
RED-I: A RED-Based Algorithm for Internet Routers

Samuel O. Hassan

1
, Chigozirim Ajaegbu

2
, Samson O. Ogunlere

3
, Richmond U. Kanu

4
, and Olusola S.

Maitanmi
5

1
Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

2
Computer Science Department, Babcock University, Ilishan-Remo, Nigeria

3
Information Technology Department, Babcock University, Ilishan-Remo, Nigeria

4
Department of Basic Sciences, School of Science and Technology, Babcock University, Nigeria

5
Software Engineering Department, Babcock University, Ilishan-Remo, Nigeria

Email: samuel.hassan@oouagoiwoye.edu.ng; ajaegbuc@babcock.edu.ng; ogunleres@babcock.edu.ng;

kanur@babcock.edu.ng; maitanmio@babcock.edu.ng

Abstract—An essential goal of Active Queue Management

(AQM) algorithm is to improve delay by keeping the average

queue size low and maintain a high throughput. However,

Random Early Detection (RED) and its various improved

variants have not been able to achieve much in this regard. This

paper is concerned with the problem of RED in terms of large

delay resulting from RED’s inability to keep the average queue

size small. Therefore, we propose a new RED-based AQM

algorithm named RED-Improved (RED-I) which utilizes two

linear packet dropping functions. ns-3 simulation experiments to

compare the performance of the proposed RED-I with RED

confirmed that RED-I outperformed RED in terms of delay

especially at both light and heavy traffic load scenarios.

Replacing/upgrading the RED algorithm implementations in

Internet routers (either software or hardware) requires minimal

effort since only the packet dropping probability profile needs

to be adjusted.

Index Terms—Packet dropping probability, active queue

management, delay, QoS, Internet routers

I. INTRODUCTION

In the current Internet, congestion is a key concern as it

has a deteriorating effect on Quality of Service (QoS) for

end-users on the network. Network congestion occurs

when the amount of transmitted data packets exceeds the

buffer size of the network resource. In order to ensure an

improved network performance, it is important to avoid

congestion [1]. Internet routers queue management

algorithms can be classified into two broad categories:

Active Queue Management (AQM) and Passive Queue

Management (PQM). The traditional Drop-Tail algorithm

which was initially used as a default algorithm for queue

management in the router employs the concept of FIFO

(First-In, First-Out), which means that packets leaves the

buffer in their order of arrival. The algorithm enqueues

packet at the tail of the buffer and dequeues packet at the

head of the buffer. When the buffer is full, all arriving

incoming packet are dropped. Drop-Tail algorithm is also

referred to as PQM. The weaknesses of Drop-Tail

Manuscript received October 21, 2021; revised March 15, 2022.

Corresponding author email: samuel.hassan@oouagoiwoye.edu.ng

doi:10.12720/jcm.17.4.260-266

algorithm are: large delay in data delivery, buffer

overflow, high packet loss rate, global synchronisation,

and network deadlock [2]. Unlike Drop-Tail algorithm,

AQM algorithms detects congestion at an early stage and

sends notification to connections to back-off by dropping

incoming packets before the queue is full.

The Random Early Detection (RED) AQM algorithm

developed by [3] consists of two computational sections.

The first section is used for computing the average queue

size for detecting incipient congestion while the second

part is used to compute the packet dropping probability.

If the average queue size is less than a minimum

threshold of the router buffer, the packet will be accepted.

If the average queue size varies between a minimum

threshold and a maximum threshold of the router buffer,

then the packet will be dropped with a probability that

increases linearly from zero to a maximum packet drop

probability. However, if the average queue size exceeds

the maximum threshold, then the packet is dropped.

Packet dropping is meant to send a congestion signal to

connections to back-off. Although RED algorithm clearly

performed better than Drop-Tail by avoiding bursty

traffic and global synchronization problems, it has some

shortcomings namely low throughput, high packet loss

rate, large delay and jitter. The RED algorithm has been

recommended for implementation in routers by the IETF

(Internet Engineering Task Force) [2].

