
A Multiple Data Collection Tree Protocol for UWSNs

Khaled Day1, Faiza Al-Salti2, Nasser Alzeidi1, and Abderezak Touzene11
1 Department of Computer Science, Sultan Qaboos University, Muscat 123, Oman
2 Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman

Email: {kday; alzidi; touzene}@squ.edu.om; f.alsalti@cccrc.gov.om

Abstract—We propose a new efficient and robust routing

protocol for underwater wireless sensor networks (UWSNs)

called the Multiple Data Collection Tree (MDCT) protocol.

MDCT proactively constructs and maintains multiple node-

disjoint shortest-path routing trees connecting the underwater

sensor nodes to onshore sink nodes. These trees provide readily

available paths for routing data packets from underwater sensor

nodes to surface sink nodes. Using multiple trees improves

reliability, reduces congestion (especially at near-root nodes),

and shortens routing paths. It also balances energy consumption

by distributing the packet-forwarding load over a larger number

of nodes. MDCT updates the trees continuously in response to

changing underwater conditions such as sensor movements (due

to underwater currents) and sensor out-of-power failures. We

prove formally the correctness and optimality of the constructed

trees. We also show how MDCT outperforms other protocols

(namely, VBF, ERGR-EMHC and DCTP) in terms of packet

delivery ratio, average end-to-end delay and energy consumption

via extensive simulation. For example, compared to VBF, MDCT

has increased the delivery ratio by over 75%, has reduced the

average end-to-end delay by nearly 60%, and has reduced the

energy consumption by 25% in some tested scenarios.

Index Terms—Underwater wireless sensor networks, routing

protocols, data collection, multiple disjoint trees, fault-tolerance.

I. INTRODUCTION

Underwater Wireless Sensor Networks (UWSNs)

enable the exploration of the underwater environment of

oceans and seas. There exist different types of

architectures for UWSNs but in general, an UWSN

consists of a set of sensor nodes deployed under the water

surface. These sensors collect different types of data and

forward it to onshore sink nodes positioned at the water

surface. The collected data may then be transferred to

remote data centers or offshore base stations for further

processing and analysis [1], [2]. UWSNs are increasingly

becoming a potential enabler in multiple application

domains including environment monitoring, exploration of

natural resources, disaster detection and early warning, and

security and military surveillance [3].

Acoustic communication is the only practical

communication medium underwater due to short

propagation ranges and high absorption of electromagnetic

waves. The use of acoustic communication however poses

multiple challenges due to high propagation delay, low

bandwidth, and high noise and path loss resulting in high

error rates [2], [4], [5]. In addition to these challenges

related to the communication medium, designs of UWSNs

should also take into consideration the harsh underwater

environment, the high cost of devices and logistics, the

unavailability of accurate positioning techniques and last

but not least the stringent energy requirements. These

challenges have attracted the attention of researchers to

address many related problems including deployment

strategies, reliable communication, routing, medium

access, localization and energy conservation [1], [6]-[13].

Routing in UWSNs over multiple hops is more efficient

than using single long hops [2], [4]. Several routing

protocols have been proposed. Vector-based routing

protocols [14] construct a virtual pipe between source and

destination for packet forwarding. The width of the virtual

pipe affects the performance of these protocols. Grid-

based routing protocols [10], [15]-[17] is another class of

protocols, which divide the area into 2D or 3D grid cells

and the routing determines the sequence of cells to traverse.

In each cell, a single node acts as a cell-head responsible

of forwarding packets across the cell. For example, in the

Efficient and Reliable Grid-based Routing by Exploiting

Minimum Hop Count (ERGR-EMHC) protocol [17], the

election of the cell-heads depends on the residual energy

of the nodes and their distances to the center of the cell.

The performance of these protocols is highly affected by

the node mobility and the density of the network. Other

protocols have emerged recently based on building a

routing tree for forwarding the collected data from sensor

nodes to a sink node [18], [19]. These tree-based protocols

are suitable for sparse deployments of sensor nodes. They

also tend to consume less energy since only one forwarder

relays a packet at each routing step. However, the use of a

single tree has the disadvantages of low fault-tolerance and

high load on near-root nodes.

We extend this class of tree-based protocols by

proposing a multiple data collection tree (MDCT) protocol

for routing collected data packets from sensor nodes to a

set of onshore sink nodes and then to an offshore base

station. MDCT builds and maintains multiple node-

disjoint shortest-path trees connecting the sensor nodes to

the onshore sink nodes. It routes each data packet to the

closest onshore sink node, which then relays it to the

offshore base station as illustrated in Fig. 1. Acoustic

signals are used for underwater communication while

radio communication can be used to relay the collected

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 90

Manuscript received June 29, 2021; revised January 14, 2022.

This work was supported by Sultan Qaboos University Grant No.

IG/SCI/COMP/19/01.

