
Multimedia Conferencing at the Network Edge

Ivaylo I. Atanasov1 and Evelina N. Pencheva2
1Technogrid Ltd, Sofia, Bulgaria

2Todor Kableshkov University of Transport, Sofia, Bulgaria

Email: i.i.a@abv.bg; evelina.nik.pencheva@gmail.com

Abstract —The fifth generation (5G) mobile system provides

enhanced data rates, ultra-low latency, and better network

resource usage for Internet of Things (IoT) devices in a dense

environment. The integration of 5G IoT and multimedia

conferencing enables collaboration between humans and

devices by launching new capabilities. In this paper, an

approach to define Application Programming Interfaces (API)

for multimedia conference control is presented. The API design

follows the principles of Multi-access Edge Computing (MEC)

and features the inherent advantages of MEC. The API is

described by resource structure, data types, and sequence

diagrams that illustrate the API functionality. Some

implementation issues are discussed, and the injected latency is

evaluated.

Index Terms—Fifth generation, internet of things, multi-access

edge computing, application programming interfaces

I. INTRODUCTION

The fifth generation (5G) Internet of Things (IoT)

technology promises to improve all areas of our lives

facing the growing needs of the networked society. The

new benefits to the IoT brought by 5G include the ability

to support a big number of IoT devices, both static and

mobile, with a diverse range of quality of service

requirements [1]-[3]. The 5G provides powerful

combination of high speed, low latency, ubiquitous

coverage, high reliability, and increased energy efficiency,

which enables distance control in use cases, where the

network efficiency is crucial. Edge computing and

artificial intelligence may help to manage the data

volumes generated by IoT devices, increasing network

capacity. These data can be analyzed in real time to fasten

decision making.

The 5G stimulates innovations in IoT and creates new

ways for engagement of end users. Key factors for the

success are the capabilities to create new services and to

shorten time to market [4]-[6]. The integration of

multimedia conferencing and IoT is one of the exciting

new 5G use cases. Multimedia conferencing has been

used for collaboration between humans for a long time,

but the integration with IoT launches new capabilities. In

office environment, it is possible to look for information

during active conference, to issue voice commands, to

Manuscript received August 20, 2021; revised January 12, 2022.

The research is part of project grant KP-06-H37/33, funded by

Bulgarian National Science Fund.

Corresponding author email: i.i.a@abv.bg.

doi:10.12720/jcm.17.2.117-124

ask questions and to receive instant answers. To improve

efficiency and performance, IoT enables interconnection

between databases, conference rooms, white boards,

video conferencing devices and other tools for

collaboration. For example, digital screens with

multimedia conference connection may be connected to

any object or product, making it source of information

and platform for video communications. The integration

of IoT and conferencing, combined with edge computing

and artificial intelligence, can be beneficial in emergency

services to improve health care and public safety [7]-[9].

Artificial Intelligence (AI) applications may be used to

trigger conference calls with the interested parties

automatically and to support multiparty communication

sessions e.g., with end users and health service providers.

There are a lot of proprietary conferencing solutions,

such as Click Meeting, Zoom Meetings, GoToMeetings,

Skype for Business, Google hangouts, etc. [10]. Telecom

operators may provide multimedia conferencing as an

Internet protocol Multimedia Subsystem (IMS) service

[11]. In this paper, we propose a new RESTful service for

multimedia conferencing that may be deployed in the

vicinity of end users exploiting the benefits of Multi-

access Edge Computing (MEC) technology. MEC makes

possible the development of IoT applications with

requirements of location and context awareness, mobility

support, deployment independence and high quality of

service [12], [13]. The proposed service allows

applications in IoT devices and human controlled

terminals to initiate a multimedia conference, to add and

remove conference participants, and to receive

information about conference participant status. The

service does not require IMS deployment and exposes

low latency, more efficient bandwidth management and

high reliability characteristics of MEC.

Next sections focus on the research motivation,

describe the multimedia conference service functionality

by use cases, define the service Application Programming

Interfaces and related data types, and discuss some

implementation aspects.

