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Abstract —Machine Learning (ML) is becoming a 

transformative technology in wireless communication. The 

deployment of large scale RF devices particularly in IoT 

applications escalates security threats and also setting up of 

secure networks using wireless devices is becoming a big 

challenge. Along with ensuring security, identifying each RF 

device in an autonomous network is essential and the RFML 

(Radio Frequency Machine Learning) can play a crucial role 

here. This paper focuses on the RF characterization of a set of 

Software Defined Radios (SDR) using advanced machine 

learning models. This helps to identify each SDR module in the 

deployed network which runs only a specific protocol in a 

particular network. The SDRs will be configured for a particular 

specification and the test will be conducted. The transmitted 

data from multiple radio nodes were collected using a 

reconfigurable radio’s receive chain in IQ-format, in the 

laboratory environment. The RF features like IQ-imbalance, 

DC-offset and the image leakages in the multicarrier modes 

were used to set fingerprints for identifying the reconfigurable 

radios. Two ensemble learning models Random Forest and 

AdaBoost were used to train and develop predictive models to 

identify the radio. At a SNR of 30dB Random Forest achieved 

an accuracy of 85% and AdaBoost achieved an accuracy of 78% 

with 32K multicarrier data. A maximum recognition rate of 

92% is achieved with RF and 83% with AdaBoost.  
 
Index Terms—Machine Learning (ML), RF fingerprinting, 

software defined radio, SDR, RFML, PYTHON, random forest, 

and AdaBoost. 

 

I. INTRODUCTION 

Each and every wireless device has a significant RF 

characteristic in their transmitted electromagnetic wave 

which can be used to identify a particular device. RF 

fingerprinting or wireless fingerprinting is a technique 

used to classify and identify RF devices from a set of 

devices. The RF characteristics of wireless devices will 

vary even though they are designed using same 

components and from the same vendor. The 

imperfections and impairments in power amplifiers, 

mixers, PLL and filters will significantly affect the 

normal behavior of a wireless device even though they 

run using the same protocol. Modern ML algorithms can 

be utilized to exploit these behavior of the RF devices to 

generate separate fingerprints and we can mark the radios 

with unique identity.ML based identification of RF 

devices also play a critical role in ensuring security in 

wireless networks. The goal of this work is to develop a 
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prediction model which will identify each SDR module 

from a pool SDRs in a network. The SDRs will be 

configured to run a single carrier and a two carrier 

narrowband waveform in laboratory environment and 

data will be captured. The RF characteristics of the SDRs 

are learned using its behavior in single carrier and 

multicarrier environment. Data captured from around ten 

SDR transmitter modules were used in the training 

processes. 

Two ensemble learning models will be used and two 

prediction models will be developed and a performance 

study of these two will be done in detail. Ensemble 

learning models works by combining the decisions from 

multiple models. In this work we use Random forest, a 

Bagging algorithm and AdaBoost which is a Boosting 

algorithm. The two models will be applied on the 

transmitted data captured using a wired environment. 

II. DATASETS GENERATION AND PRE-PROCESSING 

A. RF Imperfections as a Fingerprint 

The RF hardware imperfections will lead to 

unpredictable DC-offset, IQ-imbalance and image 

rejection for each RF devices even though they are from 

the same make. The reasons for DC-offsets are improper 

RF-Mixing, LO leakage and non-linearity of the 

components used. 

 
Fig. 1. DC-Offset 

Even after implementing DC-cancellation modules in 

the transmitter there will be DC components in minimum 

DC 
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level which will not be identical in all the RF-devices 

even though similar components and same DC-null and 

phase corrections algorithms were used. [1], [2]. Fig. 1 

shows the DC-offset in a narrowband DQPSK waveform 

captured at the transmitter output.IQ based RF-designs 

usually use two separate paths, one path for I-signals and 

other for Q-signals. Performance of the RF-mixers, PLL, 

gain and phase mismatches in the IQ parallel path will 

lead to IQ Imbalances. Total IQ imbalance is a 

combination of offset in phase and amplitude in I and Q 

path.IQ imbalance cancellation modules will help to 

suppress the imbalance to a larger extent but still it will 

not be zero practically. Similar behavior of the RF-

devices will result in generation of image components 

also. All these characteristics can be used to set a 

fingerprint to RF-devices which can be used to identify 

each device [3]. Fig. 2 shows the IQ-Constellation of a 

normal waveform and a waveform with IQ-imbalance. 

 
Fig. 2. IQ-Imbalance 

B. Data Generation in the Laboratory Environment 

For controlled study the data needed for training and 

testing were captured using a laboratory setup. 

