 

estimation process as well as equalizing process (Fig. 10a). 

The symbol allocation for channel estimation in the 

OFDM data package is 4 symbol slots. After the time 

synchronizing process is done and its initial index is 

obtained, the index of the channel estimation symbols can 

be known precisely. After this symbol pass the FFT 

process and the Hermitian data is eliminated well, these 4 

symbols go through the channel estimation process on the 

Channel Estimator & Equalizer IP.  

This process is done by finding the average value of 

these four symbols after passing through the channel 

AXI 

Stream 

Slave

Data In
Channel Estimator and Equalizer Logic

BRAM 

Data 

Input_Re

BRAM 

Data 

Input_Im

BRAM 

Data 

Output

BRAM 

Channel 

Est 0

BRAM 

Channel 

Est 1

BRAM 

Channel 

Est 2
Write 

Enable

AXI 

Stream 

Master

Data Out

Read 

Pointer

Transmit 

Done

BRAM 

Channel 

Est 3

BRAM 

Equalizer 

Coefficient

BRAM_buff_

cest_2
5

8

CLK

EN_1

WE_1

ADDR_1

DIN_1

BRAM_buff_

cest_3
5

8

CLK

EN_2

WE_2

ADDR_2

DIN_2

BRAM_buff_

cest_4
5

8

CLK

EN_3

WE_3

ADDR_3

DIN_3

BRAM_buff_im

8

8

CLK

EN_4

WE_4

ADDR_4

DIN_4

BRAM_buff_

cest_1
5

8

CLK

EN_0

WE_0

ADDR_0

DIN_0

BRAM_buff_re

8

8

CLK

EN_5

WE_5

ADDR_5

DIN_5

8

/4

8

8

+

DOUT_1

8

DOUT_2

DOUT_3

DOUT_0

10

DOUT_add

8

DOUT_5

8

DOUT_4

div

div

8

DOUT_eq_0

{concat}

8

DOUT_eq_1

16

DOUT_ce_eq

8

8

DOUT_ce_0

DOUT_ce_1

Reset variables & 

IDLE

Fill channel 

estimation symbol 

2 into 

BRAM_buff_cest_

2

Fill channel 

estimation symbol 

3 into 

BRAM_buff_cest_

3

Channel 

estimating then put 

equalization 

divisor into 

BRAM_eq_coeff

Data equalizing 

then store the data 

into 

BRAM_out_buff

Fill data Input 

(Real & Imaginer) 

into BRAM_buff_re 

& BRAM_buff_im

Fill channel 

estimation symbol 

4 into 

BRAM_buff_cest_

4

!in_buff_full 

&& wren

!channel_est

_done

cest1_buff_full

wren && 

!cest1_buff_full
Fill channel 

estimation symbol 

1 into 

BRAM_buff_cest_

1 

wren

!wren

!cest2_buff_full 

&& wren

!cest3_buff_full 

&& wren

cest2_buff_full

cest3_buff_full
!cest4_buff_full 

&& wren

cest4_buff_full && wren

in_buff_full && wren

!channel_est_done

Stream Data 

output from 

BRAM_out_buff

NUMBER_OF_OUTP

UT_WORDS != 768

tx_done

!out_buff_full

out_buff_full

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 615



estimating process for each active subcarrier. The average 

result is then stored in the BRAM equalizer coefficient. 

The data contents on this BRAM are taken as a dividing 

factor for each active subcarrier in OFDM data to eliminate 

the channel characteristics effect. The bit growth effect of 

FFT process need to pay attention in order to carry out the 

scaling process on the data distribution with an 

equalization coefficient. However, this effect is not 

important because we only need to see the sign bit value. 

The mentioned effects will be considered for the symbol 

mapping process using a mapper over QPSK, e.g., 16-

QAM, 64-QAM, 128-QAM, 256-QAM, Etc.  

 

 
(a) (b) 

Fig. 11. (a) Model of TxInputBuffer IP; (b) FSM of TxInputBuffer IP 

K. TxInputBuffer and RxOutBuffer IP 

In this system, data processed by the SoC Tx is received 

from a PC via Ethernet communication. The data is then 

transferred to the FPGA accelerator. Finally, the data is 

modulated using DCO-OFDM. A memory-mapped IP 

needs to be created for processing the data through a 

stream-based accelerator. Therefore, data can be 

transferred by S/W on the ARM microprocessor to the 

FPGA accelerator. For this reason, a special custom-based 

IP was designed with the AXI lite interface that has a 

specific register address as the destination. Besides, it can 

split the received data into bitstreams to be processed in 

the accelerator. The hierarchy TxInputBuffer IP is shown 

in Fig. 11(a) while the FSM is depicted in Fig. 11(b).  

In the initial process, this IP receives 32 bits × 7 integer 

data at the input register address. The amount of data 32 

bits × 7 was chosen because the OFDM frame design has 

28 symbols × 8 numbers of data in one frame, in addition 

to time synchronization and channel estimation symbols. 

In this study, QPSK was used as a mapper with 2 bits in 

one symbol. The QPSK data comes from CE IP with an 

output rate of 0.5 interleaved by a rectangular block 

Interleaver with 2 bits of data per column. The output data 

size is 2 bits for each sequence. Hence, it can be expressed 

as follows: 28 × 8 = 32 × 7. There are seven times of the 

integer data sending to IP. The 32 bits value is an integer 

data type in the S/W. 

 The vector size of buff_data is 224 bits. When the 

buffer is full, the buff_full flag will active. Afterward, the 

data is sent per bit to slave IP until the total sample of data 

output is 224 samples. The output data in this vector is 

accessed by a read pointer that will access the data per bit 

sequentially, starting from 0 to 223 indexes. When all data 

have been transmitted, the tx_done flag will active and all 

variables will be re-initialized. Also, the state will enter the 

IDLE process and wait until the write_ena signal appears 

for data at the write_address==0.  