Corresponding author email: kday@squ.edu.om

doi:10.12720/jcm.17.2.90-98

data from the onshore sink nodes to the offshore base

station. MDCT is an improvement of the previously

proposed single tree based DCTP protocol [19]. MDCT

constructs and uses multiple node-disjoint trees for

forwarding packets instead of using a single tree. This

improves reliability (fault-tolerance), reduces congestion,

and shortens routing paths. It also balances energy

consumption by distributing the packet-forwarding load

over more near-root nodes. This in turn has substantial

positive impact on the delivery ratio, end-to-end delay and

energy consumption as confirmed by the obtained

simulation results. MDCT updates regularly the trees’

links adapting to changing nodes positions (due to

underwater currents) and nodes availability (due for

example to node failures).

The rest of the paper is organized as follows: Section 2

describes the proposed MDCT protocol. Section 3 presents

proofs of correctness and optimality of the constructed

trees. Section 4 presents and discusses obtained simulation

results and Section 5 concludes the paper.

II. THE MDCT PROTOCOL

The objective of the MDCT protocol is to route

efficiently the data packets generated at the sensor nodes

to the offshore base station via the onshore sink nodes.

MDCT aims to route each data packet to the nearest

onshore sink node using the least number of routing hops.

In order to attain this goal, MDCT constructs and

maintains up-to-date multiple node-disjoint shortest-path

trees rooted at the onshore sink nodes (see Fig. 1) and uses

the trees’ links for routing the generated data packets. The

MDCT protocol outlined in Fig. 2 carries out the following

two functions: (a) the construction and maintenance of the

multiple node-disjoint data collection trees; and (b) the

forwarding of data packets over these trees.

We describe in the following these two MDCT

functions making use of the notations defined in Table I.

TABLE I: NOTATIONS

BS the offshore base station

k number of onshore sink nodes

s an onshore sink node, s {1, 2, …, k}

Ts data collection tree rooted at s

n number of underwater sensor nodes

x underwater sensor node, x {1, 2, …, n}

x parent of sensor node x in its current tree Ts

 tree updating period

Lx level of node x in its current tree (root is at level 0)

Qx current sequence number at node x

BEACON

<y, Qy, Ly>

a beacon sent by y (y is BS, a sink, or a sensor node)

containing y’s sequence number Qy and its level Ly

-setx a set of alternative parent nodes for sensor node x

A. Multiple Trees Construction and Maintenance

MDCT constructs and periodically updates multiple

trees denoted Ts’s each rooted at an onshore sink node s.

Each tree-updating period (marked by a new sequence

number) is initiated by the offshore base station BS. At the

start of each period (every  seconds), BS increments its

local sequence number QBS and sends to each of the k sink

nodes a beacon packet BEACON<BS, QBS, LBS>. This

beacon packet contains the incremented QBS value as well

as the special level value LBS = -1 (indicating that BS does

not belong to any of the Ts trees). Each sink node s is

considered at level 0 (root level) in its own tree Ts. Upon

receiving this beacon packet from the base station BS, an

onshore sink node s, s {1, 2, …, k}, updates its sequence

number (i.e. sets Qs to QBS) provided that QBS is more

recent than Qs (i.e., QBS > Qs) and sends a beacon packet

BEACON<s, Qs, Ls> to all sensor nodes in its transmission

range. If, QMS ≤ Qs, then s discards the beacon packet.

Fig. 1. Multiple (node-disjoint) data collection trees

At any given time, each underwater sensor node x, x

{1, 2, …, n}, is attached to at most one Ts tree (Fig. 1).

The parent of a sensor node x in its current Ts tree is

maintained in a local variable called x. For any x, x is

initially null (initially the node is not attached to any tree).

The level of a sensor node x in its current tree Ts (number

of hops from x to the root s) is maintained in a local

variable called Lx. Each sensor node x also maintains a

local sequence number variable called Qx initialized to

zero and updated upon receiving a beacon packet. At any

given time, the value of Qx indicates the largest sequence

number that has been seen by node x so far. This

corresponds to the sequence number of the latest tree

update beacon that has propagated from BS to the node x.

Node x also maintains a variable called -setx which is a

set of sensor nodes. Each node y in -setx is such that y is

within transmission range of x, and y is one hop closer to a

sink node than x (i.e. Ly = Lx-1 for each y  -setx). This

set represents a set of alternative parent nodes all at the

same number of hops from onshore sink nodes (one hop

closer to sink nodes than node x). For load balancing, the

node x selects its parent x randomly from this set -setx

when a new alternative parent is identified.

When a node x receives a BEACON<y, Qy, Ly> beacon

packet from a node y (y could be either an onshore sink

node or another sensor node), it processes it as follows:

- Case 1: If (x = null)

This means node x is currently not attached to any tree.

In this case, it attaches itself to the tree to which the sender

y is attached. This is done by the New_Parent (y, Qy, Ly)

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 91

function, which sets x to y, Qx to Qy and Lx to Ly+1. It also

sets the set of alternative parent nodes -setx to {y}.