 
Fig. 3. Data capture module 

Fig. 3 shows the block diagram representation of the 

hardware setup used for data capturing. The transmitter 

module is a reconfigurable module designed using FPGA 

so we can integrate multiple protocols and can use for 

data capturing. For this work we used a narrowband 

single carrier and a two carrier DQPSK waveform. 

Two sets of data were used to learn each transmitter 

and in total around 10-radio sets were used for the work. 

This test bed also supports a software based RF-

impairments correction using a GUI designed using Lab 

View and using this impairments compensation values 

can be inserted in the transmit path. The transmitters are 

designed to work at 390MHz to 425 MHz and at the data 

capture end the received data in down converted to an IF 

of 70MHz and using a Digital Down converter the signal 

is mapped to baseband. We collected IQ data with a 

sample size of 32K in which I data is of size 16K and Q 

is of size 16K.For each transmitter around 32K data set is 

captured in which 16K is a single carrier signal  and 16K 

is a two-carrier signal. Finally the data looks like 

32Kx32K matrix for a single transmitter with each 

sample size is of 16-bit and total data used for modelling 

is around 32GB [4], [5]. The block diagram 

representation of the signal generation and reception is 

shown in Fig. 4. 

 
Fig. 4. Wired data generation and preparation  

SNRs ranging from -10dB to around 30dB and the 

performance of the developed model will be studied by 

using data with low range SNR and high range SNR 

particularly the accuracy of the model is analyzed [6]. 

Classifier Architecture description 

Ensemble learning models have the capacity to 

improve overall performance by combining the decisions 

from multiple models. Ensemble learning algorithms are 

basically classified into the bagging method, stacking 

method, boosting method and blending. This work 

focuses on boosting and bagging technique. Bagging, 

Bootstrap Aggregation helps to develop prediction 

models with less variance using decision tree method. 

Boosting algorithms helps to develop strong predictive 

models which works by boosting the weights of the 

observation based on the results of the previous 

observations. 

Fig. 5 shows the advanced ensemble learning 

algorithms. This paper focus on applying Random Forest 

and Ada Boost algorithms on the RF data to characterize 

the transmitter. Random forest works by selecting feature 

sets randomly and using them at the decision tree nodes 

[6]. Random forest is a supervised learning technique 

which sets up the forest using multiple random binary 

trees which performs good with noisy data [7], [8]. Ada 

boost works by creating multiple sequential models and 
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each model will correct the errors from the previous 

models. Ada boost can improve the accuracy of 

prediction by combining the predictions of other weaker 

learners with inaccurate rules.  

 

Fig. 5. Ensemble learning algorithms 

 
Fig. 6. AdaBoost classifier  

The basic theory of Ada boost says that there will be 

an exponential drop in the training error of final 

hypothesis to zero if the accuracy of the weak classifier is 

only slightly better than half [9], [10]. As per the 

literature survey it is learned that when compared with 

CNN and RNN, Random Forest and Ada Boost are 

generally not widely used for RFML. Fig. 6 shows the 

basic structure of an AdaBoost classifier. 

 

Fig. 7. Basic design flow  

The full system implementation involves data 

collection or preparation and analysis in which the data 

collection modules are designed using xilinx FPGA and 

the analysis portion is implemented using PYTHON. Fig. 

7 shows the basic block diagram of the work with signal 

flow indications. Initially the study is performed using 

two devices with both the algorithms, in which single 

carrier and two carrier waveforms data were used. The 

accuracy improvement is also studied by varying the data 

size. Then ten transmit processing modules were used and 

the performance is analyzed with multiple data sets at 

different SNR and data size. The study is categorized into 

different modes based on number of carriers used, 

devices used and data size.  

TABLE I: TEST MODES 

Mode Device used Carrier Data size 

Mode-1 2 1 1K,32K 

Mode-2 2 2 1K,32K 

Mode-3 10 1 1K,32K 

Mode-4 10 2 1K,32K 

 

Table I shows the modes of testing with different 

configurations and this terminology will be used in next 

discussions. As an initial study only two TPU devices 

were used and tested with minimum data and then the 

data size is increased by a specific step to analyze the 

performance like accuracy and precision. This study is 

repeated for data with different SNR also. In mode-3 and 

mode-4 ten devices where used with larger and smaller 

data sets with different SNR also. Another objective of 

this work is to study whether learning the transmitters 

with narrow band multicarrier data have any influence in 

the overall prediction performance of the system. 

III. DATA PREPARATION 

Fig. 8 shows the test bed used for data capture and 

transmission, in which four transmit processing units 

(TPU) were shown and in total ten TPUs were used. 