  
(a) (b) 

Fig. 12. (a) Model of RxOutBuffer IP; (b) Model of TxOutBuffer IP 

The RxOutBuffer IP is designed to reverse the 

TxInputBuffer IP process before the data is accessed by 

reading the register address. This IP accepts data per one 

bit from the Viterbi Decoder IP until 224 bits. The data is 

then arranged into 32 bits × 7 data sequentially. Once the 

process is complete, then the IP sends an interrupt signal 

TxInputBuffer 

Logic

AXI 

Lite 

Slave

Data In

Write 

Enable

AXI 

Stream 

Master

Data Out

Read Pointer

Transmit Done

Write 

Address
Buffer Full

Reset 

variables & 

IDLE

Fill Data input into 

initialized 

BRAM_out_buff

Stream Data 

output from 

BRAM_out_buff

!wren

tx_done
wren

In_buff_full

Wren && !in_buff_full

NUMBER_OF_OUTPUT_WORDS 

!= 336

TxOutputBuffer 

Logic

AXI 

Lite 

Slave

Data Out

Read Enable

Read Address

Flag

Flag Enable

Flag Address

AXI 

Stream 

Slave

Write Enable

Interrupt 

Signal

Reset 

variables & 

IDLE

Fill Data input into 

buff_data

Read Data from 

buff_data

IDLE

buff_full
read_ena

read_ena

write_ena

read_ena

!write_ena

write_ena && !buff_full

flag_write_ena && (flag_addr == 0) 

&& (flag_data == 1)

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 616



to the ARM microprocessor indicating the process is 

complete. Later, the data can be accessed. The hierarchy 

of RxOutBuffer IP is shown in Fig. 12(a). 

In the first process, data is received by RxOutBuffer IP 

for every one bit of data. When the data filling process is 

finished, the buff_full flag is active indicating the buffer 

input is full. The buff_full flag also marks the interrupt 

signal to the ARM microprocessor. When the interrupt has 

been received by a firmware program, then the data can be 

accessed. This IP detects data requests and they will be 

streamed out based on the destination address. After all 

data have been accessed clearly, a signal is generated 

indicating the process has finished, which is tx_done. The 

tx_done signal is used as a sign to reset the register’s 

contents. Then the process enters the IDLE state until it 

receives a write_ena signal. The FSM of the RxOutBuffer 

IP is depicted in Fig. 12(b). 

L. Frame Assembler IP 

In this data transmission system, the SoC Tx will 

continue to send the same OFDM frame to the SoC Rx 

until it gets a confirmation signal. This signal confirms that 

the data has been received properly by the SoC Rx. Before 

that, all burst data from DCO-OFDM modulation 

processing need to be packaged and integrated with time 

synchronization and channel estimation symbols that 

already stored in the memory block. These tasks were 

carried out by the Frame Assembler IP; this IP was 

designed to have one BRAM that already initialized first 

by a time synchronization and channel estimation symbol 

on the memory block’s initial index. The next memory 

indexes are used to store the burst data from DCO-OFDM 

modulation results. The hierarchy model of the Frame 

Assembler IP is shown in Fig. 13(a). 

 

 
(a) (b) 

Fig. 13. (a) Model of frame assembler IP; (b) FSM of frame assembler IP 

  
(a) (b) 

Fig. 14. (a) Model of ResetReg IP; (b) FSM of reset flag 

The FSM of Frame Assembler block is depicted in Fig. 

13(b). Firstly, the program will store data at the index after 

the memory index, which is 480th index, for the time 

synchronization and channel estimation symbols. The 

in_buff_full flag signal will be activated indicates that the 

buffer is full and later the data will be streamed out. When 

the output data has reached 336 samples, the tx_done 

signal comes out indicating the process has finished. 

Afterward, the state will change to IDLE and all variable 

contents will be reset. The State will repeat like the 

previous process when it has received a wren signal. 

M. ResetReg IP 

Systems must be able to run repeatedly in data 

transmission in which it can be done many times depends 

on the data sent size. For this reason, a specific IP is needed 

to reset all accelerators on the FPGA, which can be 

controlled via firmware. Accordingly, the FPGA 

accelerator can process data for the next data transmission. 

When the reset is activated, all variables in the accelerator 

will be re-initialized to the initial value. The hierarchy 

model of ResetReg IP and its FSM are shown in Fig. 14(a) 

and 14(b) respectively. This IP works by receiving 

instructions from the user on the firmware with writing 

logic high (‘1’) in the specified address register. If this IP 

detects ‘1’ logic on that address, then the RESET_S signal 

interrupt will be activated as “active low”.  

The RESET_S signal interrupt is then connected to the 

processor system reset IP in the input section of the 

aux_reset_in. This processor system reset IP is set so that 

the Aux reset logic level is ‘0’ according to active low on 

the RESET_S signal. Besides, the Aux reset width is equal 

AXI 

Stream 

Slave

Frame Assembler Logic

BRAM 

Data 

Output

Write 

Enable

AXI 

Stream 

Master

Data Out

Read 

Pointer

Transmit 

Done

Data In

Reset 

variables & 

IDLE

Fill Data input into 

initialized 

BRAM_out_buff

Stream Data 

output from 

BRAM_out_buff

!wren

tx_done
wren

In_buff_full

Wren && !in_buff_full

NUMBER_OF_OUTPUT_WORDS 

!= 336

AXI Lite Slave

Reset Reg 

Logic

resetn = 1 resetn = 0

S_AXI_ARESETN == 0

S_AXI_ARESETN == 0 S_AXI_ARESETN == 1

(S_AXI_WDATA == 1) && slv_reg_wren && 

(axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] == 0)

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 617



to ‘1’ which indicates the reset signal for all accelerators 

will be activated when a RESET_S signal is detected 

having ‘0’ logic in at least one clock cycle. The ResetReg 

IP is included in the accelerator which will be reset by the 

processor system reset IP. When this IP has been reset, the 

RESET_S signal value will return to ‘1’ logic. 