Several RED-based AQM algorithms has been

developed by researchers to improve its performance,

such as DcRED (Delay-Controlled Random Early

Detection) [4], MRED (MultiRED) [5], GRED (Gentle

RED) [6], QRED (Q-Learning-based RED) [7], MRED

[8], FXRED (Flexible RED) [1], WQDAQM (Weight

Queue Dynamic AQM) [9], SARED (Self-Adaptive

Random Early Detection) [10], QRTRED [11], DSRED

(Double Slope RED) [12], MRED [13], DGRED

(Dynamic GRED) [14], SDGRED (Stabilized DGRED)

[15], DQRED (Dynamic Queue RED) [16], RED_E

(RED-Exponential) [17], just to mention a few.

One major problem of RED algorithm is its inability

to keep the average queue size low, which results in large

delay. In this paper, we present a new improved RED

algorithm called RED-I, which utilizes two linear packet

dropping functions to distinguish between light and

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 260

heavy traffic loads instead of a single linear function used

in RED.

The rest of the paper is organized as follows: In

Section II, we present related works. Section III describes

the proposed RED-I algorithm. Section IV presents the

simulation results. Finally, Section V concludes the paper.

II. RELATED WORKS

A. Random Early Detection Algorithm

In 1993, Floyd and Jacobson in [3] proposed the

famous Random Early Detection (RED) algorithm which

addresses the shortcomings of the traditional Drop-Tail

algorithm. For each packet arrival into the router, RED

computes the average queue size () which is used as a

measure of congestion based on whether the router buffer

is empty or not. If the queue is empty, the router first

calculates the idle time parameter m, which is then used

to compute the average queue size as follows:

 (1)

where is the beginning of the queue idle time

 (2)

where is the calculated previous queue size; is a

pre-determined weight parameter to calculate .

However, if the packet arrives to a non-empty queue,

the average queue size is calculated using a low-pass

filter which is an EWMA (exponential weighted moving

average):

 (3)

where: is the current queue size;

The average queue size is then compared with two pre-

determined thresholds: minimum () and maximum

().

Therefore,

a) if is less than threshold, then the packet

would be enqueued. That is,

 (4)

b) if is higher than maxTh threshold, then the

packet will be forced dropped. That is,

 (5)

c) if ranges between minTh and maxTh thresholds,

then the packet would be dropped linearly from zero to

maximum dropping probability maxP. That is,

 (6)

Therefore, the initial dropping probability function

of RED is given as:

 (7)

Thus,

 (8)

where is the final packet dropping probability and

 is the number of arrived packets since the last

dropped.

B. Gentle RED Algorithm

[6] proposed GRED (Gentle RED) extended RED by

adding another queue threshold, threshold in

order to reduce the aggressiveness of RED algorithm.

GRED mechanism accepts packets when is less than

minTh threshold; if is between minTh and maxTh

thresholds, the packet will be dropped with a probabilility

that increases linearly from 0 to ; however, when

 varies between and thresholds,

then the packet will be dropped with a probability that

increases linearly from to . GRED achieved an

increased throughput.

C. MRED Algorithm

MRED was developed by [8] and operates similar to

RED except that when varies between and

 thresholds, MRED uses a stepwise function for

computing the packet dropping probability instead of a

linear function used in RED in order to achieve an

improved throughput and delay.

D. Double Slope RED Algorithm

The DSRED (Double Slope RED) algorithm [12]

which aimed at improving the throughput performance of

RED algorithm divides the router’s buffer into four

sections by introducing a mid-point threshold between

the and thresholds and utilizes a

combination of two linear packet dropping functions with

different slopes.

E. Self-Adaptive Random Early Detection Algorithm

The SARED (Self-Adaptive Random Early Detection)

algorithm proposed by [10] integrates a self-adaptive

mechanism with RED algorithm, such that when

varies between and thresholds, packets

are dropped with a nonlinear packet dropping function for

a light and moderate traffic load conditions, however,

when falls between and thresholds,

the algorithm switches to a linear mode for a high traffic

load condition. At low and moderate traffic loads,

SARED obtained an improved throughput performance.

