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Abstract ðWith the spread of Covid-19, it is important to 

comprehend the indoor environment. It is also important to 

estimate indoor population density in order to avoid three Cs:  

Closed space, Crowded places, and Close-contact settings. This 

paper proposes a system for estimating indoor population 

density based on indoor environment data through Wireless 

Sensor Network (WSN). The proposed system collects indoor 

environment such as temperature, humidity, illuminace, CO2 

concentration, and dust level. Then, the proposed system 

estimates indoor population density from collected environment 

data. The proposed system estimates the indoor population 

density from indoor environment data by machine learning. 

This study also investigates whether sensor data are adequate 

for estimating indoor population density. The experimental 

results show that the proposed system achieves about 80 % or 

more estimation accuracy by using multiple types of sensors, 

thereby demonstrating the effectiveness of the proposed system. 

The proposed system is expected to measure the closed space 

also estimate crowded rooms, which is a helpful finding for 

preventing the spread of COVID-19. 
 
Index TermsðWireless Sensor Network (WSN), Internet of 

Things (IoT), indoor environment monitoring, machine learning, 

population density estimation 
 

I. INTRODUCTION 

With the spread of Covid-19, it is important to 

comprehend the indoor environment [1]-[6], such as CO2 

and dust concentration, and also to avoid three Cs: Closed 

space, Crowded places, and Close-contact settings [1], [2], 

[5], [6]. The remote sensing technique is becoming 

popular for comprehending environmental condition [3], 

[4]. The remote sensing technique is a technique to 

comprehend global environmental information through 

sensing data from satellites. The CO2 concentration was 

estimated by remote sensing data [3]. Also, the PM2.5 

level is estimated by remote sensing data [4]. Although 

remote sensing technique is suitable to analyzing global 

environment data, it is difficult to comprehend indoor 

environment data.  

 
 

 

  

  

 

It is also important to estimate indoor population 

density in order to avoid three Cs: Closed space, 

Crowded places, and Close-contact settings [2]. One of 

the effective approaches to estimate indoor population 

density is based on image and/or video data [6]. Yang et 

al. proposed an Artificial Intelligence (AI) based real-

time social distancing detection and warning system 

using visual and audio devices [5]. Taylor et al. presents 

several studies that use non-contact sensors such as 

camera sensors and sound sensors to detect vital signs 

about COVID-19 [6]. These works have shown that the 

use of image and sound sensors were effective for 

supporting for infection prevention. However, from the 

perspective of privacy protection, it is desirable to 

estimate indoor environment without the use of image 

data.  

The Internet of Things (IoT)-inspired data sensing is 

also expected for improving our life. The IoT has been 

acquiring much attention along with the improvement, 

miniaturization, and price reduction of wireless devices 

[7]-[18]. Many electric devices are connected to the 

Internet by adhering to the idea of the IoT. The IoT 

enables physical objects and/or space to communicate 

with each other. It likewise enables us to obtain various 

types of environmental data, which can be used for big 

data analysis. The IoT can also be utilized for various 

types of applications, such as smart home, smart building, 

smart health care, and smart rearing [15]-[18]. From the 

idea of Society 5.0, as proposed by Japanese Government, 

combining various types of data obtained using the IoT 

with machine learning and/or big data analysis enables us 

to solve social issues [19]. Hong and Otsuki developed a 

system which estimates humanôs actions (Invasion/Indoor 
movement) based on the array sensor information [20]. In 

ref. [20], humanôs action is estimated using the Support 

Vector Machine (SVM). Tao et al. developed a system 

that predicts the amount of wind power generating by 

using deep learning [21]. It is expected that the idea of 

Society 5.0 will enable us to estimate indoor population 

density without camera sensors. Komuro et al. reported 

that it was important to specify data set in estimating 

indoor working environment [22].  

This paper proposes and builds an indoor population 

density estimation model based on collected indoor 

environment data such as temperature, illuminance, CO2 
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concentration, and house dust concentration. At the first 

step, this study develops wireless sensor nodes to be used 

in monitoring indoor environment. The developed system 

collected indoor environment data through the Wireless 

Sensor Network (WSN). The proposed system collects 

indoor environment data as big data. Then, the proposed 

system estimates indoor population density without 

camera sensors. In addition, this study investigates 

whether sensor data are effective for estimating indoor 

population density. Indoor population density is 

estimated from indoor environment data by machine 

learning method. The experimental results show the 

effectiveness of the proposed system.  