III. FIRMWARE DESIGN 

The firmware consists of two parts, i.e., transmitter and 

receiver. In general, the firmware proposed in this study 

was responsible for receiving/sending data from PC source 

to PC destination or vice versa through Ethernet, and also 

in sending and reading data with an FPGA accelerator. 

This firmware employs the Xilinx SDK environment with 

a variety of available libraries. Fig. 15 shows the SoC 

architecture for testing purpose; it can be seen that the 

entire accelerator for the transmitter part is connected to 

each other by AXI stream. The accelerator data comes 

from the ARM microprocessor and then sent to the 

TxInputBuffer IP via Ethernet. This IP has a memory-

mapped interface on the slave port. Afterward, data on this 

IP is then sent to another accelerator via the AXI stream 

interface on the master port.  

The data from all accelerators processing on the DCO-

OFDM modulation is fed to the ARM microprocessor 

through Direct-Memory Access (DMA). The DMA as the 

feedback system was used for testing purposes. In the 

actual system, the Frame Assembler IP becomes the output 

of the latest IP on DCO-OFDM modulation processing. 

This IP is available on the I/O pin of the Zynq development 

board. The data output from the Frame Assembler IP is 

then converted into an analog signal by the D/A. In 

addition, there is also an input pin to receive the interrupt 

signal from the receiver board. This interrupt signal 

indicates the data frame processing that is previously 

transmitted has been completed and is ready to receive the 

next OFDM frame. As long as the interrupt signal is not 

received, Frame Assembler IP will continue to loop the 

same OFDM frame transmission. This interrupt also 

functions as an interrupt signal to reset variables, like the 

tx_done signal function on a custom-based IP as elaborated 

in a previous section. 

The SoC Rx has a similar mechanism to the SoC Tx 

with a little bit different (Fig. 16). The difference point 

relies that the data is sent from the ARM microprocessor 

to the FPGA’s accelerator by transmitting memory-

mapped-to-stream (MM2S) to the DCO-OFDM 

demodulation accelerator on the FPGA. The demodulation 

data is collected and received by the RxOutBuffer IP. 

Afterward, the RxOutBuffer IP sends an interrupt signal to 

the ARM microprocessor. This interrupt signal was used 

as a sign to access register address in the memory-mapped 

of the RxOutBuffer IP slave port. 

Fig. 17(a) depicts a firmware design flowchart intended 

for the real application of DCO-OFDM system. In the 

system, data is received by the ARM microprocessor from 

the PC via an Ethernet connection. The entire accelerator 

on the FPGA is reset to initialize the values in the RTL 

design variable. Afterward, this reset process is done by 

setting the logic value in the address register for the slave 

port available from the ResetReg IP.  Then the data is sent 

from ARM to the TxInputBuffer accelerator in the register 

address on the slave port. Then, it will be forwarded to 

other accelerators for carrying out the modulation process. 

The modulated data frame will be stored and transmitted 

repeatedly until the transmitter board receives an interrupt 

signal from the receiver. The interrupt signal indicates the 

frame has been demodulated properly. Data from 

modulation processing is forwarded to the DMA and then 

to be stored in an on-chip memory. After the DMA has 

finished receiving all the data, then the data is accessed by 

the ARM microprocessor via the S2MM port on the DMA. 

Firmware design for this test is shown in Fig. 17(b). 

As shown in Fig. 17(c) the data comes from the A/D 

which is then connected via the I/O pin to the FPGA’s 

accelerator IP. In this system, Time Synchronizer IP is 

directly connected to the sample data results of A/D 

module. When the demodulation process is successful, the 

ARM microprocessor receives an interrupt signal and then 

accesses the data on the RxOutBuffer IP register address. 

Then, it will be forwarded to the PC through an Ethernet 

connection. The process then repeats for the next 

transmission. Firmware is always in IDLE mode as long as 

the interrupt signal has not been received. However, for 

testing purpose, the data received by the accelerator comes 

from the ARM microprocessor instead of A/D module. 

The data is sent to the accelerator via DMA and then fed 

back to ARM microprocessor after it has been completely 

demodulated (Fig. 17d).  
 

Hermitian 

Buffer

FIFO 

2

FIFO 

1
TxInputBuffer

QPSK 

Mapper
Interleaver

Convolutional 

Encoder

Reset 

Reg

Frame 

Assembler
IFFT

FIFO 

3

AXI 

Direct 

Memory 

Access

AXI Memory 

Interconnect

AXI 

Interconnect

Zynq7 

Processing 

System

 

Fig. 15. Loop back testing methodology for SoC Tx 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 618



FIFO

5

Hermitian 

Remover

FIFO 

6
RxOutBuffer

QPSK 

Demapper
Deinterleaver

Viterbi 

Decoder

Reset 

Reg

FIFO

4
FFT

Time 

Synchronizer

AXI 

Direct 

Memory 

Access

AXI Memory 

Interconnect

AXI 

Interconnect

Zynq7 

Processing 

System

Channel 

Estimator & 

Equalizer

 

Fig. 16. Loop back testing methodology for SoC Rx 

Start

Receive Data 

from Ethernet

Y
e
s

Reset FPGA 

Accelerator

Send Data to Accelerator 

TXInputBuffer register 

address and modulate

Got confirmation 

from SoC Rx
N

o

 

Start

Receive Data 

from Ethernet

Reset FPGA 

Accelerator

Send Data to Accelerator 

TXInputBuffer register 

address and modulate

DMA receive Done?