II. RESEARCH MOTIVATION

Multimedia conferencing platforms have been used for

years for communication and collaboration between

people, but the integration with IoT devices offers huge

potential for innovative services and applications. Some

examples include healthcare management, improvement

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 117

of quality of service, inventory management, security and

data generation. Virtually, any device and anyone

connected to the Internet generates data. These data can

be analyzed in near real time and thus can improve the

decision-making process by integrating with AI

technologies.

An example is video conferencing between people and

the need for access to information. The use of devices

with embedded AI capabilities, which are activated by

voice commands, provides immediate access to the

information without interrupting the conversation. AI for

visualization of emotional sensation can be used to

analyze the emotions of conference participants. With the

help of multimedia conferencing and IoT, health

monitoring of patients, elderly and people with

disabilities can be improved. When diagnosing an

emergency medical situation, multimedia conferencing

can help saving lives.

To provide unified interoperable platform for

multimedia conferencing, telecom operators deploy IMS

Multimedia Telephony standard which offers converged,

mobile and fixed, real-time multimedia communications.

IMS simplifies the integration of cloud services, but it is a

complex and heavy platform, normally located in the core

network.

In many use cases, the latency is a critical factor. The

latency is affected by the speed and available bandwidth,

the number of hops in the data path, the interconnections,

and the distance between the client device and the server.

Sending data for analysis to the cloud and returning a

response may take time, which is not acceptable for

mission critical applications. MEC provides a distributed

environment for running cloud applications in close

proximity to end users and thus reduces delays. MEC

enables localized and faster processing, and optimizes

network bandwidth usage. Integration of multimedia

conferencing with IoT, AI and Edge computing may

improve the efficiency and effectiveness of communica-

tions between connected cars and industrial automation

which require highly reliable and low latency network

connections. MEC based multimedia conferencing may

improve the quality of experience for end users of high-

bandwidth applications of augmented and virtual realities.

The research motivation is to exploit the MEC benefits

to provide distributed multimedia conferencing functiona-

lity close to end users without the use of IMS.

III. SERVICE INFORMATION STRUCTURE

A. Resource Structure

The proposed service is named Multimedia Conference

Control (MCC) service. The MCC service enables mobile

edge applications to create a uniquely identified “context”

to connect participants. A participant is a party involved

in the conference and may be any object with

conferencing capabilities. There may be a participant

with special privileges, named hereafter conference

owner, who can end the conference call or be the charged

party. Using the MCC Application Programming

Interface (API), a mobile edge application can add or

remove conference participants.

The MCC API follows the REST (REpresentational

State Transfer) style for developing distributed

applications. REST is suitable for IoT applications as it is

simple, based on resources, whose status may be

managed using HTTP.

Fig. 1 shows the resources supported by the MCC

service.

Fig. 1. MCC service resources.

The conferences resource represents all conferences

created by the MEC applications. To create a new

conference the application invokes HTTP POST method

on the conferences resource where the method body

contains conference information details. The MCC

service creates a new multimedia conference with no

participants initially and answers with an HTTP 201

Created response. The response body contains the URI

(Uniform Resource Identifier) of the conferenceID

resource representing the just created conference. An

HTTP GET method invoked on conferences resource

retrieves a list of all application created conferences or

information about existing conference, respectively. The

application can update an existing conference by sending

an HTTP PUT method on the respective conferenceID

resource.

The participants resource represents conference

participants. To add a conference participant, the

application invokes an HTTP POST method on the

participants resource providing the participant URI and

media to be used. In case the participant joined the

conference successfully, the MCC service returns an

HTTP 201 Created response with the identification of the

added participant stored at the participantID resource.

The application uses an HTTP GET method on the

participants resource or on the participantID resource to

get the conference participant list or information about

existing conference participant, respectively. The

application can update the media used by the participant

by sending an HTTP PATCH method on the

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 118

corresponding participantID resource. The application

can remove the participant from the conference by

sending an HTTP DELETE method on the resource

representing the participant.

