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Abstract—Electrocardiogram (ECG) effectively records the 

difference between body potentials generated during the 

physiological function of the heart. Both ECG and heartbeat 

sounds are viewed as powerful tools to diagnose abnormal 

arrhythmias. In the past, the accuracy of such diagnoses has been 

significantly improved due to the development of machine-

learning algorithms. However, current models still do not provide 

acceptable performance due to similarities of signal waveforms as 

well as ambient noises and interferences. In this paper, we propose 

a novel deep-learning model that incorporates a WaveNet model 

based on dilated convolutions as the backbone followed by 

multiple bi-directional long-short-term memory (Bi-LSTM) 

layers to further enhance the discriminant capabilities of temporal 

relations. A typical clinical dataset, i.e., the MIT-BIH arrhythmia 

database, which considers intra-patient and inter-patient 

paradigms based on the American Association of Medical 

Instrumentation (AAMI) EC57 standard, is used to demonstrate 

the performance of the proposed approach. Numerical results 

show that our model has achieved the state-of-the-art 

classification accuracies.  
 
Index Terms—ECG analysis; deep learning; WaveNet model; 

confusion matrix  

I.  INTRODUCTION  

Smart medical care seeks to make use of advanced 

Internet of Things (IoT) technologies and artificial 

intelligence (AI) algorithms to connect patients to 

physicians via multiple sensors to ensure that patients have 

a convenient and timely access to medical services. Hence, 

intelligent medical treatment is generally viewed as the 

integration of the life science and the information 

technology, which benefits from significant advances in 

system integrations and infrastructure upgrades. With the 

continuous development of the AI technology, it has been 

gradually applied to practical systems and achieved 

remarkable results. In particular, the vast amount of 

medical data enables the adoption of AI algorithms in the 

areas of early diagnoses and medical treatments.   

With the development of economy and society, social 

rhythm has significantly accelerated. This causes the 

incidence and mortality rate of cardiovascular and 

cerebrovascular diseases to increase at an astounding speed. 

According to the statistics of the World Health 

Organization (WHO), cardiovascular disease (CVD) is the 

largest cause of death in the world, with more people dying 

each year from CVD than from the other causes and 

accounts for more than one third of the total number of 

global deaths. Of these deaths, more than 60 percent died 

of coronary-related heart diseases. As a result, the 

development of an automatic approach that detects 

coronary diseases quickly and accurately has a significant 

impact on the social well-being. Specifically, it is of 

interest to fully streamline and automate the first level of 

cardiac pathology screening by physicians in a hospital 

environment and by patients using mobile devices at home. 

Recently, deep learning has made breakthroughs in the 

fields of image and natural language processing. It has been 

widely applied to various fields for its powerful capability 

to analyze complex data [1]. With respect to health 

monitoring, ECG is one of the most commonly used tests 

for clinical heart diseases, and records the differences in 

terms of the electrical potentials of the body surface 

produced in the process of the cardiac physiological 

function, based on which a diagnosis can be made to 

effectively reduce the mortality rate. The conventional 

ECG diagnosis requires that a patient wear sensors and a 

physician manually interprets the sampled data, which is 

time-consuming and laborious especially when an 

overwhelming number of patients are present. Due to 

unavoidable factors such as fatigue and impossibility to 

interpret the recorded data instantly, the accuracy of the 

diagnosis will inevitably decline. Therefore, it is 

particularly useful to develop a technique to perform an 

efficient, accurate, and low-cost automatic analysis of ECG 

signals. 

Over the past years, various AI algorithms have been 

applied to analyze ECG signals, such as the Support Vector 

Machine (SVM), Multilayer Perceptron (MLP), Logistic 

Regression (LR) and Decision Trees (DT), to perform the 

classification of ECG signals [2]-[5]. These algorithms 

perform the pre-processing of raw signals, e.g., wavelet 

packet decomposition (WPD) [3], short-time Fourier 

Transform (STFT) [6], sampled entropy [7], and 

subsequently conduct the extraction of handcrafted features 

from the denoised signals. The design of manually 

extracted signal features, however, requires a substantial 

amount of domain-specific expert knowledge. 
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Automatic feature representation has proved to be more 

scalable and empowers the model to deliver discriminant 

capabilities in a timely manner. Recently, deep learning 

methods have made notable achievements in various fields 

ranging from computer visions to natural language 

processing (NLP) [6], [7]. It manifests an overwhelming 

amount of potentials as well when applied to biomedical 

signal analysis by performing exhaustive data mining and 

feature extraction to build an end-to-end deep neural 

network model. In particular, deep supervised learning 

techniques include convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs). In [8], Acharya 

proposed a 9-layer CNN model for the recognition of five 

types of ECG signals. Kiranyaz [9] designed an adaptive 

one-dimensional (1-D) network model to extract the 

features of the patient. In [10] and [11], the authors 

constructed a model to classify normal and abnormal ECG 

signals by combining inference results with expertise rules. 