II. PROPOSED METHOD 

Fig. 1 shows the structure of the proposed system. The 

proposed system collects and saves indoor environment 

data. Sensor nodes measure environment data which 

includes temperature, humidity, illuminance, house dust 

concentration, and CO2 concentration. Sensor nodes send 

the measured data to the coordinator node. The 

coordinator node transfers the received data from sensor 

nodes to the data logger. The data logger logs sensor 

nodesô data and sends them to the cloud server. Based on 

the logged data, the indoor population density is 

estimated by machine learning. 

 
Fig. 1. System model 

At the data collection phase, indoor environment data 

and person number are collected via developed sensors. 

The proposed system estimates the indoor population 

density with SVM, random forest algorithm, and 

Convolutional Neural Network (CNN), which are one of 

the supervised machine learning. Since random forest 

algorithm can obtain importance of each sensor type, this 

study focuses on the random forest algorithm in particular. 

The random forest algorithm creates decision trees on 

data samples, obtains the prediction from each of them, 

and selects the best solution through voting. The 

proposed system uses classification tree with the 

parameters in Table I for the decision tree. In order to 

create the decision tree of the random forest algorithm, 

the proposed system makes use not only of collected 

environment data from sensors but also person number 

counter, which is used as the correct answer. 

Environment sensor data are linked with the counted 

person number. At the development phase, first, random 

samples are selected from the collected data set. Next, a 

decision tree is created and grown for every sample. 

Estimation results are obtained from every decision tree. 

At the estimation phase, measured sensor data are 

encoded. Thereafter, prevailing data on population 

density is selected through a majority decision.  

TABLE I: DECISION TREE PARAMETERS OF THE PROPOSED SYSTEM 

Criteria for measuring the quality of a split, criterion gini 

Maximum depth of decision tree 30 

Minimum number of samples required to be at a leaf 

node 

1 

Minimum number of samples required to split an 

internal node 

2 

Number of trees in the forest, n_estimators 30 

Randomness of the estimator, random_state 42 

 

 

 
Fig. 2. Developed indoor environment sensor 

A. Sensor Nodes 

Fig. 2 shows the developed indoor environment 

sensors. Each sensor node is composed of environmental 

data measuring sensors, a wireless sensor module (XBee), 

and a one-board microcomputer. The operation of sensor 

nodes was carried out using the one-board microcomputer. 

Each sensor acquires outage voltage according to the 

measured value. The one-board microcomputer converts 

the obtained voltage to corresponding environment data 

values, which are temperature (Degree Celsius), humidity 

(%), illuminance (LUX), CO2 concentration (PPM), and 

dust level (mg/m3). In order to count the number of 

persons in the experimental room, each person presses 

ñEnterò/òExitò button when entering/leaving the room. 

B. Measurement System Construction 

Environment measurement devices are composed of 

the developed sensors, one-board microcomputer, and 
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XBee router. Star topology sensor network was 

constructed in the experimental room. There are one 

coordinator node and 8 sensor nodes. Table II shows the 

information of the equipped sensors of each node. Figures 

2 and 3 show the layout of the experimental room and the 

deployment of sensor nodes, respectively.  

Each sensor node measures environment data every 10 

minutes. In order to avoid data collision due to concurrent 

transmission, each sensor node sends data by shifting 75 

seconds. 

 
Fig. 3. Layout in the experiment room 

 
Fig. 4. Deployment of sensors 

TABLE II: EQUIPPED SENSORS OF EACH NODE 

Sensor ID Equipped Sensor 

0 Temperature & Humidity 

and Illuminance 

1 Temperature & Humidity, Illuminance, 

and Human detection 

2 Temperature & Humidity, Illuminance, 

and Human detection 

3 Temperature & Humidity, Illuminance, 

and Human detection 

4 Temperature & Humidity, Illuminance, 

and Human detection 

10 CO2 concentration and Dust concentration 

20 CO2 concentration and Dust concentration 

99 Person number counter 

C. Population Density Estimation 

The population density in an experimental room was 

estimated from obtained environmental data. Population 

density was estimated by machine learning. This study 

estimates population density from the indoor 

environmental data. The environmental data (temperature, 

humidity, illuminance, house dust concentration, and CO2 

concentration) and the person number were logged for 13 

days. 70 % of the logged environmental data were used 

for training data, and 30 % of the logged data were used 

for test data. 

III. RESULTS 

A. Environment Data  

Figures 5 to 7 show the graphs of measured 

environmental data by each sensor, which are CO2 

concentration, house dust concentration, and indoor 

person number, respectively. It is seen from Figs. 5 to 7 

that the proposed system allows us to comprehend indoor 

environment in real-time.  

 
Fig. 5. CO2 Concentration 

 
Fig. 6. Dust concentration 

 
Fig. 7. Dust concentration 

B. Data Loss Ratio 

Table III shows the data loss ratio of each sensor node. 