The conference termination may be due to expiry i. e.

reaching the maximum duration included as an optional

parameter in the request for conference creation. The

application uses an HTTP GET request on the

conferenceID resource to retrieve the conference status

(initial, active, or terminated). The conference

termination may occur due to leaving the conference by

all the participants. To be notified about such events, the

application needs a subscription. The conferenceSub-

scriptions resource represents all subscriptions to

notification regarding termination of existing conference,

while the conferenceSubscriptionID resource identifies an

existing subscription. The application can create a

subscription using an HTTP POST method on the

subscription resource. It can also terminate given

subscription by invoking an HTTP DELETE method on

the corresponding conferenceSubscriptionID resource.

Similarly, the participantSubscriptions resource repre-

sents all subscriptions for notifications about the status of

the conference participant, and the participantSubscrip-

tionID resource represents such subscription. The HTTP

POST method used to create a subscription includes the

callback address where the application wants to receive

the notifications. In case of change of the participant

status (e. g. participant media is on hold or the participant

leaves the conference), the MCC service notifies the

application.

Table I summarizes the MCC service resources and

supported HTTP methods. All MCC service resources

follow the service URI which can be published to a

service directory.

B. Service Data Model

In this subsection, we describe the data types used in

data structures that are exchanged over the MCC API.

TABLE I: CONFERENCING RESOURCES AND APPLICABLE HTTP

METHODS

Resource URI HTTP method Description

/conferences GET

POST

Retrieves list of all

multimedia

conferences created

by applications.

Creates a new

conference.

/conferences/conferenceID GET

PUT

DELETE

Retrieves information

about existing

multimedia

conference.

Modifies existing

conference.

Terminates existing

conference.

/conferences/conferenceID

/participants

GET

POST

Retrieves list of all

conference

participants.

Adds a new

participant to the

conference.

TABLE I: CONTINUE

Resource URI HTTP method Description

/conferences/conferenceID

/participants/participantID

GET

PATCH

DELETE

Retrieves information

about existing

conference

participant.

Updates existing

information about

existing conference

participant.

Removes conference

participant.

/conferences/conferenceID

/conferenceSubscriptions

GET

POST

Retrieves list of all

conference

subscriptions.

Creates a new

conference

subscription.

/conferences/conferenceID

/conferenceSubscriptions/

conferenceSubscriptionID

GET

PUT

DELETE

Retrieves information

about existing

conference

subscription.

Updates existing

conference

subscription.

Deletes existing

conference

subscription.

/conferences/conferenceID

/participants/participantID/

participantSubscriptions

GET

POST

Retrieves list of all

participant

subscriptions.

Creates a new

participant

subscription.

/conferences/conferenceID

/participants/participantID/

participantSubscriptions/

participantSubscriptionID

GET

PUT

DELETE

Retrieves information

about existing

participant

subscription.

Updates existing

participant

subscription.

Deletes existing

participant

subscription.

The ConferenceData data type contains information

about the conference, and it is a structure of the

conference status (initial, active, terminated), the time at

which conference is created, time at which the conference

has at least one participant, the conference duration, the

conference owner, the current number of participants

connected to the conference, the maximum number of

allowed participants, the call session identifier, and

conference description.

The participantData data type contains information

about existing conference participant and it includes

participants address, media information which is a

structure of used media and its status, the time at which

the participant has joined the conference and the

participant status (invited, connected, and disconnected).

The confSubscription data type represents a

subscription to conference status changes. It is a structure

of the callback address provided by the application where

the application wants to receive the notifications about

conference status, and the application identification.