In [12], a hybrid architecture was proposed to perform ECG 

signal classification based on blockwise components and 

particle swarm optimization. In [13], a model composed of 

the stacks of Bi-LSTM layers was presented for the 

classification of ECG signals.  

In this paper, we propose a novel deep-learning 

architecture incorporating the serial concatenation of the 

WaveNet model and the Bi-LSTM model to perform a 

highly accurate detection of ECG anomalies. The WaveNet 

model, which was previously used in speech recognition 

and reconstruction, shows an impressive capability to learn 

discriminant features from deep convolution layers by 

efficiently using multi-resolution dilated convolutions and 

various receptive fields. Wavelet-based denoising 

algorithms [14] are applied in the signal pre-processing 

stage to remove low-frequency noises and facilitate feature 

extraction. Numerical results on the typical ECG dataset 

show that the proposed approach improves the 

classification accuracy up to 96.8% and performs 

noticeably better than the current state-of-the-art 

techniques. The performance gain is attributed to the 

capabilities of both the WaveNet and the LSTM model to 

effectively learn both global and local temporal 

dependencies inherent in ECG signals. Besides, the 

proposed method in this paper can be well generalized to 

analyze other categories of biological signals [15] such as 

electroencephalogram (EEG) and heartbeat sound signals.        

The rest of this paper is organized as follows. In Section 

II, we introduce the WaveNet and the LSTM model. In 

Section III, we present the proposed WaveNet-LSTM 

architecture in detail. The experimental results are 

presented and discussed in Section IV. The conclusion is 

drawn in Section V. 

II. OVERVIEW OF WAVENET AND LSTM 

A. WaveNet 

WaveNet is a recent speech generation and 

reconstruction model proposed by the Google DeepMind. 

The model directly inputs the speech data in the form of 

signal waveforms and obtains remarkable performance in 

speech-to-text (SST) and text-to-speech (TTS) tasks. 

WaveNet adopts a novel method to adjust adaptively the 

receptive field based on the depth of the network, which 

enables the model to effectively alleviate the information 

loss in the propagation through the network.  

The model features an autoregressive (AR) mechanism 

that predicts the probability distribution of the current 

sample based on all previously generated samples. By 

using the so-called causal convolutions, the WaveNet 

ensures that the order of modeling the data is maintained. 

The prediction p(xt+1|x1,...,xt) delivered by the model at time 

step t does not depend on any future time steps xt+1, xt+2,..., 

xt.  Hence, an equivalent form of the causal convolution is 

also known as the mask convolution. A residual short-

circuit is incorporated in the WaveNet to assist in the 

information flow and avoid the gradient diminishing 

problem. The final result is obtained by superimposing 

multiple skip-connections based on the intermediate results 

of each layer. 

＋*

tanh

σ

Dilated 

Conv

Causal 

Conv

Residual

k Layers

Input 1 * 1

1 * 1ReLU1 * 1SoftmaxOutput

＋

ReLU

Skip-connections

 
Fig. 1. Block diagram of the wavenet model 

B. LSTM 

The most well-known RNN is the LSTM network model, 

which consists of three multiplication gates to control the 

proportion of information that will be neglected or passed 

onto the next time step.  

Essentially, LSTM successfully mitigates the problem of 

diminishing gradients and handles long-term dependencies 

embedded in sequential data more effectively. Fig. 2 gives 

the basic structure of an LSTM unit.  
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Fig. 2. A long-short-term-memory (LSTM) cell. 
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The equations to update an LSTM unit at time t are given 

by (1), 
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where σ is the logistic sigmoid function, xt  is the input 

vector (e.g. word embedding) at time t, ht is the hidden state 

vector storing all the useful information at (and before) 

time t; Ui, Uf , Uc, and Uo denote the weight matrices of 

different gates for input x; Wi, Wf , Wc, and Wo are the 

weight matrices for hidden state ht; and bi, bf, bc, and bo 

denote the bias vectors. From (1), it is shown that the 

hidden state ht only stores the past information and lacks 

the access to contextual knowledge. The Bi-LSTM model, 

which is an elegant variant of the LSTM, produces two sets 

of hidden states by presenting the sequence to the model in 

both the forward and the backward manner, the results of 

which are further concatenated to form the output to the 

subsequent layers. 