N
o

Y
e
s

Check received Data
 

Start

Reset FPGA 

Accelerator

Receive Data 

from A/D

Demodulate the Data in 

the FPGA Accelerator

Got Demodulate 

done Interrupt

N
o

Y
e
s

Access the Data at 

RxOutBuffer register address

Send Data to PC through 

Ethernet

 

Start

Reset FPGA 

Accelerator

Send Data to Accelerator 

through DMA

Demodulate the Data in 

the FPGA Accelerator

Got Demodulate 

done Interrupt

N
o

Y
e
s

Access the Data at 

RxOutBuffer register address

Check the Data
 

(a) (b) (c) (d) 

Fig. 17. (a) Firmware design flowchart for a proposed SoC Tx; (b) Flowchart of SoC Tx firmware for testing purpose using DMA; (c) Firmware design 

flowchart for a proposed SoC Rx; (d) Flowchart of SoC Rx firmware for testing purpose using DMA 

IV. RESULTS AND ANALYSIS 

The main requirement that needs attention in the 

proposed SoC architecture is the data transfer mechanism 

between each PE. In this system, the PE architecture with 

stream interfaces is connected each other to a specific bus, 

which is AXI interconnect stream. These PE groups are 

controlled by scheduling S/W on the ARM microprocessor 

through S2MM as the bridge that are part of the custom-

based IP (i.e., TxBufferInput IP and RxOutBuffer IP). On 

the IP with stream interfaces, the processing result data 

needs to be stored first in a Buffer until the process for one 

stage of data processing is complete because it does not 

have a temporary storage register. This buffer was 

implemented using BRAM.  

As elaborated in the Section II.A, the BRAM was 

implemented on several custom-based IPs that already 

integrated into one part of the RTL of each IP design. 

Whereas for reuse-based IP, buffering process was done 

by adding AXI stream data FIFO IP between interfaces as 

a communication signals synchronizer to guarantee that 

the data can be received validly. This buffering process is 

highly important due to the two main reasons: the process 

latency of each PE is different from each other and the 

communication available on the IP interface is 

asynchronous. 

A. IP Testing 

This section reports the testing results of the created IPs 

(e.g., CE, Viterbi Decoder, Interleaver/Deinterleaver, 

IFFT/FFT, AXI Stream Data FIFO, QPSK Mapper, QPSK 

Demapper, Hermitian Buffer, Hermitian Remover, Time 

Synchronizer, Channel Estimator & Equalizer) that were 

observed from an RTL simulation. The data obtained was 

latency parameter in clock cycle unit. 

The CE block requires a delay of four clocks starting 

from the first valid data input until the valid output data is 

first streamed out. In addition, the valid data output 

requires 2 bits of LSB data from 8 bits, with the 3rd to 8th 

bit data is zero padding. The same thing applies to input 

data, where data is only found in 1 bit of 8 bits LSB data, 

and the rest is zero padding.  

The simulation results on the Viterbi Decoder IP 

showed that data processing requires 198 clock cycles, 

with each cycle on the clock was 10 ns. Whereas for 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 619



Interleaver/Deinterleaver IP, the latency was 231 clock 

cycles for 224 data samples. This result was in line with 

the timing diagram design that was taken from the IP 

summary report. 

The simulation results on the IFFT/FFT IP reveal that 

the latency of this IP was 372 clock cycles. In the initial 

input data, this IP will take the excess sample data rather 

than the number of transform points before the data is 

processed and the ready signal changes to low. With a total 

transformation point of 64, the number of first data 

samples taken was 82 samples from all sample data (64 × 

8 samples) in one OFDM package. The sampling process 

of the next package will be taken with the size 

corresponding to the number of samples. The AXI stream 

data FIFO IP is placed as a connector between IPs which 

is equal to 3 clock cycles of latency. 

The simulation result on the QPSK Mapper IP was 1 

clock cycle of latency. This IP has input data consisting of 

8 bits that will only process 2 bits of LSB. While, the 

output data of this IP consists of 16 bits (8 bits of MSB 

represents imaginary numbers + 8 bits LSB represents real 

numbers). These real and imaginary numbers determine 

the QPSK mapping which follows the Gray-code 

constellation rule. 

The QPSK Demapper IP has 1 clock cycle of latency. 

The QPSK Demapper IP output is connected as an input of 

the Deinterleaver IP which has an input data width of 8 bits.  

That is why the bit width of the QPSK Demapper output 

data is the same with Deinterlever IP, which is 8 bits (main 

data on 2 bits of LSB + 6 bits of MSB that are padding 

filled with zero values). For this system, the data width that 

will be processed on the Deinterleaver IP is set to 2 bits in 

the symbol width section likewise with the Interleaver IP.  

The latency of Hermitian Buffer IP and Hermitian 

Remover IP were 747 clock cycles and 5137 clock cycles 

respectively. Hermitian Remover IP needs a large clock 

cycle because it is waiting for the FFT to finish overall 

processes in the burst frame. The data reception will 

continue without pause until it is completed, that is why 

the clock cycle is larger than Hermitian Buffer IP. 

The simulation results on the Time Synchronizer IP 

showed that the latency is 279951 clock cycles. The 

latency is very large due to process a lot of complex 

mathematical operation. In addition, this IP contains a lot 

of data transfer between BRAM. Lastly, the Channel 

Estimator & Equalizer IP was 567 clock cycles of latency. 

After being tested one by one for each IP, then the entire 

IP system will be tested by connecting the SoC Tx 

accelerator to the SoC Rx. It will be discussed in 

subsequent section. 

B. Accelerator System Testing 

The output of the Frame Assembler IP on the SoC Tx 

was connected to the Time Synchronizer IP on the SoC Rx 

through the Data FIFO IP intermediary. System 

configuration for this testing is illustrated by Fig. 18; it can 

be seen a structure of all IPs, starting from the data entered 

until the data comes out. Data input for the system 

testbench comes from an Upcounter which will continue 

to perform the enumeration. Due to data taken only needs 

1 bit of LSB, then the input data for testing is a repetitive 

sequence of ‘101010 …’. Although this sequence will 

continue to increase due to each IP accelerator having 

determined the limit number of input and output data, this 

test was limited to only transmitting one OFDM frame. 

However, this does not mean that the proposed system was 

only limited to process one OFDM frame. In further 

implementation, if it has been combined with a firmware, 

then the transmission can be done not only one time but 

also many times. The reset feature on the firmware should 

be activated to perform continuous data transmission; it 

can be accessed via ResetReg IP. 