Power amplifier and data capturing modules were also 

marked in the figure. Before starting transmission the 

power amplifier is linearized using cartesian loop 

feedback technique with CMX998. It is ensured that the 

Phase offset and DC leakage correction values are similar 

for all the TPUs.  

 
Fig. 8. Test bed 

For data capturing each TPUs will be inserted in the 

allotted slot and connected with the power amplifier and 

at a time only one TPU will be used even though multiple 

slots are available. For data capturing the TPUs are 
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configured to operate in 390MHz-425 MHz band with 

transmitting power varying from 1W to 40W.  

 

Fig. 9. Data capture Module-FPGA design  

Fig. 9 shows the block diagram representation of the 

data capture module implemented in the FPGAs. The data 

preparation module includes AD9268 analog to digital 

converter and the Digital Down Converter (DDC) module. 

The DDC is designed and implemented in xilinx FPGA 

using system generator and Matlab. The DDC is designed 

to receive IF data over wide band from 65 MHz to 75 

MHz which is generated by the low noise controller 

(LNC) module. The DDC is designed using DDS, CIC 

filter and a set of FIR filters. The data capture module 

involves a xilinx FPGA with a block RAM memory 

module implemented in it with required interfaces. A 

ping-pong buffer architecture is designed with 64K block 

rams. An automatic data acquisition module is designed 

using PYTHON and Tcl which will automatically 

configure FPGA, capture and load the data in empty 

buffers. The automatic data acquisition unit is basically a 

VIVADO automation module which automatically 

configure the FPGA and capture the data in specific 

intervals and save the data in .csv format with specific 

labels and file names. The labelling is used in the training 

and prediction phase. The captured data is stored in the 

required format and fed to the python designs. Data 

captured configuration are: 

- Frequency:  390,392.5,395, 398,421,420,425 MHz 

- Power Amplifier: 30, 34,40,44,46 dBm 

- Temperature: 35, 40, 50,65,75,80 ºC 

 
Fig. 10. Data split   

The data sets were split into random train and test 

splits using the sklearn train_test_split API [11], [12]. In 

the data set around 91% of the data is assigned for 

training, 5% for validation and 4% testing in case of 

Random Forest. For AdaBoost 90% data is used for 

training, 5% for validation and 5% for testing. This split 

is selected based on best result achieved, other 

combinations were also designed to understand the 

performance of the algorithm. Fig. 10 shows the bar plot 

representation of data distribution for training, test and 

validation. The performance of the algorithms for 

different modes were detailed using accuracy curves and 

confusion matrix plots. In all modes a 25 kHz tetra 

waveform is used which uses DQPK modulation with a 

symbol rate of 18kbps.The key module in the transmitter 

side is a FPGA in which random bit generator module is 

implemented, so that random IQ samples can be used for 

training. In mode-1 only two transmit processing modules 

(TPUs) were used with data size gradually increased from 

1k to 32k and each IQ-samples were 16-bit wide.  

IV. RESULTS AND OBSERVATIONS DISCUSSION 

Both Random Forest and AdaBoost classifiers are 

designed using Python which is an open source package 

with machine learning libraries. Both the Random Forest 

classifies and the AdaBoost classifier were modeled using 

the sklearn API [13]. The crucial parameters which 

decides the performance of the Random forest model are 

the number of trees (n_estimators), the criteria to measure 

the quality of a split (criterion), maximum depth of the 

tree (max_depth) and the minimum number of samples 

required to split (min_samples_split) [14]. The Random 

forest predication model is designed using both the Gini 

and Entropy criteria to study the performance. Base 

estimator, number of estimators, learning rare and the 

boosting algorithm are the critical parameters to be 

considered while modeling the AdaBoost predictor 

 
Fig. 11. Decision tree   

Fig. 11 shows the decision tree plot of the random 

forest classifier for Gini criteria and Entropy criteria to 

indicate the branch flow. 
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Fig. 12. Accuracy plot for 2-TPUs   

Fig. 12 shows the accuracy of the algorithms with two 

modules while increasing data size form 1K to 32K at a 

SNR of -10dB to 30dB. Mode 2 also gave significant 

performance improvement for both algorithms. In both 

RF and AdaBoost the validation accuracy and training 

accuracy increased gradually with increase in data size 

irrespective of SNR, but the maximum accuracy achieved 

is lower for lower SNR data. 

 
Fig. 13. Confusion matrix plot-AdaBoost mode-1 

In two TPU case data with single carrier and 

multicarrier is also used with data size 32K with 20dB 

and 5dB SNR and the confusion matrix plot of the same 

in shows in Fig. 13 and Fig. 14 respectively. When two-

carrier data is used with two TPU there is greater increase 

in the accuracy for both the algorithms. For multicarrier 

signal with higher SNR there is significant increase in the 

predication performance when compared with single 

carrier mode.  