F. QRTRED Algorithm

[11] developed the QRTRED algorithm which

dynamically configures the and

thresholds of RED according to a metric called QRT

which estimates the network condition from occupancy of

the router’s buffer in order to obtain an increased link

utilization.

G. Delay-Controller RED Algorithm

Delay-Controller RED (DcRED) algorithm was

proposed by [4]. The algorithm extended RED by

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 261

computing a delay parameter (according to the arrival

rate, departure rate, and queue size) in order to determine

the dropping probability. DcRED achieved an improved

delay.

H. Dynamic GRED Algorithm

[14] proposed Dynamic GRED (DGRED) extended

GRED by dynamically adjusting and

thresholds and stabilises the average queue size at a

calculated target point, between and

thresholds. The algorithm obtained an improved packet

loss rate.

I. Stabilized DGRED Algorithm

[15] developed the Stabilized DGRED (SDGRED) as

an enhancement for DGRED. SDGRED eliminated the

need to calculated target point and stabilizes the average

queue size between and while

dynamically adjusting the and

parameters based on the current average queue size. The

algorithm achieved a reduced packet loss rate and

queuing delay needed for real-time applications.

J. Weight Queue Dynamic AQM Algorithm

The Weight Queue Dynamic AQM (WQDAQM) was

proposed by [9] as an improved version of SDGRED.

The algorithm performs packet dropping by dynamically

adjusting the queue weight and thresholds according to

the traffic load in order to stabilize the queue weight

between and thresholds. The algorithm

obtained an improved performance in terms of average

queue size, delay and packet loss.

K. MultiRED Algorithm

The MultiRED (MRED) algorithm developed by [5]

splits the router queue into two virtual queues: one for

TCP traffic and the other for UDP traffic. Each of the

queue uses the RED algorithm while using a policy

named TP for marking packets with different code point

according to the protocol type. MRED achieved a

reduced packet loss rate of sensitive traffic flows.

L. Dynamic Queue RED Algorithm

[16] proposed Dynamic Queue RED (DQRED) which

extended RED by splitting the router queue into three

virtual queues thereby classifying incoming traffic into

three classes according to their types, namely, UDP-based

video traffic, UDP-based audio traffic, TCP-based traffic.

Packets from these traffics are served in a dynamical

approach. Each queue has RED algorithm for queue

management. DQRED achieved a reduced delay and

packet loss rate needed for real-time applications.

M. Flexible RED Algorithm

[1] developed FXRED (Flexible RED) algorithm

which also integrates a self-adaptation mechanism with

RED algorithm. The algorithm uses both average queue

size and current traffic load condition as congestion

indicators. When the avg is between minTh threshold and

a mid-point threshold, FXRED utilises a nonlinear

quadratic drop function for low and moderate traffic

loads in order to improve throughput and link utilization,

however, when avg is between the mid-point threshold

and maxTh threshold, FXRED utilizes a linear packet

dropping function for high traffic load in order to

improve delay.

N. Q-Learning-based RED Algorithm

An improved algorithm named QRED (Q-Learning-

based RED) developed by [7] aimed at improving the

throughput performance of RED algorithm by

dynamically adjusting maxP through Q-Learning

mechanism.

O. RED-Exponential Algorithm

The RED_E (RED-Exponential) algorithm proposed

by [17] is an improvement over RED algorithm in the

sense that when varies between and

thresholds, the packet dropping probability is increased

exponentially from 0 to thereby eliminating the need

for in order to obtain an improved delay

performance especially at heavy congestion.

P. MRED Algorithm

The MRED algorithm proposed by [13] is quite similar

to GRED algorithm except that the linear packet dropping

function used when varies between and

 thresholds is replaced by a nonlinear (quadratic

function). MRED was reported to achieve an improved

throughput and packet loss rate performance.

III. THE PROPOSED RED-I ALGORITHM

The proposed algorithm is called Random Early

Detection - Improved (RED-I). RED-I subdivides the

segment between and threshold positions

of RED algorithm into two segments so as to distinguish

between light and heavy traffic loads. The packet

dropping probability function for RED-I is depicted in

Fig. 1.