 

Fig. 18. Accelerator testing block design 

 

Fig. 19. Input data for the proposed system 

 

Fig. 20. Output data from the proposed system 

The test results showed that the system accelerator can 

work well as expected. It can be seen that the output data 

were the same as the input data, i.e., the sequence number 

of ‘101010 ...’ (Fig. 19). Besides, the overall accelerator 

latencies for each SoC Tx and SoC Rx can be found, i.e., 

4570 clock cycles and 286468 clock cycles respectively 

(Fig. 20). Afterward, the data bit rate can be calculated 

using Equation (1). The number of active subcarriers and 

data burst were 28 and 8 respectively. Data rate symbol 

mapper and data rate encoder were 2. The total clock used 

Binary 

Counter

QPSK 

Mapper

Convolutional 

Encoder
Interleaver

FIFO 

1

Hermitian 

Buffer

FIFO 

2
IFFT

Frame 

Assembler

FIFO 

3

Time 

Synchronizer

FIFO 

4
FFT

Hermitian 

Remover

FIFO 

5

Channel 

Estimator & 

Equalizer

FIFO 

6

QPSK 

Demapper
Deinterleaver

Viterbi 

Decoder

Data 

Out

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 620



and frequency clock are 291,038 clock and 100 MHz 

respectively. Based on the calculation, a 77 kbps of data 

rate is obtained in which it was quite reasonable used for 

low speed application, especially for IoT [38], [39]. 

Authors of [38] proposed a VLC/IoT system that was 

capable of transferring the data up to 115.2 kbps. This 

transmission speed was in accordance with the IEEE 

802.15.7 PHY I standard (about 100 kbps). The BER in 

[38] was claimed to be very low and capable of operating 

at a distance of 7 meters. The basic difference between this 

study and [38] is the processor unit. It is important to 

employ SoC for system customization as well as to 

accelerate the data exchange among VLC/IoT modules 

within the available network. Authors of [39] reported a 

novel VLC/IoT system that has been implemented on a 

prototype with an energy harvesting feature. Hardware in 

their system involved several important modules, such as 

photodiodes, flexible electronics, and solar cells. However, 

authors of [39] did not explain the resulting bit rate in the 

paper.  

In future work, the accelerator design needs to be 

enhanced by using a more efficient architecture at the basic 

mathematical operations stages such as power, 

multiplication, division, etc. to run faster processing. 

Furthermore, this system needs to be tested in real testbed 

by connecting external A/D and D/A modules, analog LED 

driver circuit and AFE. Surprisingly, the graph of SNR 

against BER in various scenarios (e.g., changing the 

distance of optical channel, LED power, LED position, 

channel characteristic, angle, number of photodiodes, etc.) 

can be plotted. In addition, the throughput against latency 

(delay) in operational field (actual condition) can be 

observed. Then, it can be compared to various works 

related to VLC/IoT use case in terms of aforementioned 

aspects. 

 

𝐵𝑖𝑡 𝑟𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑏𝑢𝑟𝑠𝑡 ×
𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 𝑠𝑦𝑚𝑏𝑜𝑙 𝑚𝑎𝑝𝑝𝑒𝑟

𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

×
1

(
𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑜𝑐𝑘

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑙𝑜𝑐𝑘
)

                                                 (1) 

 

V. CONCLUSION 

The SoC transceiver for the DCO-OFDM-based VLC 

system has been designed and simulated carefully in RTL. 

Sending and receiving data between two PCs bridged by 

the SoC platform was done using an Ethernet module. The 

SoC platform (Tx & Rx) was embedded on the FPGA 

development board (Xilinx Zynq SoC 7000). Time 

synchronizer, channel estimator, and equalizer, have been 

successfully modeled and implemented as an accelerator. 

The OFDM was built with three main frames: 

synchronization signal (2 symbols width), channel 

estimation signal (4 symbols width), and data (8 symbols 

width). The OFDM design takes into account the standard 

frame structure. Several IP core accelerators served from 

Xilinx (i.e., Convolutional Encoder, Viterbi Decoder, 

IFFT/FFT, and Interleaver/Deinterleaver) were directly 

utilized to speed up the development process. In addition, 

custom-based IP for accelerator modules (i.e., Hermitian 

Buffer, Frame Assembler, Time Synchronizer, Channel 

Estimation & Equalizer, Hermitian Remover, 

TxInputBuffer, RxOutBuffer, and ResetReg) have been 

created. The reuse-based IP (the 3rd party IP) and custom-

based IP (custom-made IP) were passed the functional 

verification and successfully integrated with AXI bus 

protocol provided by Xilinx Vivado. Validation process 

for the RTL accelerator system and firmware were still 

done separately.  

In the next development, a further debugging process 

will be carried out when the H/W and S/W have been 

connected. Accordingly, the test result data will be more 

emphasized. The MAC layer reliability can be later 

improved to make the system capable to handle the large-

scale data transmissions robustly. Also, it can be equipped 

with several features such as energy-saving mode. Besides, 

the system implementation on the chip area can be smaller 

as possible. 