Offshore Base Station (BS):

➢ initialize QBS to 0

➢ set level LBS to -1

➢ every period (every  seconds)
QBS = QBS + 1

send BEACON<BS, QBS, LBS> to sink nodes

➢ when a data PACKET is received from a sink:
process PACKET

Onshore Sink Node s:

➢ initialize Qs to 0

➢ set level Ls to 0

➢ when BEACON<BS, QBS, LMS> is received from BS:
if(QBS > Qs)

Qs = QBS

send BEACON<s, Qs, Ls> to all sensor

nodes in range

➢ when a data PACKET is received from a sensor:
 send PACKET to the base station BS

Sensor Node x:

➢ initializations:
Qx = 0

x = NULL

_setx = empty

➢ when x receives a BEACON<y, Qy, Ly> from y

if x = NULL //node x has currently no parent

call New_Parent (y, Qy, Ly)

else if (Qy > Qx) //a more recent period

call New_Parent (y, Qy, Ly)

else if (Qy = Qx)

if (Ly < Lx-1) // y is closer to a sink

call New_Parent (y, Qy, Ly)

else if (Ly = Lx-1) // alternative parent

call Alternative_Parent (y, Qy, Ly)

if no beacon sent in last  seconds then
send BEACON<x,Qx,Lx> to sensors in range

➢ when x wants to send a data PACKET to a sink

if (x ≠ NULL)

send PACKET to x

else discard PACKET // cannot forward packet

➢ when x receives a data PACKET (for forwarding)

if (x ≠ NULL)

send PACKET to x

else discard PACKET // cannot forward packet

➢ function New_Parent(y, Qy, Ly) {
//set y as the new parent

x = y

Qx = Qy

Lx = Ly + 1

_setx = {y}
}

➢ function Alternative_Parent(y){
//add to alternative parents set

_setx = _setx  {y}
//select another parent from parent set for

load balancing

x = Random_Select(_setx)
}

Fig. 2. Overview of the MDCT protocol

- Case 2: If (x ≠ null) and (Qy > Qx)

This means the beacon is associated with a more recent

tree update period than previously seen by the node x. In

order to deal with the dynamic nature of the connections

between the nodes due to node mobility and node failures,

a more recent period always overrides previous periods.

Therefore, x performs the same actions as in Case 1.

- Case 3: If (x ≠ null) and (Qy = Qx) and (Ly < Lx – 1)

This means the beacon is associated with the same tree

update period as the one most recently seen by the local

node, but the level of the sender y is smaller than the level

of the current parent of the local node (which is Lx – 1).

Hence, the sender is closer to an onshore sink node than

the current parent of x is. In this case, node x performs the

same actions as in cases 1 and 2.

- Case 4: If (x ≠ null) and (Qy = Qx) and (Ly = Lx – 1)

This means the beacon is associated with the same tree

update period as the one last seen by the local node. It also

means that the level of the sender y is equal to the level of

the current parent of x (which is equal to Lx – 1). In this

case the sender y is considered as an alternative parent and

is therefore added to the set -setx of alternative parents of

node x. The parent x of x is then updated by selecting

randomly one of the nodes in -setx for load balancing.

These actions are performed by invoking the function

Alternative_Parent (y, Qy, Ly).

- Case 5: If (x ≠ null) and (Qy < Qx)

In this case, x discards the received beacon since it is

associated with an older update period than last seen by x.

After processing a received beacon, node x forwards a

beacon packet BEACON<x, Qx, Lx> to all sensor nodes in

its transmission range if it has not done so in the last 

seconds, otherwise it refrains from forwarding this beacon.

This ensures the regular updating of the trees aiming at

providing the shortest possible routing paths, without

sending too many beacons unnecessarily.

B. Forwarding of Data Packets in MDCT

The routing of data packets from sensor nodes to

onshore sink nodes uses the constructed data collection

trees. When a sensor node generates a data packet, it sends

it to its current parent node x if it is not null. If, however,

this latter is null, then it discards the data packet. Likewise,

when the node receives a data packet for forwarding. It

forwards it to its parent, which will forward it to its parent

and so on until it reaches an onshore sink node, which

forwards it to the offshore base station BS.

III. TREES’ CORRECTNESS AND OPTIMALITY

In this section, we show that the node-parent relation

established by the MDCT protocol outlined in Fig. 2

defines a set of node-disjoint directed trees each having an

onshore sink node as a sink (a vertex without outgoing

edges). This implies that MDCT routes data packets

correctly from sensor nodes to onshore sink nodes over

these trees without looping. We also show that each sensor

node is attached to the tree whose sink is the nearest

onshore sink node. We derive from this property that a data

packet is routed along a shortest path from the source

sensor node to the nearest onshore sink node.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 92

Definition 1: Let s be a sink node s {1, 2, …, k}. We

define Ts = (Vs, Es) as the directed graph given by:

Vs = {s}  {sensor x | x = s} 

{sensor x |  sensors y1, y2, …, yh such that x = y1,

 𝜋𝑦𝑖= yi+1, 1 ≤ i < h and 𝜋𝑦ℎ= s}

Es = {(x, y) such that x  Vs, y  Vs and x = y}

Notice that the set of vertices Vs of Ts consists of the

onshore sink node s and any sensor node x for which there

is a node-to-parent sequence (path) leading from x to s. The

edges of Ts represent node-to-parent links. We shall prove

that at any time, Ts is a directed tree with sink s. We first

establish the following two lemmas.