For every packet that arrives the queue, RED-I

computes the average queue size () similar to RED

using (1) - (3). Therefore,

a. If varies from and , then the packet

will be enqueued. That is,

 (9)

where is same as of RED.

b. If varies from and , then the

packet is dropped with probability:

 (10)

where

 (11)

Here, RED-I increases the packet dropping

probability from to using a linear function.

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 262

c. If varies from and , then the

packet is dropped with probability:

Here, RED-I increases the packet dropping

probability from to using a linear function.

d. Lastly, if is greater than , then the

packet will be dropped. That is,

 (13)

Therefore, the initial dropping probability function of

RED-I is given as:

(14)

Fig. 1. RED-I’s packet dropping probability

The pseudocode for RED-I algorithm is presented in

Algorithm 1.

Algorithm 1 Pseudocode for RED-I Algorithm

Initialization:

For each packet arrival,

Compute the average queue size

If the buffer of the router is non-empty then

Else

End if

If then

No packet drop

Set

Else if then

Set

Calculate the packet drop probability

Mark/drop the arriving packet with probability :aP

Drop the packet

Else if then

Set

Calculate the packet drop probability Pa

Mark/drop the arriving packet with probability

Drop the packet

Else if then

Drop the arriving packet

Set

Else

When the buffer of the router becomes empty

Set

End if

IV. SIMULATION AND PERFORMANCE EVALUATION

We evaluate RED-I AQM algorithm in light and heavy

traffics and compare it with RED algorithm in ns-3 [18].

The network topology configuration is presented in Table

I.

A. Simulation Scenario 1: Light TCP Traffic

The dumbbell topology used in this scenario consists

of 5 TCP flows that started transmission all at the same

time trafficking through a shared bottleneck link. This

simulation scenario determines how the schemes (RED-I

and RED) handles light traffic congestion.

TABLE I: NETWORK SETUP

Parameters Value

Topology Dumbbell

Buffer size 250 packets

Bottleneck bandwidth 10 Mbps

Bottleneck RTT 100 ms

Bottleneck queue RED-I

Mean packet size 1000 bytes

Non-bottleneck bandwidth 100 Mbps

Non-bottleneck RTT 1 ms

Non-bottleneck queue Drop-Tail

 20

 30

 80

 0.1

 0.002

Simulation time 100 s

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 263

Fig. 2 shows average queue size of RED-I and RED

algorithms. It can be seen that the average queue size of

RED-I is lower than RED. The initial peak in RED-I

reaches to 52.202 while RED reaches to 53.6447. Both

algorithms perform similar by bringing down the average

queue size. The mean value of instantaneous average

queue size for RED-I is 5.8148 while RED is 7.9862.

This simply implies at light traffic load when the network

is less congested, RED-I maintains the queue size better

than RED. This is because, when the average queue size

is higher than the packet dropping probability of

RED-I is higher than RED.

Fig. 2. Average queue size under light traffic condition

Fig. 3. Delay under light traffic condition

Fig. 4. Throughput under light traffic condition

Fig. 3 shows the delay of RED-I and RED algorithms.

It can be seen that both algorithms performs similar in

terms of delay. The initial peak in RED-I reaches to

1.6269 while RED reaches to 1.6478. The mean value of

delay for RED-I is 1.2256 while RED is 1.3075. RED-I

offers a lower delay at light traffic.

Fig. 4 shows the throughput of RED-I and RED

algorithms. It can be seen that both algorithms performs

similar in terms of throughput. It can be seen that the

initial peak in RED-I reaches to 9.2428 while RED

reaches to 9.8947. The mean value of throughput for

RED-I is 8.3614 while RED is 9.5057. This implies that

RED-I improves the delay at the expense of throughput in

this scenario.

B. Simulation Scenario 2: Heavy TCP Traffic

This scenario uses a dumbbell topology which has 50

TCP flows that began transmission all at the same time

passing through a shared bottleneck link. This simulation

scenario determines how the schemes (RED-I and RED)

handles heavy traffic load.