Since processing speed and clock speed of each one-
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board microcomputer is slightly different, transmission 

timing of each sensor node changed, which caused 

concurrent transmission between sensor nodes. Therefore, 

data losses occur.  

TABLE III: DATA LOSS RATIO 

Sensor ID Data Loss Ratio 

0 0.49 % 

1 2.04 % 

2 0.77 % 

3 0.71 % 

4 0.77 % 

10 0.66 % 

20 0.77 % 

99 0.77 % 

C. Person Number Estimation 

Table IV shows the estimation accuracy of the number 

of persons in the experimental room. The indoor person 

number was estimated by Random Forest algorithm (RF), 

SVM, and CNN. It is seen from Table IV that the 

estimation accuracy differs by the kinds and the number 

of input sensor data. Using multiple kinds of sensors 

improves the estimation accuracy. SVM can achieves 

about 75 % estimation accuracy by using temperature ad 

and humidity sensors. However, because of the effect of 

over learning, the estimation accuracy of SVM 

deteriorates as the number of sensor types increases. On 

the other hand, CNN can achieve over 80 % by using 

three or more appropriately selected sensor types. And 

RF can also achieve over 80 % estimation accuracy by 

using three or more types of sensors. In addition, RF can 

achieve over 85 % estimation accuracy by using five 

types of sensors (all types of sensors). Although it took 

several minutes to obtain the results with CNN, it took 

about one seconds to get ones with RF. In addition, RF 

can obtain importance of each sensor data. Therefore, RF 

is suitable for estimation in the proposed system.  

The importance of types of sensors is presented in Fig. 

8. Clearly, the importance of CO2 concentration ranks the 

highest among the sensors. This result implies that the 

person number can be affected by CO2 concentration. 

This is because the more people there are, the more CO2 

is emitted by human breathing. However, as we can see 

from Table IV, if we only use CO2 sensor(s), we do not 

obtain high estimation accuracy. It is seen from Fig. 8 

that the importance of illuminance sensor shows the 

second highest and that of humidity sensor shows the 

third highest. It is also seen from Table IV and Fig. 8 that 

the importance of house dust concentration for estimating 

indoor population density.  

From above discussions, combining big data from 

environment sensors and machine learning techniques is 

useful for estimating the indoor population density. The 

estimation accuracy can be improved by using not only 

CO2 concentration data but also multiple types of 

environmental data. Since the estimation accuracy 

depends on the input sensor data, the author should 

investigate the types of sensing data to obtain higher 

estimation accuracy in more details.  

TABLE IV: ESTIMATION ACCURACY FOR THE TYPES OF SENSORS 

Types of Sensors SVM RF NN 

Temperature 0.675 0.669 0.632 

Illuminance 0.502 0.643 0632 

CO2 0.373 0.400 0.476 

Temperature and Humidity 0.749 0.749 0.715 

Temperature and 

Illuminance 

0.547 0.732 0.706 

Humidity and Illuminance 0.563 0.781 0.768 

Temperature and CO2 0.460 0.704 0.595 

Temperature, Humidity, and 

Illuminance 

0.584 0.819 0.795 

Temperature, Humidity, and 

CO2 

0.527 0.803 0.698 

Humidity, Illuminance, and 

CO2 

0.426 0.831 0.817 

Temperature, Humidity, 

Illuminance, and CO2 

0.456 0.843 0.824 

Temperature, Humidity, 

Illuminace, CO2, and Dust 

0.454 0.853 0.839 

 

 
Fig. 8. Importance of sensor types 

IV. CONCLUSION 

This paper proposed and built an indoor population 

density estimation model based on collected indoor 

environment data through WSN. At the first step, this 

study developed wireless sensor nodes to be used in 

monitoring indoor environment. The proposed system 

collected indoor environment data, such as temperature, 

humidity, illuminace, CO2 concentration, and dust level, 

through the WSN. Then the proposed system estimated 

indoor population density without image data from 

camera sensors. In addition, this study investigated 

whether sensor data are effective for estimating indoor 

population density. The experimental results showed that 

the proposed system achieved 80 % or more estimation 

accuracy by using multiple type of sensors, thereby 

demonstrating the effectiveness of the proposed system.  

The proposed system is expected to measure the closed 

space also estimate crowded space, which is a useful 

finding for future research approaches. It is also expected 

that the obtained results contribute to build clean air 

environment and also to protect COVID-19 infection. 

These are the contributions of this study to global 

innovation. Future works include the investigation of 
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sensor data types for obtaining higher estimation 

accuracy, the reduction of data losses, and long term 

experiment that includes seasonality. 
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