LIST OF ABBREVIATIONS 

A/D = Analog-to-Digital Converter 

AFE = Analog Front End 

ARM = Advanced RISC Machines 

ASIP = Application-Specific Instruction Set Processor 

AXI = Advanced eXtensible Interface 

BER = Bit-Error Rate 

BRAM = Block Random Access Memory 

BRAM Conj. = BRAM data conjugate 

BRAM data-in = BRAM data input 

BRAM data-out = BRAM data output 

CE = Convolutional Encoder 

D/A = Digital-to-Analog Conveter 

DCO = DC-biased Optical OFDM 

DMA = Direct-Memory Access 

FEC = Forward Error Correction 

FFT = Fast Fourier Transform 

FIFO = First-in-First-out 

FPGA = Field-Programmable Gate Array 

FSM = Finite-state Machine 

H/W = Hardware SoC 

HDL = Hardware-description Language 

IFFT = Inverse FFT 

IoT = Internet-of-Things 

IP = Intellectual Property 

Li-Fi = Light Fidelity 

LSB = Least Significant Bit 

LUT = Lock Up Table 

MM2S = Memory-Mapped-to-Stream 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 621



   

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

 

 

 

    

  

 

 

 

  

 

 

  

  

 

 

 

 

 

 

 

 

 

  

 

 

  

  

 

     

  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 622

MSB = Most Significant Bit 

OFDM = Orthogonal Frequency-Division Multiplexing 

OOK = On-Off Keying 

PC = Personal Computer 

PE = Processing element 

PHY = Physical layer 

PIN diode = Positive-Intrinsic-Negative diode 

PS = Processing System 

QAM = Quadrature Amplitude Modulation 

QPSK = Quadrature Phase-Shift Keying 

RISC = Reduced Instruction Set Computer 

RTL = Register-Transfer Level 

Rx = Receiver 

S/N = Signal-to-Noise Ratio 

S/W = Software in the SoC 

S2MM = Stream-to-Memory-Mapped 

SoC = System-on-chip  

SoC Rx = SoC Receiver 

SoC Tx  = SoC Transmitter 

TCP = Transmission Control Protocol 

Tx = Transmitter 

UART = Universal Asynchronous Rx-Tx 

VLC = Visible Light Communication 

CONFLICT OF INTEREST 

The authors declare no conflict of interest 

AUTHOR CONTRIBUTIONS 

S.F., A.P.P, and T.A. conceptualized and proposed the 

system model; S.F. and A.P.P designed each module of the 

model; A.P.P. implemented, simulated, and verified the 

system; S.F. analyzed and interpreted the data, 

summarized the main findings and made suggestions; 

A.P.P. drafted the research report in brief; S.F. contributed 

to writing, translating, proof-editing, correcting typos, and 

revising the manuscript. T.A. supervised the research; S.F. 

and A.P.P. contributed to drawing all figures within 

manuscript. All authors had approved the final version. 

ACKNOWLEDGMENT 

The operational cost of this research was supported by 

KEMRISTEK DIKTI Republik Indonesia in the 

Kerjasama Luar Negeri program (No. 

009/SP2H/LT/DRPM/IV/2017) while the publication fee 

was handled by Program Peningkatan Global 

Competitiveness Perguruan Tinggi Indonesia Universitas 

Pendidikan Indonesia 2021 Batch II (No SK 

1370/UN40/PT.01.02/2021). 

REFERENCES 

[1] T. Adiono, “A real-time visible light communication 

System on Chip (SoC) design for high speed wireless 

communication,” in Proc. 6th International Conference on 

Electrical Engineering, Computer Science and Informatics 

(EECSI), Sep. 2019, pp. 4–4.  

[2] S. Fuada, T. Adiono, A. P. Putra, and E. Setiawan, “Design 

of reconfigurable system-on-chip architecture for optical 

wireless communication,” J. Commun., vol. 14, no. 10, pp. 

965–970, 2019. 

[3] Z. Pan, et al., “Visible light communication cyber-physical 

systems-on- chip for smart cities,” J. Commun., vol. 14, no. 

12, pp. 1141–1146, 2019. 

[4] F. Che, L. Wu, B. Hussain, X. Li, and C. P. Yue, “A fully 

integrated IEEE 802.15.7 visible light communication 

transmitter with On-Chip 8-W 85% efficiency boost LED 

driver,” J. Light. Technol., vol. 34, no. 10, pp. 2419–2430, 

May 2016. 

[5] C. S. A. Gong, Y. C. Lee, J. L. Lai, C. H. Yu, L. R. Huang, 

and C. Y. Yang, “The high-efficiency LED driver for visible 

light communication applications,” Sci. Rep., vol. 6, no. 1, 

p. 30991, Aug. 2016. 

[6] X. Bi, Z. Gu, and Q. Xu, “Analysis and design of ultra-large 

dynamic range CMOS transimpedance amplifier with 

automatically-controlled multi-current-bleeding paths,” 

IEEE Trans. Circuits Syst. Regul. Pap., vol. 66, no. 9, pp. 

3266–3278, Sep. 2019. 

[7] M. T. I. Badal, M. B. I. Reaz, L. S. Yeng, M. A. S. Bhuiyan, 

and F. Haque, “Advancement of CMOS transimpedance 

amplifier for optical receiver,” Trans. Electr. Electron. 

Mater., vol. 20, no. 2, pp. 73–84, Apr. 2019. 

[8] R. Y. Chen and Z. Y. Yang, “CMOS transimpedance 

amplifier for gigabit-per-second optical wireless 

communications,” IEEE Trans. Circuits Syst. II Express 

Briefs, vol. 63, no. 5, pp. 418–422, May 2016. 

[9] E. Setiawan, T. Adiono, and S. Fuada, “PHY layer design of 

OFDM-VLC system based on SoC using reuse 

methodology,” in Proc. International SoC Design 

Conference (ISOCC), Daegu, Korea (South), Nov. 2018, pp. 

115–116. 

[10] E. Setiawan, T. Adiono, S. Fuada, and W. O. Popoola, 

“Demodulator IP cores design for OFDM-based visible light 

communication system-on-chip,” in Proc. 3rd International 

Conference and Exhibition on Visible Light Communication 

(ICEVLC), Seoul, South Korea, 2019, pp. 54–57. 

[11] T. Adiono, A. Pradana, R. V. W. Putra, W. A. Cahyadi, and 

Y. H. Chung, “Physical layer design with analog front end 

for bidirectional DCO-OFDM visible light 

communications,” Optik, vol. 138, pp. 103–118, Jun. 2017. 

[12] M. Figueiredo and C. Ribeiro, “OFDM-Based VLC systems 

FPGA prototyping,” in Visible Light Communications, 1st 

ed., Z. Ghassemlooy, L. N. Alves, S. Zvánovec, and M. A. 