Fig. 5 shows average queue size of RED-I and RED

algorithms. It can be seen that the average queue size of

RED-I is lower than RED. The initial peak of RED-I

RED algorithm reaches 48.262 while RED reaches to

87.8063. The mean value of instantaneous average queue

size for RED-I is 15.2168 while RED is 36.5848. This is

because, at heavy traffic load, RED-I linearly increases

the packet dropping probability faster than RED.

Fig. 5. Average queue size under heavy traffic condition

Fig. 6. Delay under heavy traffic condition

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 264

Fig. 6 shows the delay of RED-I and RED algorithms.

It can be seen that both algorithms perform similar in

terms of delay and that RED-I offers a better performance

than RED. The initial peak in RED-I reaches to 13.5374

while RED reaches to 15.2101. The mean value of delay

for RED-I is 12.8764 while RED is 14.5473.

Fig. 7. Throughput under heavy traffic condition

Fig. 7 shows the throughput of RED-I and RED

algorithms. It can be seen that both algorithms performs

similar in terms of throughput. The initial peak in RED-I

reaches to 9.5131 while RED reaches to 10.0022. The

mean value of throughput for RED-I is 9.3565 while

RED is 9.8561. This implies that RED-I improves the

delay at the expense of throughput in this scenario.

V. CONCLUSION

This paper presents an improved RED-based active

queue management algorithm called RED-I which

utilizes a combination of two linear packet dropping

functions to distinguish between light and heavy traffic

loads. ns-3 simulation results showed that at both light

and heavy traffic loads, RED-I clearly outperformed RED

in terms of end-to-end delay as a result of achieving a

lower average queue size at the expense of throughput.

In future work, we intend to compare the performance of

RED-I with other AQM algorithms, such as GRED,

MRED, RED_E, and DSRED.

CONFLICT OF INTEREST

The authors declare no conflict of interest

AUTHOR CONTRIBUTIONS

All authors contributed equally and approved the final

version.

REFERENCES

[1] A. Adamu, V. Shorgin, S. Melnikov, and Y. Gaidamaka,

“Flexible random early detection algorithm for queue

management in routers,” LNCS, vol. 12563, pp. 196-208,

2020.

[2] B. Braden, et al., “Recommendations on queue

management and congestion avoidance in the internet,”

RFC 2309, 1998.

[3] S. Floyd and V. Jacobson, “Random early gateway for

congestion avoidance,” IEEE/ACM Transactions on

Networking, vol. 1, no. 4, pp. 397-413, 1993.

[4] A. A. Abu-Shareha, “Controlling delay at the router buffer

using modified random early detection,” International

Journal of Computer Networks and Communications, vol.

11, no. 6, pp. 63-75, 2019.

[5] E. Fgee, A. Smeda, and K. AbooElgaseem, “MRED: An

algorithm to insure high QoS IP networks,” Journal of

Communications, vol. 12, no. 4, pp. 200 – 206, 2017.

[6] S. Floyd. Recommendation on using the “gentle” variant of

RED. [Online]. Available:

http://www.icir.org/oyd/red/gentle.html

[8] J. Koo, B. Song, K. Chung, H. Lee, and H. Kahng.

“MRED: A new approach to random early detection,”

IEEE, pp. 347–352, 2001.

[9] M. Baklizi, “Weight queue dynamic active queue

management algorithm,” Symmetry, vol. 12, no. 12, pp. 1-

16, 2020.

[10] A. Adamu, Y. Surajo, and M. T. Jafar, “SARED: Self-

Adaptive active queue management scheme for improving

quality of service in network systems,” Journal of

Computer Science, vol. 22, no. 2, pp. 253–267, 2021.

[11] S. Jamali, B. Alipasandi, and N. Alipasandi, “An

improvement over random early detection algorithm: A

self-tuning approach,” Journal of Electrical and Computer

Engineering Innovations, vol. 2, no. 2, pp. 57–61, 2014.