III. WAVENET-LSTM MODEL 

A. Signal Processing 

Fig. 3 shows the waveforms of various classes of ECG 

signals in the MIT-BIH dataset. In this paper, a discrete 

waveform transformation (DWT) filtering technique is 

used to denoise ECG signals. In addition, to overcome the 

potential problem of overfitting resulting from unbalanced 

datasets, we use the boundary oversampling method [16] to 

oversample the under-represented classes with 

significantly less amount of data points. 

 

Fig. 3. Waveform of various categories of ECG signals in the MIT-BIH 

database. 

B. ECG Classification Based on WaveNet-LSTM 

As most signals in the MIT-BIH dataset are typically of 

short durations with a few hundred samples per signal, it is 

reasonable to employ multiple layers of 1-D convolutions 

to derive time-domain features of the denoised signals. To 

enable the model to learn temporal features more 

effectively, a combination of an attention-based 

mechanism and the LSTM layer are incorporated in the 

architecture. In Fig. 4, we show the block diagram of the 

proposed WaveNet-LSTM model.   

As described in Section II. A, the WaveNet is composed 

of several blocks of dilated convolution layers. The raw 

ECG signal is taken as the input to the model following 

wavelet denoising operations. On contrary to applications 

such as speech recognition that typically processes the 

frequency-domain characteristics of long data sequences, 

the 1-D convolution is a suitable approach to directly tackle 

short sequences in the time domain. Each convolution layer 

is followed by a LeakyRelu function to speed up the 

convergence of the training process, a batch normalization 

module to perform the scaling of each layer’s output based 

on the specified batch size, and a pooling operation to 

obtain position invariance over local regions, as well as a 

dropout operation to reduce dependencies between 

adjacent layers. For the first convolution layer, the number 

of kernels is set to 8 and the kernel size is 5. The output is 

passed into a series of convolutions with the same 

configurations with the number of filters given by 16, 32, 

and 64, respectively. The pooling layer uses the max-

pooling operation with size 5 and stride 2. The output of the 

last convolution layer is fed into a Bi-LSTM layer to further 

learn discriminant temporal features based on the 1-D 

features derived from the WaveNet. Finally, a soft-max 

operation is invoked to deliver the predicted class of the 

input signal.    

In the training, the parameters of each layer are adjusted 

based on the backward-propagation (BP) algorithm 

targeted at minimizing a cross-entropy (CE)-based loss 

function. The learning rate for the Adam optimization [17] 

is set to 0.001 with decaying factors set to 0.9 and 0.999, 

respectively. A total of 50 epochs is adopted to train the 

model with the size of each data batch given by 512.   

 
Fig. 4. Block diagram of the proposed WaveNet-LSTM model for ECG 

signal classification. 

IV. NUMERICAL RESULTS 

To demonstrate the effectiveness of the proposed 

scheme, we conduct the evaluation over the PhysioNet 
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MIT-BIH Arrhythmia database, which is typically used to 

benchmark the performance of various algorithms.   

A. Dataset Introduction 

The MIT-BIH dataset includes the ECG records of 

different subjects sampled at the rate of 360 Hz. The 

groundtruth label of each signal is verified by at least two 

cardiologists, and the database is endorsed by the American 

Association of Medical Instrumentation (AAMI) [15]. 

Table I shows the five categories of ECG signals, which 

consists of a nomal category and four categories resulting 

from mal-functioning hearts. The subject identifications of 

the database is divided into two sets of records by the 

AAMI, i.e., DS1 = {101, 101, 106, 108, 109, 112, 114, 115, 

116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 

220, 223, 230}, and DS2 = {100, 103, 105, 111, 113, 117, 

121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 

231, 232, 233, 234}, where DS1 is used to train the model 

and DS2 is applied to perform the evaluation. Note that 

there is strictly no overlap between the train dataset and the 

validation dataset. Hence we are able to ensure a fair 

performance comparison by avoding the data-leaking risks 

of the same patient being included in both datasets. Our 

task is to predict the most likely class (N/S/V/F/Q) to which 

an ECG signal belongs.  