As the key objective of this work is to identify each 

SDR module from set of ten modules the study is 

conducted by using ten SDR modules with 32K data in 

single carrier and multicarrier environment with different 

levels of SNR varying from-10dB to 30dB in 5dB step.  

 
Fig. 14. Confusion matrix plot-RF mode-1 

 
Fig. 15. Confusion matrix plot-RF-AdaBoost mode-4  

Fig. 15 shows the confusion matrix plot for random 

forest and AdaBoost in mode 4 with SNR 30dB and -

10dB.So only mode 3 and mode 4 will be discussed in 

detail with different SNRs. In mode 4 random forest 

achieved an accuracy of 85% with SNR 30dB, while 

AdaBoost achieved around 78% accuracy with similar 

conditions. Similarly in mode 4 both random forest and 

AdaBoost algorithms achieved an accuracy of 66% and 

59% respectively with SNR -10dB. In mode 3 which uses 

a single carrier narrow band waveform there is a 

reduction in performance with same SNR and data size 

for both algorithms, when compared with mode 4 which 

uses a multicarrier waveform.  

It is observed that when multicarrier data is used there 

is an improvement in the accuracy for both models in 
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which data captured from ten TPUs were used. Fig. 16 

shows the accuracy performance plot of Random forest 

and AdaBoost for different SNR values and data size. In 

the figure dotted lines shows the performance of the 

Random forest model and the solid line represents the 

performance of AdaBoost. One interesting observation is 

that random forest achieved more accuracy than 

AdaBoost even though the data size is low with higher 

SNR. The height recognition rate for RF is 92% at 30 dB 

SNR for TPU9 and the lowest is 78% for TPU3.Similarly 

the lowest and height recognition rate for RF reduced to 

51% and 61 % at -10dB SNR respectively. The height 

recognition rate for AdaBoost is 83% at 30 dB SNR for 

TPU6 and the lowest is 73% for TPU10.Similarly the 

lowest and height recognition rate for AdaBoost reduced 

to 48% and 59 % at -10dB SNR respectively. In both the 

algorithms out of ten devices no device is fully 

recognized correctly even at 30dB SNR. Table II shows 

the performance table of Random forest for two device 

predication model at 20dB and 5dB SNR. For 

multicarrier samples with higher SNR both accuracy and 

precision is more than 90% which is lesser for single 

carrier samples. 

 
Fig. 16. Accuracy performance-RF and AdaBoost 

TABLE II: PERFORMANCE TABLE-RF-2DEVICE-1C/MC 

    Parameters 1C=20/5dB (%) 

 

 MC=20/5dB (%) 

 
Accuracy 90/83 93/85 

Precision 89/81 92/86 

 

Table III shows the performance table of AdaBoost for 

two device predication model at 20dB and 5dB SNR. 

Here also the performance improved for multicarrier data 

but less when compared with Random Forest.  

TABLE III: PERFORMANCE TABLE-ADB-2DEVICE-1C/MC 

    Parameters 1C=20/5dB (%) 

 

 MC=20/5dB (%) 

 

Accuracy 88/80 90/80 

Precision 86/79 88/79 

 

                 Precision = TP/ (TP+FP) 

                 Accuracy = TP+TN/ (TP+FP+TN+FN) 

TABLE IV: PERFORMANCE TABLE-RF/ADB-10DEVICE 

    Parameters RF=30/-10dB 

(%) 

 

 AdB=30/-10dB (%) 

 
Accuracy 85/66 78/59 

Precision 83/59 77/53 

 

Overall performance of both algorithms reduced 

drastically when ten devices were used. Table IV shows 

the performance table of Random Forest and AdaBoost 

for ten device predication model at 30dB and -10dB SNR. 

V. CONCLUSION 

The main objective of the paper is to develop a 

prediction model which can identify and detect a 

particular SDR module from a set SDRs working as a 

single network. The SDRs were designed to form a 

network using a particular protocol and each SDRs were 

supposed to manage and control eight to ten hand held 

radios and sometimes need to manage group calls with 

more than 25 radios. Around 32GB of data is captured 

from these ten radios with different SNR values and the 

performance of the Random forest and AdaBoost 

algorithms were studied. Random forest achieved a best 

accuracy of 85% when compared with AdaBoost. The 

novelty in this work is only custom made modules were 

used for data capturing and validation, and also this paper 

focused on ensemble learning models like RF and 

AdaBoost which are rarely used in RFML domain. The 

next phase study will be conducted by including more 

radios and capturing more data in wireless mode. 
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