The partSubscription data type represents a

subscription to conference participant status and contains

the callback address and the applicationID.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 119

An example of simplified MEC application request to

retrieve the conference status and the respective response

with JSON description is as follows:

GET /exampleAPI/mcc/v1/conferences/DABEDABEDA HTTP/1.1

Host: example.com

Accept: application/json

Content-length: 0

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 279

{"conferenceData":{

"status":"active",

"startTime":"2021-03-23T12:15:03.521Z",

"activeTime":"2021-03-23T12:16:05.321Z",

"duration":1200,

"owner":"ivan.petrov@example.com",

"maxParticipants":5,

"currParticipants":3,

"callSessionID":"AABBCCDD",

"conferenceDescription":"climate"}

}

An example of simplified notification about the

conference participant status change with JSON

description is as follows:

POST /notificationApp/BADDAD HTTP/1.1

Host: example.com

Cache-Control: no-cache

Content-Type: application/json

Content-Length: 196

{"participantData":{

"participant":"alex.dimov@example.com",

"mediaInfo":["data":"active","video":"onhold"],

"timestamp":"2021-03-23T12:16:06.447Z",

"status":"connected",

"prevStatus":"invited"}

HTTP/1.1 204 No content

IV. DISCUSSION ON SERVICE IMPLEMENTATION ISSUES

A. Mapping API onto Network Operations

The MCC service may be deployed at a MEC server

that is co-located with distributed, virtualized core

network functions. As a mediator between MEC

applications and the core network, the MCC service must

translate MCC API methods onto service operations of

Network Exposure Function (NEF) which provides

secure and robust access to exposed network capabilities

and services. The NEF services and operations are

defined in [14].

Fig. 2 shows the message flow for creating a

conference by MEC application. The MCC service may

reserve resources for the conference in the network (not

shown in the figure). The application subscribes to

notifications about conference status.

Fig. 3 shows the flow of adding of conference owner

to existing conference by MEC application.

Fig. 2. Flow of conference creation initiated by an application.

When the application requests to add a participant to

existing conference as a conference owner, the MCC

service invokes Nnef_TrafficInfluence_Create operation

of the NEF to trigger the session initiation with the

participant. The NEF invokes the Nnef_TrafficInfluen-

ce_Notify operation to notify the MCC service that the

participant is invited to the conference session. The MCC

service invokes the Nnef_ChargeableParty_Create

operation to indicate the conference chargeable party.

The application subscribes to receive notifications about

participant status. When the participant is connected to

the conference, the NEF notifies the MCC service, which

in turn sends a notification of the participant status to the

application.

Fig. 3. Flow of adding a conference participant by an application.

Fig. 4. Flow of removing a conference participant by an application.

Fig. 4 shows the flow of participant disconnection

initiated by the MEC application. The application

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 120

http://example.com/

requests for the conference participant status and decides

to remove the participant. The MCC service invokes

Nnef_TrafficInfluence_Update operation to trigger the

participant disconnection in the network and then NEF

notifies the MCC service when the participant is

disconnected.

When a participant, who is not the owner of the

conference, leaves, the NEF notifies the MCC service

that the respective participant is disconnected, and the

application, having an active subscription for participant

status changes, is also notified by the MCC service.

Fig. 5 shows the flow of conference termination in

case the conference owner leaves. When the participant,

which is the conference owner, leaves, the NEF invokes

Nnef_TrafficInfluence_Notify operation to notify the

MCC service and invokes Nnef_ChargeableParty_Notify

operation also to report the chargeable event. The MCC

service in turn initiates conference session termination

with the other participants (Nnef_TrafficInfluence_Up-

date, Nnef_TrafficInfluence_Notify operations). If the

application has an active subscription for conference state

changes, it is notified by the MCC service, when all the

participants are disconnected.

Fig. 5. Flow of conference termination in case the conference owner

leaves.

Fig. 6. Flow of application initiated conference termination.

Fig. 6 shows the flow of application initiated

conference termination. The application retrieves

information about the conference and requests for the

conference termination. The MCC service initiates the

conference disconnection. When all the participants are

disconnected, the NEF notifies the MCC service about

the chargeable event. If the application requests for some

conference information, the MCC service returns

terminated status.

B. Service State Models

The application view on the conference state and on

the conference participant status must be synchronized

with the MCC service view on both of them.