TABLE I.  CATEGORIES OF HEARTBEATS IN THE MIT-BIH 

DATABASE BASED ON AAMI EC57 STANDARD 

CATEGORY DEFINITIONS 

N 

Normal beat (N) 

Left and right bundle branch block beats (L, R) 

Atrial escape beat (e) 
NODAL (JUNCTIONAL) ESCAPE BEAT (J) 

S 

Atrial premature beat (A) 

Aberrated atrial premature beat (a) 

Nodal (junctional) premature beat (J) 
SUPRAVENTRICULAR PREMATURE BEAT (S) 

V Premature ventricular contraction (V) 
VENTRICULAR ESCAPE BEAT (E) 

F FUSION OF VENTRICULAR AND NORMAL BEAT (F) 

Q 

Paced beat (/) 

Fusion of paced and normal beat (f) 
UNCLASSIFIABLE BEAT (U) 

B. Evaluation Metric 

The most commonly used metric to evaluate the 

performance of classification models is the confusion 

matrix, which is typically illustrated in Table II for a binary 

classification task. In Table II, TP, FP, TN, and TN denotes 

true positive, false positive, false negative, true negative 

rates, respectively. Based on the confusion matrix, other 

metrics can be derived, e.g., accuracy that is defined as the 

percentage of the total number of samples that correct 

results are predicted, i.e.,  

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                     (2) 

Precision denotes the probability of all positive samples 

that are correctly predicted to be positive as follows, 

                      
P

Precision
TP

TP F
=

+
                            (3) 

Recall, which is also named sensitivity, denotes the ratio 

of the number of positive predictions that are correctly 

predicted to the total number of positive examples. 

                              (4)  

TABLE II.  CONFUSION MATRIX FOR A BINARY CLASSIFICATION 

TASK 

Actual/Predicted 0 1 

0 TN FP 

1 FN TP 

C. Performance Results 

Fig. 5 shows the confusion matrix of the proposed model 

for the MIT-BIH dataset. The numerical results are 

evaluated based on the validation dataset, which consists of 

4,000 samples. The probabilities of correctly classified 

results are recorded on the diagonal, while those of 

incorrect predictions are scattered through the matrix. It is 

shown that the proposed WaveNet-LSTM model classifies 

five classes of ECG signals very well and achieves 

impressive performance, though the accuracies of class S 

and class F are slightly lower as compared with the other 

three classes of N, V, and Q.  

 

Fig. 5. Confusion matrix for ECG signal classification on the validation 

set, which shows the ratio of the number of samples classified in each 

category normalized by the total number of samples.  

In Table III, we present the average accuracy of the 

proposed method as compared with several state-of-the-art 

approaches in the literature. It is shown that the proposed 

method achieves significant performance gains over other 

methods. Compared with the machine learning models [14], 

[18], the proposed WaveNet-LSTM model achieves a 

noticeable increase in terms of the classification accuracy 

by nearly 3%. The performance is also benchmarked 

against deep-learning CNN models including the deep 

residual network model [14] and the data-augmented CNN 

model [19], [20]. The proposed model obtains much better 

performance and increases the accuracy up to 96.8% on the 

evaluation set, which is the best result to our knowledge.  

The performance gain is accredited to the design of 

dilated convolutions and attention mechanisms in the 

WaveNet structure, which was originally developed to 

reconstruct human speeches. With respect to ECG signal 

classifications, the WaveNet backbone empowers the 

TP
Recall

TP FN
=

+
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model with a large and self-adaptive receptive field to grasp 

the global structure of the input data sequence. Moreover, 

the subsequent LSTM layers refine local temporal relations 

based on the deep features learned by casual convolutions 

of the WaveNet backbone. Hence, the proposed model 

manifests an excellent capability to extract multi-scaled 

temporal dependencies embedded in the input time 

sequences.     

TABLE III.  ACCURACY OF DIFFERENT METHODS 

Source 
Compare 

Methods Average Accuracy (%) 

This Paper Deep Wavenet-LSTM 96.8 

Kachuee [13] Deep residual CNN 93.4 

Acharya [19] Augmentation + CNN 93.5 

Martis [20] DWT + SVM 93.8 

Li [18] 
DWT + Random 

Forest 
94.6 

V. CONCLUSION 

In this paper, we proposed a novel deep-learning model 

for ECG signal classifications. The serial concatenation of 

the WaveNet and the LSTM layer enables the proposed 

model to learn both global and local discriminant features 

inherent in the wavelet-denoised ECG signals. 

Performance results over the typical benchmark dataset, i.e., 

the MIT-BIH dataset, shows that the proposed model 

achieves a noticeable gain over several advanced methods 

in the literature and obtains the state-of-the-art accuracy on 

the evaluation dataset.  

We believe that the seamless integration of AI 

algorithms into medical diagnoses and pre-emptive 

treatments will bring unprecedented opportunities to the 

whole industry. The proposed method can be fully 

generalized to analyze various categories of biological 

signals, such as heartbeat sound signals, EEG, and EMG 

(Electromyography) signals. When processing signals of 

long durations, we will experiment with frequency-domain 

features combined with self-attention mechanisms.  
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