Lemma 1: For any node x at any time, if y  -setx then

(Qy > Qx) or (Qy = Qx and Ly < Lx).

Proof: We prove that for any node x, the property is

initially true and that it remains true after any modification

that affects the variables in this property assuming that the

property was true before the modification. The only

modifications that can affect the property are those that

modify: (a) -setx, (b) Qy, for any y  -setx, (c) Qx, (d) Ly,

for any y  -setx, or (e) Lx. Since -setx is initially set to

empty, the claimed property is therefore initially

vacuously true. Now we show that the property remains

true after any of the modifications (a) to (e) assuming it

was true before the modification.

(a) -setx is modified by the MDCT protocol only in the

following four situations:

(i) -setx is modified when x receives a beacon from a

node y at a time when x = null. In this case, node x

calls New_Parent(y, Qy, Ly) which sets x to y, Qx to

Qy, Lx to Ly+1 and -setx to {y}. After these settings

the property is true since Qy = Qx and Ly < Lx.

(ii) -setx is also modified when x receives a beacon

from a node y with Qy > Qx. As in the previous case

(a)-(i), in this case node x calls the function

New_Parent(y, Qy, Ly) which sets x to y, Qx to Qy,

Lx to Ly+1 and -setx to {y}. After these settings the

claimed property is true since Qy = Qx and Ly < Lx.

(iii) -setx is also modified when x receives a beacon

from a node y at a time when Qx = Qy and Ly < Lx-1.

As in case (a)(i), in this case x calls the function

New_Parent(y, Qy, Ly) which sets x to y, Qx to Qy,

Lx to Ly+1 and -setx to {y}. After these settings the

claimed property is true since Qy = Qx and Ly < Lx.

(iv) Finally, -setx is modified when x receives a beacon

from a node y at a time when Qx = Qy and Ly = Lx-1.

In this case, node x calls the function

Alternative_Parent(y, Qy, Ly) which adds y to -setx,.

Qx remains equal to Qy, and Lx remains equal to

Ly+1. After these settings, the property remains true

since for the only added node y to -setx, we have

Qy = Qx and Lx = Ly+1 (hence Ly < Lx). No other node

z in -setx is affected and hence the claimed

property (Qz > Qx) or (Qz = Qx and Lz < Lx) remains

true since it was true before the modification and

neither Qx nor Lx have been modified.

(b) For any y  -setx, Qy is only modified when node y

receives a beacon packet from a node z with Qz > Qy.

In this case, Qy is set to a higher value (namely Qz).

Since the property was true before the modification,

then we must have had either (Qy > Qx) or (Qy = Qx

and Ly < Lx) before the modification. In both cases, we

will have Qy > Qx after the modification since Qy is set

to a higher value Qz. Hence, the property remains true.

(c) Qx is only modified when node x receives a beacon

packet from a node y with Qy > Qx. In this case, Qx is

set to Qy and Lx is set to Ly+1. Therefore, after the

modification we have Qy = Qx and Ly < Lx.

(d) For any y  -setx, Ly is modified only in the following

two situations:

(i) Ly is modified when node y receives a beacon packet

from a node z with Qz > Qy. In this case, Qy is set to

a higher value (namely Qz). Therefore, we will have

Qy > Qx after these modifications for the same

reasons given in case (b). Hence, the property

remains true.

(ii) Ly is also modified when y receives a beacon from a

node z with Qz = Qy and Lz < Ly-1. In this case, Qy is

not modified and Ly is set to a smaller value Lz+1

(since Lz < Ly-1). Since Qy is not modified and Ly is

decreased, (Qy > Qx) or (Qy = Qx and Ly < Lx)

remains true, if it was true before the modification.

(e) Lx is modified only in the following two situations:

(i) Lx is modified when node x receives a beacon packet

from a node y with Qy > Qx. As in case (a)-(i), node

x calls the function New_Parent(y, Qy, Ly) which

sets x to y, Qx to Qy, Lx to Ly+1 and -setx to {y}.

After these settings the claimed property is true

since Qy = Qx and Ly < Lx.

(ii) Lx is also modified when x receives a beacon from a

node y with Qy = Qx and Ly < Lx-1. As in case (a)-

(i), node x calls the function New_Parent(y, Qy, Ly)

which sets x to y, Qx to Qy, Lx to Ly+1 and -setx to

{y}. After these settings the claimed property is true

since Qy = Qx and Ly < Lx.

Hence, the claimed property remains true after any of

the modifications (a) to (e). QED

Lemma 2: For any sensor x at any time, if x = y, then

(Qy > Qx) or (Qy = Qx and Ly < Lx).

Proof: For any sensor node x, x is initially null and

hence the claimed property is initially vacuously true.