Fig. 7 shows the simplified conference state model as

seen from the application point of view. The

Disconnected state is the state in which the conference

resource does not exist. The application can initiate a

conference using the MCC service API. In Initial state,

the conference resource is created but has no participant

resources associated to it. The application can request a

participant owner to be invited to the conference. When

the conference owner joins the conference, the MCC

service notifies the application, and the conference state

becomes Active. In Active state, the application can invite

another conference participant or remove given

conference participant. The application can terminate the

conference, or it can be notified about conference

participant disconnection. The model is simplified as it

does not show the subscription to notifications as well as

the subscription termination.

Fig. 7. The application view on the conference state.

Fig. 8 shows the simplified conference state model as

seen from the MCC service point of view. In Idle state,

the conference is not created. In Created state, the

conference is created with no participants. The

application may request adding the conference owner as

participant, which causes the MCC service to request

session initiation and setting a chargeable party. In

InvitingConferenceOwner state, the MCC service waits

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 121

for notification from the network that the conference

owner is connected. In SettingChargeableParty, the MCC

service waits for notification from the network that the

chargeable party is set. In Active state, the conference has

at least one participant connected. In InvitingParticipant

state, the MCC waits for notification from the network

that the participant invited by the application is connected

to the conference. In RemovingParticipant state, the

MCC service waits for notification from the network that

a conference participant, removed by the application, is

disconnected.

Fig. 8. The MCC service view on the conference state.

The synchronization between conference state models

may be proved by formal mathematical description and

using the concept of weak bi-simulation.

To formalize mathematically the model description,

the concept of Finite State Machine (FSM) is used. An

FSM is formally described as a quadruple of a set of

states, a set of events initiating transitions, a set of

transitions between states and an initial state.

By FSMapp = (Sapp, Eapp, Tapp, s0
app) it is denoted an

FSM representing the application view on the conference

state, where:

Sapp = {Disconnected [sA
1], Initial [sA

2], Active [sA
3]};

Eapp = {InitiateConference [eA
1], AddConference-

Owner [eA
2], NotifyParticipantStatus (invited) [eA

3],

NotifyParticipantStatus(connected) [eA
4], AddParticipant

[eA
5], RemoveParticipant [eA

6], NotifyParticipantStatus

(disconnected) [eA
7], TerminateConference [eA

8]};

Tapp = {(sA
1 eA

1 sA
2), (sA

2 eA
2 sA

2), (sA
2 eA

3 sA
2), (sA

2 eA
4

sA
3), (sA

3 eA
5 sA

3), (sA
3 eA

3 sA
3), (sA

3 eA
4 sA

3), (sA
3 eA

6 sA
3),

(sA
3 eA

7 sA
3), (sA

3 eA
8 sA

1), (sA
3 eA

7 sA
1), (sA

1 eA
7 sA

1)};

s0
app = sA

1.

We use short notations for the names put in brackets.

By FSMmcc = (Smcc, Emcc, Tmcc, s0
mcc) it is denoted an

FSM representing the MCC service view on the

conference state, where:

Smcc = {Idle [sS
1], Created [sS

2], InvitingConference-

Owner [sS
3], SettingChargeableParty [sS

4], Active [sS
5],

InvitingParticipant [sS
6], RemovingParticipant [sS

7]};

Emcc = {createConference [eS
1], addParticipant(owner)

[eS
2], Nnef_TrafficInfluence_Notify [eS

3], Nnef_Charge-

ableParty_Notify [eS
4], addParticipant [eS

5], endConfe-

rence [eS
6], removeParticipant [eS

7]};

Tmcc = {(sS
1 eS

1 sS
2), (sS

2 eS
2 sS

3), (sS
3 eS

3 sS
4), (sS

4 eS
4

sS
5), (sS

5 eS
5 sS

6), (sS
6 eS

3 sS
5), (sS

5 eS
3 sS

5), (sS
5 eS

6 sS
7), (sS

5

eS
7 sS

7), (sS
7 eS

3 sS
5), (sS

5 eS
3 sS

1), (sS
7 eS

3 sS
1)};

s0
mcc = sS

1.