Khalighi, Eds. London, UK: CRC Press, 2016, pp. 1–36. 

[13] T. Adiono and A. P. Putra, “Hardware/software model of 

DCO-OFDM based visible light communication SoC using 

DMA,” in Proc. International SoC Design Conference 

(ISOCC), Seoul, Korea (South), Nov. 2017, pp. 92–93. 

[14] T. Adiono, Y. Aska, S. Fuada, and A. A. Purwita, “Design 

of an OFDM system for VLC with a viterbi decoder,” IEIE 

Trans. Smart Process. Comput., vol. 6, no. 6, pp. 455–465, 

2017. 

[15] E. Setiawan, S. Fuada, and T. Adiono, “Experimental 

demonstration of OFDM visible light communications 

based on system-on-chip,” in Proc. International 

Symposium on Electronics and Smart Devices (ISESD), 

Bandung, Oct. 2018, pp. 1–5.  



[16] E. Setiawan, T. Adiono, I. N. O. Osahon, and W. O. Popoola, 

“Experimental demonstration of visible light 

communication using white LED, blue filter and SoC based 

test-bed,” in Proc. International Symposium on Electronics 

and Smart Devices (ISESD), Bandung, Indonesia, Oct. 2019, 

pp. 1–4. 

[17] E. Setiawan and T. Adiono, “Throughput improvement of 

an autocorrelation block for time synchronization in 

OFDM-based LiFi,” in Proc. International SoC Design 

Conference (ISOCC), Jeju, South Korea, Oct. 2019, pp. 

219–220.  

[18] T. Adiono, S. Fuada, and R. A. Saputro, “Rapid 

development of system-on-Chip (SoC) for network-enabled 

visible light communications,” Int. J. Recent Contrib. Eng. 

Sci. IT IJES, vol. 6, no. 1, Mar. 2018. 

[19] Z. Yu, S. Xiao, Y. Hou, M. Ju, and W. Hu, “Simulation of 

adaptive OFDM White-LED visible light communication 

system using high-order QAM based on FPGA,” in Proc. 

Asia Communications and Photonics Conference, Nov. 

2014. 

[20] Q. Huo, M. Zhang, W. Xu, D. Han, M. Wu, and Q. Li, 

“FPGA-based 120Mbps online visible light 

communication system with RGB LEDs,” in Proc. 15th 

International Conference on Optical Communications and 

Networks (ICOCN), Hangzhou, China, Sep. 2016, pp. 1–3. 

[21] M. Figueiredo, C. Ribeiro, and L. N. Alves, “Live 

demonstration: 150Mbps+ DCO-OFDM VLC,” in Proc. 

IEEE International Symposium on Circuits and Systems 

(ISCAS), Montreal, QC, Canada, May 2016, pp. 457–457. 

[22] C. Wu, et al., “Realization of OFDM modulation and 

demodulation for visible light communication based on 

FPGA,” Optoelectron. Lett., vol. 13, no. 1, pp. 58–62, Jan. 

2017. 

[23] D. Astharini, N. I. H. Pratama, S. Rahardjo, F. R. Triputra, 

A. Syahriar, and O. N. Samijayani, “Design and Analysis of 

Generalized LED Index Modulation OFDM on FPGA,” in 

Proc. International Conference on Smart Computing and 

Electronic Enterprise (ICSCEE), Shah Alam, Malaysia, Jul. 

2018, pp. 1–7.  

[24] Y. Yuniati, “Implementasi sistem hermitian generalized 

LED index modulation (H-GLIM-OFDM) pada Board 

FPGA Xilinx Arty Artix-7,” Electrician, vol. 14, no. 3, Oct. 

2020. 

[25] V. E. Levent, et al., “FPGA based DCO-OFDM PHY 

transceiver for VLC systems,” in Proc. 11th International 

Conference on Electrical and Electronics Engineering 

(ELECO), Bursa, Turkey, Nov. 2019, pp. 418–421.  

[26] A. P. Putra and S. Fuada, “Pemodelan sistem komunikasi 

cahaya tampak berbasis DCO-OFDM dengan viterbi 

decoder pada MATLAB,” J. SIMETRIS, vol. 10, no. 2, pp. 

529–542, 2019. 

[27] E. Setiawan, T. Adiono, and S. Fuada, “Modelling the 

OFDM-based PHY Layer in SoC for visible light 

communication,” Int. J. Recent Contrib. Eng. Sci. IT IJES, 

vol. 7, no. 3, Sep. 2019. 

[28] R. Kashif, F. Lin, O. J. Famoriji, and S. Haider, “An 

architecture design of auto channel switching unit for hybrid 

visible light communication system,” J. Commun., vol. 16, 

no. 11, pp. 522–527, 2021. 

[29] S. Fuada, A. P. Putra, Y. Aska, A. Pradana, E. Setiawan, and 

T. Adiono, “Implementasi perangkat digital signal 

processing untuk sistem visible light communication,” Jetri 

J. Ilm. Tek. Elektro, vol. 15, no. 2, Feb. 2018. 

[30] S. Fuada, T. Adiono, A. P. Putra, and Y. Aska, “A low-cost 

Analog Front-End (AFE) transmitter designs for OFDM 

visible light communications,” in Proc. International 

Symposium on Electronics and Smart Devices (ISESD), 

Bandung, Indonesia, Nov. 2016, pp. 371–375.  

[31] S. Fuada, T. Adiono, A. P. Putra, and Y. Aska, “LED driver 

design for indoor lighting and low-rate data transmission 

purpose,” Optik, vol. 156, pp. 847–856, Mar. 2018. 

[32] S. Fuada, “Design and implementation of analog front-end 

transceiver module for visible light communication system,” 

Master thesis, Department of Electrical Engineering, School 

of Electrical Engineering and Informatics (SEEI), Bandung, 

Indonesia, 2017. 