Subsequently, x is only modified when node x invokes

New_Parent() or Alternative_Parent(). From Fig. 2, one

can easily verify that after executing any of these two

functions, we have x  -setx. Therefore, based on

Lemma 1, the claimed property is satisfied. QED

Proposition 1: For any sink node s {1, 2,…, k}, Ts is a

directed tree with sink s (hence for any node x in Ts, there

exists a directed path from x to s).

Proof: For any sink node s {1, 2, …, k}, let Rs be the

binary relation on the set Vs defined as follows: x Rs y if,

and only if, (Qy > Qx) or (Qy = Qx and Ly < Lx). We prove

that Rs is a strict partial order on the set Vs and then derive

from this property that Ts is acyclic. To prove that Rs is a

strict partial order, we have to show that (a) Rs is irreflexive,

(b) Rs is transitive, and (c) Rs is asymmetric.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 93

(a) Rs is irreflexive: Assume x Rs y for some nodes x and

y in Vs. Then (Qy > Qx) or (Qy = Qx and Ly < Lx).

Therefore, x ≠ y. Hence, Rs is irreflexive.

(b) Rs is transitive: Assume x Rs y and y Rs z for some

nodes x, y and z in Vs. Since x Rs y, then (Qy > Qx) or

(Qy = Qx and Ly < Lx). Since also y Rs z, then (Qz > Qy)

or (Qz = Qy and Lz < Ly). There are four cases:

(i) If (Qy > Qx) and (Qz > Qy), then Qz > Qx and hence

x Rs z.

(ii) If (Qy > Qx) and (Qz = Qy and Lz < Ly), then Qz > Qx

and hence x Rs z.

(iii) If (Qy = Qx and Ly < Lx) and (Qz > Qy), then Qz > Qx

and hence x Rs z.

(iv) If (Qy=Qx and Ly<Lx) and (Qz=Qy and Lz<Ly), then

(Qz=Qx and Lz<Lx) hence x Rs z.

Therefore, x Rs z in all cases. Hence, Rs is transitive.

(c) Rs is asymmetric: Assume x Rs y for x and y in Vs. Then

(Qy > Qx) or (Qy = Qx and Ly < Lx). If Qy > Qx then

neither Qx > Qy is true nor Qx = Qy is true. Therefore,

y Rs x is not true. If (Qy = Qx and Ly < Lx) then neither

Qx > Qy is true nor Lx < Ly is true and therefore, y Rs x

is not true in this case too. Hence, Rs is asymmetric.

Therefore, Rs is a strict partial order on Vs. Furthermore,

by Definition 1, for any edge (x, y) in Es, we have x = y

and hence by Lemma 2, x Rs y. Therefore, Ts cannot

possibly contain any cycles. Therefore, Ts is a directed

acyclic graph (DAG). In addition, by Definition 1, for any

node x in Vs, either x is s or there exists a directed path in

Ts from x to s. Therefore, Ts is connected. Since Ts is

connected and is acyclic, then Ts is a tree. Since in addition

s has no outgoing edge in Ts, we conclude that Ts is a

directed tree with sink s. QED

Proposition 2: For any two distinct sink nodes s1 and s2,

𝑇𝑠1 and 𝑇𝑠2 are node-disjoint.

Proof: Assume there exists a common node x to 𝑇𝑠1 and

𝑇𝑠2. Since s1 does not belong to 𝑇𝑠2 and s2 does not belong

to 𝑇𝑠1, we must have x ≠ s1 and x ≠ s2. So, x can only be a

common sensor node in 𝑇𝑠1 and 𝑇𝑠2. Since x is in 𝑇𝑠1, there

must exist a directed path (x → y1 → y2 → … → yh → s1)

from x to s1 in 𝑇𝑠1. Similarly, since x is in 𝑇𝑠2, there must

exist a directed path (x → z1 → z2 → … → zl → s2) from

x to s2 in 𝑇𝑠2. Let m be the smallest integer such that ym ≠

zm (m must exist since s1 ≠ s2). If m = 1, then y1 ≠ z1 and x

= y1 and x = z1 which is not possible since x has a unique

parent x at any given time. If, m > 1, then we have ym-1 =

zm-1 and ym ≠ zm. Therefore, we must have 𝜋𝑦𝑚−1
= ym and

𝜋𝑦𝑚−1
= zm which is also not possible since ym-1 has a

unique parent 𝜋𝑦𝑚−1
 at any given time. We conclude by

contradiction that 𝑇𝑠1 and 𝑇𝑠2 have no common nodes.

Hence, they are node-disjoint. QED

Now we show that after BS issues an update beacon, the

updated trees will converge to shortest-path trees if any

connected nodes (within transmission range of each other)

remain connected during the time needed for the update to

propagate to all reachable nodes.

Definition 2: At any given time t, any sink node s, and

any sensor node x, let 𝛿𝑥
𝑠(𝑡) denote the minimum number

of hops from x to s.

We assume in the following proposition, that the time

needed to process a beacon by any node and the time

needed to transmit a beacon from a node to another node

in its transmission range are both negligible compared to

the length  of the updating period. We assume  is large

enough for this assumption to be acceptable.