[12] B. Zheng and M. Atiquzzaman, “DSRED: An active queue

management scheme for the next generation networks,” in

Proc. 25th Annual IEEE Conference on Local Computer

Networks, IEEE Computer Society, 2000, pp. 242-251.

[13] Y. Zhang, J. Ma, Y. Wang, and C. Xu, “MRED: An

improved nonlinear RED algorithm,” International

Proceedings of Computer Science and Information

Technology, vol. 44, no. 2, pp. 6-11, 2012.

[14] M. Baklizi, H. Abdel-Jaber, M. Abu-Alhaj, N. Abdullah, S.

Ramadass, and A. Almomani, “Dynamic stochastic early

discovery: A new congestion control technique to improve

networks performance,” International Journal of

Innovative Computing, Information and Control, vol. 9, no.

3, pp. 1113–1126, 2013.

[15] M. Baklizi, “Stabilizing average queue length in active

queue management method,” International Journal of

Advanced Computer Science and Applications, vol. 10, no.

3, pp. 77–83, 2019.

[16] H. Mohammed, G. Attiya, and S. El-Dolil, “Active queue

management for congestion control: Performance

evaluation, new approach, and comparative study,”

International Journal of Computing and Network

Technology, vol. 5, no. 2, pp. 37–49, 2017.

[17] H. Abdel-Jaber, “An exponential active queue management

method based on random early detection,” Journal of

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 265

[7] Y. Su, L. Huang, and C. Feng, “QRED: A Q-Learning-

based active queue management scheme,” Journal of

Internet Technology, vol. 19, no. 4, pp. 1169-1178, 2018.

Computer Networks and Communications, vol. 2020, pp.

1-11, 2020.

[18] The Network Simulator ns-3. [Online]. Available:

https://www.nsnam.org

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Samuel O. Hassan received a Ph.D

degree in Computer Science from

Obafemi Awolowo University, Ile-Ife,

Nigeria. Currently, he is a Lecturer in the

Department of Mathematical Sciences

(Computer Science Unit), Olabisi

Onabanjo University, Ago-Iwoye,

Nigeria. He is a Certified Information

Technology Practitioner (C.itp). Member of International

Association of Engineers (IAENG), Computer Professionals

(Registration Council) of Nigeria (CPN), Nigeria Computer

Society (NCS). He is also a Member and Advisor of MathTech

Thinking Foundation, India. His research interests include

Computational Mathematics, Mathematical modeling and

simulation, Internet congestion control, computer networks and

communications, and numerical computation.

Ajaegbu Chigozirim is a Senior

Lecturer in Babcock University, Ilishan-

Remo, Nigeria. His research interest

includes wireless networking, humanized

computing and information technology.

He is also an associate editor and

reviewer of some high ranking journals.

Samson O. Ogunlere is an Associate

Professor at Babcock University,

Information Technology (IT)

Department in IT and Computer related

courses. He is a registered member of

Nigeria Society of Engineers (MNSE),

Council for Regulation of Engineering in

Nigeria (COREN) and Nigeria Computer

Society (NCS) with many years of working experiences in IT

and Computer Industries. He is also a member of Computer

Science and IT Department Research group in Babcock

University, Ogun State, Nigeria.

Richmond U. Kanu is a Senior Lecturer

in the Department of Basic Sciences,

School of Science and Technology,

Babcock University, Ogun State, Nigeria.

He holds a B. Sc. (hons) degree in

Mathematics from University of Uyo,

Nigeria, an M. Sc. in Mathematics from

University of Ibadan, Nigeria and a Ph.D.

degree in Functional Analysis from University of Ilorin, Nigeria.

He is also a member of Nigeria Mathematical Society.

Olusola S. Maitanmi is a Senior

Lecturer in the Department of Software

Engineering, Babcock University, Ilisan

Remo, Ogun State, Nigeria. His area of

interest is not limited to Cyber Physical

System, Information Security,

Quantitative & Qualitative Research,

Grant writing, Research and proposal

writing.

Journal of Communications vol. 17, no. 4, April 2022

©2022 Journal of Communications 266

https://creativecommons.org/licenses/by-nc-nd/4.0/