To prove that the application and MCC service views

on the conference state are synchronized, we show that

both models expose equivalent behavior using the

concept of weak bi-simulation. The weak bi-simulation

requires identification of tuples of states (sA
i, sS

j), i=1..3,

j=1..7, such that for each transition sequence from a state

in a tuple to a state in another tuple within the one FSM

there exists a transition sequence from the corresponding

state within the tuple to the corresponding state in the

other tuple in the other FSM.

Proposition: FSMapp and FSMmcc expose equivalent

behavior, i. e. they have a bi-simulation relationship.

Proof: By R = {(sA
1, sS

1), (sA
2, sS

2), (sA
3, sS

5)} it is

denoted a relationship between the states of FSMapp and

FSMmcc.

Then the following transition sequences can be

identified:

1. The application creates a conference: (sA
1 eA

1 sA
2)

∃ (sS
1 eS

1 sS
2).

2. The application invites the conference owner to

connect to the conference:  (sA
2 eA

2 sA
2) ⊓ (sA

2 eA
3

sA
2) ⊓ (sA

2 eA
4 sA

3) ∃ (sS
2 eS

2 sS
3) ⊓ (sS

3 eS
3 sS

4) ⊓ (sS
4

eS
4 sS

5).

3. The application invites a participant to connect to the

conference:  (sA
3 eA

5 sA
3) ⊓ (sA

3 eA
3 sA

3) ⊓ (sA
3 eA

4

sA
3) ∃ (sS

5 eS
5 sS

6) ⊓ (sS
6 eS

3 sS
5).

4. The application is notified that a conference

participant (not the last one), leaves:  (sA
3 eA

7 sA
3) ∃

(sS
5 eS

3 sS
5).

5. The application is notified that the last conference

participant leaves:  (sA
3 eA

7 sA
1) ∃ (sS

5 eS
3 sS

1).

6. The application removes a conference participant

(not the last one):  (sA
3 eA

6 sA
3) ⊓ (sA

3 eA
7 sA

3) ∃

(sS
5 eS

7 sS
7) ⊓ (sS

7 eS
3 sS

5).

7. The application terminates the conference:  (sA
3 eA

8

sA
1) ⊓ (sA

1 eA
7 sA

1) ∃ (sS
5 eS

6 sS
7) ⊓ (sS

7 eS
3 sS

1).

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 122

Therefore, the R is a bi-simulation relationship, which

means that FSMapp and FSMmcc expose equivalent

behavior.

The formal model verification is useful in the

implementation process for testing the specified behavior

against the observed one.

C. Assessment of Injected Latency

In order to estimate the latency, which might be added

by the MCC API to the latency budget, we make an

emulation, that is based on matured tools like Apache

Cassandra and Eclipse Vert.x. As far as the API is

RESTful, its configuration of the experiment follows the

well-known client-server model, where the

implementation of the client, that is supposed to generate

the traffic, is based on Java. The front-end of the

implementation is built on the Vert.x verticles,

exchanging messages over the event bus, and the back-

end is trusted on Cassandra, working in a single node

mode.

The injected latency is assessed by offering traffic load,

that is consisted of twenty thousand HTTP requests of

POST type, corresponding to create operations.

Fig. 9 depicts the numerical results, shown in

ascending order, where about 95% of the load is with

latency under 6ms and averages to 2ms approximately,

however the top 5% go beyond 1s. It's likely to conclude

that the latency issue still remains an open question.

Fig. 9. Latency of the traffic as an ordered sequence.

V. CONCLUSION

The paper presents an approach to define a RESTful

API for conference control by third party applications.

The proposed MCC service enables applications

deployed at the edge of the mobile network to create a

conference, to add and/or remove conference participants

and to subscribe to and receive notifications about

conference state and conference participant status. The

deployment of MCC API in the vicinity of end users

benefits from low latency and more efficient network

resource usage featured by edge computing. In addition to

the conference control with human participants, the MCC

API may be used to manage IoT devices as conference

participants which creates opportunities for exciting new

use cases.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

E. Pencheva contributed to API definition and the I.

Atanasov conducted the API performance assessment.