Proposition 3: Assume a sink node s has become the

closest sink node to a sensor node x at time t. Therefore, x

will be attached to the tree Ts by time 𝑡 + 𝛿𝑥
𝑠(𝑡)𝜏, provided

that any connected nodes (within transmission range of

each other) remain so during the period [t, t + 𝛿𝑥
𝑠(𝑡)𝜏].

Proof: Let x be any sensor node. Assume that at some

time t, a sink node s has become the sink node that requires

the least number of hops h to reach from x. Let x → y1 →

y2 → … → yh-1 → s be these h hops starting at node x going

through sensor nodes y1, y2, …, yh-1 in the first h-1 hops

and ending at the sink node s in the last hop. We therefore

have, 𝛿𝑥
𝑠(𝑡) = h. By the optimal sub-structure property of

the shortest path, sink node s must also be the closest sink

node to each yi, 1 ≤ i ≤ h-1. The offshore base station BS

issues a beacon packet every  seconds. Hence, BS issues

at least one beacon packet during the time interval [t, t + ].

Furthermore, every onshore sink node (including s)

forwards immediately the beacon packet received from BS

to all sensor nodes in its transmission range. Therefore, the

node yh-1 receives a beacon from s and attaches itself to Ts

(sets s as parent) by time t+ (since by the optimal sub-

structure property, s is also the closest sink to yh-1). The

sensor node yh-2 receives a beacon from yh-1 and attaches

itself to Ts (sets yh-1 as its parent) by time t+2. This

continues until node y1 receives a beacon from y2 and

attaches itself to Ts (sets y2 as its parent) by time t+(h-1)

and then finally sensor node x receives a beacon from y1

and attaches itself to Ts (sets y1 as its parent) by time t + h

which is equal to 𝑡 + 𝛿𝑥
𝑠(𝑡)𝜏. QED

IV. SIMULATION-BASED PERFORMANCE EVALUATION

We have simulated the MDCT protocol using the Aqua-

Sim simulator [21] which is an NS2 [22] based simulator.

We have also implemented three other protocols, namely

VBF [14], ERGR-EMHC [17] and DCTP [19], in Aqua-

Sim in order to compare their performance with MDCT’s

performance. The VBF protocol is selected because it is

one of the most widely cited and used in comparison with

other routing protocols for UWSNs. The ERGR-EMHC is

selected because it is one of the recent routing protocols

and DCTP is selected as it is the predecessor of the MDCT

protocol.

The size of the simulated underwater area is set to

(3×3×3) km3. The transmission range of the nodes is set to

0.8 km. The transmission, reception and idle powers are

set to 8.0 W, 0.80 W and 0.008 W, respectively. The bit

error rate is set to 10e-9. The sensor nodes are initially

deployed randomly in the 3D simulation area with possible

movement with water currents. Sink nodes are deployed at

the surface using the Multiple Sinks Placement (MSP)

scheme proposed in [20] to minimize the number of hops

between each sensor node and its nearest sink node.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 94

The CSMA-based MAC protocol [14], [17], [23], [24]

is used. Each simulation experiment runs for 2000 seconds.

The selected source nodes inject data packets according to

a random exponential distribution. We obtain the average

of 25 batch runs and error bars (with 95% confidence).

Table II lists the remaining simulation settings.

TABLE II: SIMULATION SETTINGS

Parameter Value

number of sink nodes 1 or 3

number of nodes 54, 162, 270

initial energy 300 J

data packet size 150 Bytes

traffic injection rate 0.08 packets/sec

sink beacon period (DCTP, MDCT) R/max speed

sensor beacon period (DCTP) 2 * sink beacon period

maximum speed (0.1, 0.5, 1.0, 1.5) m/sec

sending Probability 0.3, 0.5, 0.7, 0.9

pipe width (VBF) 400 m

energy threshold (ERGR-EMHC) 10 J

β (ERGR-EMHC) 0.9

iPeriod (ERGR-EMHC) 50 sec

update period (ERGR-EMHC) 500 sec

new election period (ERGR-EMHC) 400 sec

We have used the following performance measures:

- Packet Delivery Ratio (PDR): the number of

successfully delivered data packets divided by the total

number of generated data packets.

- Average End-to-End Delay: the average time that takes

a successfully delivered data packet to propagate from

the source sensor node to a sink node.

- Energy Consumption: total energy consumed by all

sensor nodes in transmission, reception and idle modes.

We have conducted three sets of experiments to

measure the effect on the above three metrics of the

number of sensor nodes, the traffic load (packet generation

probability) and the maximum node mobility speed.

A. Effect of the Number of Sensor Nodes

In this set of experiments, we have fixed the sending

probability to 0.3 (i.e., 30% of the nodes generate traffic)

and the maximum node mobility speed to 0.1 m/s.

Fig. 3. PDR vs. the number of nodes

Fig. 3 shows the effect of the number of nodes on the

packet delivery ratio (PDR). MDCT has achieved the

highest PDR in all tested scenarios. For example with 162

sensor nodes, the four protocols MDCT, DCTP, VBF and

ERGR-EMHC have delivered successfully 82%, 66%, 37%

and 7% of the generated data packets, respectively.