[33] S. Fuada and T. Adiono, “Visible light communication kits 

for education,” J. Educ. Train., vol. 5, no. 2, May 2018. 

[34] A. P. Putra, S. Fuada, Y. Aska, and T. Adiono, “System-on-

Chip architecture for high-speed data acquisition in visible 

light communication system,” in Proc. International 

Symposium on Electronics and Smart Devices (ISESD), 

Bandung, Indonesia, Nov. 2016, pp. 63–67. 

[35] S. Fuada, A. P. Putra, and T. Adiono, “Analysis of received 

power characteristics of commercial photodiodes in indoor 

LOS channel visible light communication,” Int. J. Adv. 

Comput. Sci. Appl. IJACSA, vol. 8, no. 7, 2017. 

[36] E. Setiawan and T. Adiono, “Design of AXI4-Stream based 

modulator IP core for visible light communication system-

on-chip,” J. INFOTEL, vol. 10, no. 2, Jul. 2018. 

[37] E. Setiawan, M. M. Latin, V. A. Mardiana, and T. Adiono, 

“Implementation of baseband transmitter design based on 

QPSK modulation on Zynq-7000 all-programmable 

System-on-Chip,” in Proc. International Symposium on 

Electronics and Smart Devices (ISESD), Yogyakarta, 

Indonesia, Oct. 2017, pp. 138–143.  

[38] A. Makvandi, Y. S. Kavian, and E. Namjoo, “VLCIoT: 

Design and implementation of a visible light 

communication system for indoor Internet of Things 

applications,” Appl. Opt., vol. 60, no. 36, pp. 11094–11103, 

Dec. 2021. 

[39] A. Perera, M. Katz, R. Godaliyadda, J. Häkkinen, and E. 

Strömmer, “Light-based internet of things: Implementation 

of an optically connected energy-autonomous node,” in 

Proc. IEEE Wireless Communications and Networking 

Conference (WCNC), Nanjing, China, Mar. 2021, pp. 1–7.  

 

Copyright © 2022 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC 

BY-NC-ND 4.0), which permits use, distribution and 

reproduction in any medium, provided that the article is properly 

cited, the use is non-commercial and no modifications or 

adaptations are made. 

 

 

 

 

 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 623

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Syifaul Fuada is with the the Program 

Studi Sistem Telekomunikasi Universitas 

Pendidikan Indonesia (UPI) as a young 

Lecturer and now serving as an assistant 

professor (Dosen Asisten Ahli) in the 

same study of program. Mr. Fuada has 

several has several achievements, such as 

the most outstanding students of 

Universitas Negeri Malang in 2013, receiving one of the 106 

Indonesia Innovations by BIC-RISTEK DIKTI awards (2014) for 

Helm Charger product, a top of 10–student travel grant to the 

IEEE Asia Pacific Conference and Systems (APCCAS 2016) that 

was held in Jeju, South Korea, receiving one of 108 Indonesia 

Innovations by BIC-LIPI awards (2016) for Smart Home Product, 

student winner nominee of NOLTA conference (2017), receiving 

Best Paper Award from IEEE IGBSG 2018 that was held in Yi-

Lan, Taiwan, receiving Best Paper Award from IEEE ICTRuDev 

2018 that was held in Bali, Indonesia, receiving the Best paper 

award from a Scopus-indexed journal, i.e., i-JOE in 2019, 

receiving Best Paper Award from IEEE IGBSG 2019 that was 

held in Yichang, China, receiving the 111 Indonesia Innovations 

by BIC awards (2019) for E-Nelayan and LI-FI products, 

receiving the 112 Indonesia Innovations by BIC awards (2020) 

for three innovations: Bidirectional DC/DC Converter for 

Electric ATV, Smart Home, and Contact/Contactless-based 

Payment Device, the 3rd place of UPI’s most productive 

researcher in the SCOPUS-based publication 2020 (awarded on 

2021), the 3rd place of UPI’s inventor awarded on 2021. His study 

interests include analog circuit design and instrumentation, 

circuit simulation, engineering education, IoT, multimedia 

learning development, and VLC 

 

Angga Pratama Putra received his B.Sc. 

degree on Electrical Engineering from 

School of Electrical Engineering and 

Informatics, Institut Teknologi Bandung 

(ITB), Indonesia (2015) and M.Sc in 

Electrical Engineering with specialization 

in Computer Engineering, with same 

campus (2017). His research interests 

include: Embedded System, Software 

Engineering, VLSI, System-on-Chip, Internet of Things, VLC 

 

Trio Adiono received a B.Eng. in 

electrical engineering and an M.Eng. in 

microelectronics from Institut Teknologi 

Bandung (ITB), Indonesia, in 1994 and 

1996, respectively. He obtained his Ph.D. 

in VLSI Design from Tokyo Institute of 

Technology (Titech) in 2002, Japan. In 

2005, he was a visiting scholar at MESA+, 

Twente University, Netherlands. He was also Adjunct Assoc. 

Prof. NTUST-Taiwan. He has developed several microchips, 

such as Binary Template Matching Processor, WiMax Baseband 

Chipset, Smart Card, and IoT. He also has job experience 

working with Chip Design House in Fukuoka Japan, handling 

chip design for several multinational companies. He received the 

"Second Japan Intellectual Property (IP) Award" in 2000 from 

Nikkei BP. He received Award Karya Lencana Wira Karya from 

President of Republic Indonesia for his innovation in 4G chip 

developments. He also holds a Japanese Patent on "High Quality 

Video Compression System". In the last ten years, he supervised 

ITB students that received “Communication Society Award” 

from IEICE-Japan, Xilinx Award, Analog Device Award, and 

“LSI of the year Award”, Japan. He was also chair of IEEE Solid 

State Circuits Society. His research interests include VLSI design, 

signal and image processing, VLC, smart cards, and electronics 

solution design and integration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of Communications vol. 17, no. 8, August 2022

©2022 Journal of Communications 624