REFERENCES

[1] L. Chettri and R. Bera, “A comprehensive survey on

Internet of Things (IoT) toward 5G wireless systems,”

IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32,

Jan. 2020.

[2] B. Rong, et al., “Integration of 5G networks and internet of

things for Future Smart City,” Wireless Communications

and Mobile Computing, 2020.

[3] P. Vagra, et al., “5G support for industrial iot applications

– challenges, solutions and research gaps,” Sensors, vol. 20

no. 828, pp. 1-43, 2020.

[4] S. Liu, L. Liu, H. Yang, K. Yue, and T. Guo, “Research on

5G technology based on Internet of things,” in Proc. IEEE

5th Information Technology and Mechatronics

Engineering Conference (ITOEC), Chongqing, China,

2020, pp. 1821-1823.

[5] Q. Wang, et al., “Multimedia IoT systems and

applications,” in Proc. Global Internet of Things Summit

(GIoTS), Geneva, 2017, pp. 1-6.

[6] A. Karaadi, L. Sun, and I. Mkwawa, “Multimedia

Communications in Internet of Things QoT or QoE?” in

Proc. IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical

and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), Exeter, UK, 2017, pp. 23-29.

[7] F. Andriopoulou, T. Orphanoudakis, and T. Dagiuklas,

“IoTA: IoT automated SIP-based emergency call triggering

system for general eHealth purposes,” in Proc. IEEE 13th

International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob),

Italy, 2017, pp. 362-369.

[8] J. Ferreira, J. N. Soares, R. Jardim-Goncalves, and C.

Agostinho, “Management of IoT devices in a physical

network, ” in Proc. 21st International Conference on

Control Systems and Computer Science (CSCS), Romania,

2017, pp. 485-492.

[9] X. Huang and N. Ansari, “Secure multi-party data

communications in cloud augmented IoT environment,” in

Proc. IEEE International Conference on Communications

(ICC), France, 2017, pp. 1-6.

[10] Wondershare PDFelement. (2020). Top 5 Video

Conferencing Solutions. [Online]. Available:

https://pdf.wondershare.com/reseller/video-conferencing-

solutions.html

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 123

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 124

[11] G. Mishra, S. Dharmaraja, and S. Kar, “Performance

analysis of multi-party conferencing in IMS using vacation

queues,” in Proc. IEEE International Conference on

Advanced Networks and Telecommunications Systems

(ANTS), New Delhi, India, 2014, pp. 1-6.

[12] R. Zhu, L. Liu, H. Song, and M. Ma, “Multi-access edge

computing enabled internet of things: Advances and novel

applications,” Neural Computing and Applications,

Springer, vol. 32, 15313–15316, 2020.

[13] I. Atanasov, E. Pencheva, D. Velkova, and I. Asenov,

“Multiparty call control at the network edge,” Elektronika

Ir Elektrotechnika, vol. 26, no. 5, pp. 39-49, 2020.

[14] 3GPP TS 23.502 Procedures for the 5G System (5GS);

Stage 2; Release 16, v16.6.0, 2020.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Ivaylo Atanasov is born in Sofia, Bulgaria. He has received his

MSc degree in Electronics and PhD degree in Communication

networks from Technical University of Sofia (TU-Sofia). He

has been awarded DSc degree in Communication networks in

2016, TU-Sofia. Since 2013, he is full professor and his

scientific research area covers mobile networks, internet

communications and protocols, and mobile applications.

Evelina Pencheva is with the Todor Kableshkov University of

Transport, Sofia. She is born in Sofia. She has received her MSc

degree in Mathematics from Sofia University “St. Kliment

Ohridski” and PhD degree in Communication networks from

TU-Sofia. She has defended her DSc thesis in 2014. Since 2010,

she is full professor and her scientific research area covers

multimedia networks, telecommunication protocols, and service

platforms.