Fig. 4 shows the effect of varying the number of nodes

on the end-to-end delay. The average end-to-end delay of

both VBF and ERGR-EMHC increases with the increase

in the number of sensor nodes while it decreases for DCTP

and MDCT. This can be justified by the use of a single

forwarding node at each hop in both DCTP and MDCT,

which is not the case in ERGR-EMHC and VBF.

Fig. 4. Average end-to-end delay vs. the number of nodes

With 162 sensor nodes, MDCT has delivered packets

faster by 10%, 38%, and 52% than DCTP, ERGR-EMHC

and VBF, respectively.

Fig. 5. Energy consumption vs. the number of nodes

Fig. 5 shows that ERGR-EMHC consumes less energy

with less nodes compared to the other protocols. However,

as the number of nodes increases, DCTP and MDCT

outperform both VBF and ERGR-EMHC. This is due to

the smaller number of routing hops and the use of a single

forwarder in DCTP and in MDCT. Increasing the number

of nodes from 54 to 270, has caused an increase in energy

consumption by 68%, 69%, 95% and 83%, in MDCT,

DCTP, ERGR-EMHC and VBP respectively.

B. Effect of the Traffic Load

In this set of experiments, we have used 162 randomly

deployed sensor nodes with a maximum mobility speed of

0.1 m/s. We Vary the traffic load by varying the sending

probability (the probability of sending a generated data

packet).

Fig. 6 shows that overall, PDR decreases when

increasing the sending probability due to the increase in

the number of generated data packets in the network.

However, MDCT is superior in delivering data packets

compared to DCTP, VBF and ERGR-EMHC. For example,

when the sending probability is set to 0.9, MDCT

outperforms DCTP, VBF and ERGR-EMHC in delivering

data packets by nearly 41%, 60% and 88%, respectively.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 95

Fig. 6. PDR vs. the traffic load

Fig. 6 also shows how the use of multiple trees in

MDCT has reduced congestion and hence increased PDR

compared to using a single tree in DCTP.

Fig. 7. Average end-to-end delay vs. the traffic load

Fig. 7 shows that for all protocols, varying the sending

probability in the range from 0.3 to 0.9 has little effect on

the average end-to-end delay. However, MDCT is the

fastest in delivering data packets compared to the other

protocols. When the sending probability is set to 0.9,

MDCT has delivered packets 12%, 52% and 42% faster

than DCTP, VBF and ERGR-EMHC, respectively.

Fig. 8. Energy consumption vs. the traffic load

Fig. 8 shows that increasing the sending probability in

the range 0.3 to 0.9 has little effect on the energy

consumption of ERGR-EMHC outperforming the other

protocols, which consume more energy as the sending

probability increases. MDCT consumes less energy than

VBF (around 7% saving for a sending probability of 0.9).

C. Effect of the Nodes’ Mobility

In this set of experiments, the number of sensor nodes is

set to 162 with sending probability of 0.3.

Fig. 9 shows that MDCT outperforms the other

protocols in terms of PDR for the different node speeds.

For instance, when the maximum speed is set to 1m/s,

MDCT delivers more data packets than DCTP, VBF and

ERGR-EMHC by 15%, 25% and 197%, respectively.

Fig. 9. PDR vs. maximum node speed

Fig. 10. Average end-to-end delay vs. maximum node speed

Fig. 10 shows the effect of mobility on the delay. Here

also MDCT yields the best results compared to the other

protocols. For example, with a maximum speed of 1m/s,

MDCT delivers data packets faster that DCTP, VBF and

ERGR-EMHC by 19%, 60% and 80%, respectively.

Fig. 11. Energy consumption vs. maximum node speed

Fig. 11 shows the effect of mobility on energy

consumption. VBF is the worst in energy consumption

while the other three protocols are comparable with a small

advantage for ERGR-EMHC over DCTP and MDCT.

Notice from Fig. 9, Fig. 10 and Fig. 11 that overall,

increasing the nodes’ mobility speed between 0.5m/s and

1.5m/s has a little effect on the performance of MDCT.

This is because MDCT updates the node-to-parent links in

the trees when nodes move around selecting each time the

best (nearest to a sink) node as a parent for each node.

V. CONCLUSION

The proposed MDCT protocol builds and uses multiple

disjoint trees for routing collected data packets from

underwater sensor nodes to surface sink nodes. Using

multiple trees improves reliability, reduces congestion,

and shortens routing paths as compared to using a single

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 96

tree. It also balances energy consumption by distributing

the traffic load over a larger number of sensor nodes. We

presented formal proofs of correctness and optimality of

the constructed disjoint trees. Simulation results have

shown that MDCT outperforms substantially other

protocols with respect to delivery ratio, end-to-end delay

and energy consumption. For example, compared to VBF,

MDCT has increased the delivery ratio by 77%, has

reduced the average end-to-end delay by 59%, and has

reduced the energy consumption by 25% in some tested

scenarios. The three features of MDCT: (a) using multiple

trees instead of a single tree, (b) involving only one

forwarding node at each routing step, and (c) updating

regularly the trees in response to underwater changing

conditions (such as sensor movements with water currents

and sensor power failures) with low tree updating cost,

have contributed to MDCT’s good performance.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors contributed to the discussion of the design

of the proposed protocol, reviewing and analyzing the

simulation results and writing different sections of the

paper; Dr. Faiza Al-Salti conducted the simulation work;

all authors reviewed and approved the final version.

REFERENCES

[1] G. Han, C. Zhang, L. Shu, N. Sun, and Q. Li, “A survey on

deployment algorithms in underwater acoustic sensor

networks,” Int. J. of Dist. Sensor Networks, pp. 1–11, 2013.

[2] I. Akyildiz, D. Pompili, and T. Melodia, “Underwater

acoustic sensor networks: Research challenges,” Ad Hoc

Networks, vol. 3, no. 3, pp. 257–279, 2005.

[3] S. Q. M. Murad, A. A. Sheikh, M. A. Manzoor, and E.

Felemban, “A survey on current underwater acoustic sensor

network applications,” Int. J. Computer Theory and

Engineering, vol. 7, pp. 51–56, 2015.

[4] Z. Jiang, “Underwater acoustic networks – issues and

solutions,” International Journal of Intelligent Control and

Systems, vol. 13, no. 3, pp. 152–161, 2008.

[5] L. Lanbo, Z. Shengli, and C. Jun-Hong, “Prospects and

problems of wireless communication for underwater sensor

networks,” Wireless Comm. & Mobile Comp., vol. 8, no. 8,

pp. 977–994, 2008.

[6] B. S. Halakarnimath and A. V. Sutagundar, “Reinforcement

learning-based routing in underwater acoustic sensor

networks,” Wireless Personal Communications, vol. 120,

pp. 419–446, 2021.

[7] R. W. L. Coutinho, A. Boukerche, L. F. M. Vieira, A. A. F.

Loureiro, “A survey of routing protocols for underwater

wireless sensor networks,” IEEE Communications Surveys

& Tutorials, vol. 23, no. 1, pp. 137–160, 2021.

[8] H. Khan, S. A. Hassan, and H. Jung, “On underwater

wireless sensor networks routing protocols: A review,”

IEEE Sensors J., vol. 20, no. 18, pp. 10371-10386, 2020.

[9] M. Li, X. Du, X. Liu, and C. Li, “Shortest path routing

protocol based on the vertical angle for underwater acoustic

networks,” J. of Sensors, vol. 2019, no. 4, 2019.

[10] F. A. Salti, N. Alzeidi, and B. Arafeh, “EMGGR: An

energy-efficient multipath grid-based geographic routing

protocol for underwater wireless sensor networks,” Wireless

Networks, vol. 23, no. 4, pp. 1301-1314, 2017.

[11] K. Chen, M. Ma, E. Cheng, F. Yuan, and W. Su, “A survey

on MAC protocols for UWSNs,” IEEE Comm. Surveys &

Tut., vol. 16, no. 3, pp. 1433-1447, 2014.

[12] G. Han, C. Zhang, L. Shu, and J. Rodrigues, “Impacts of

deployment strategies on localization performance in

underwater acoustic sensor networks,” IEEE Trans. on

Industrial Electronics, vol. 62, no. 3, pp. 1725–1733, 2015.

[13] M. Boulaiche and L. B. Medjkoune, “EGGR: Energy-aware

and delivery guarantee geographic routing protocol,”

Wireless Net., vol. 21, no. 6, pp. 1765–1774, 2015.

[14] P. Xie, J. H. Cui, and L. Lao, “VBF: Vector-based

forwarding protocol for underwater sensor networks,” in

Proc. of IFIP Net.’06, vol. 3976, 2006, pp. 1216–1221.

[15] F. Al-Salti, N. Alzeidi, K. Day, B. Arafeh, and A. Touzene,

“Grid based priority routing protocol for UWSNs,” Int. J.

Comput. Networks Commun., vol. 9, no. 6, pp. 1–20, 2017.

[16] K. Wang, H. Gao, X. Xu, J. Jiang, and D. Yue, “An energy-

efficient reliable data transmission scheme for complex

environmental monitoring in underwater acoustic sensor

net.,” IEEE Sens. J., vol. 16, no. 11, pp. 4051–4062, 2016.

[17] F. Al-Salti, N. Alzeidi, K. Day, and A. Touzene, “An

efficient and reliable grid-based routing protocol for

UWSNs by exploiting minimum hop count,” Computer

Networks, vol. 162, 2019.

[18] K. Day, H. Al-Moqbali, N. Alzeidi, and A. Touzene, “TBR:

Tree-based routing over a 3D grid for underwater wireless

sensor networks,” Jocm, vol. 12, no. 10, pp. 579–584, 2017.

[19] K. Day, F. Al-Salti, A. Touzene, and N. Alzeidi, “An

efficient data collection protocol for UWSNs,” Int. J. of

Comp. Networks and Comm., vol. 12, no. 5, pp. 1-15, 2020.

[20] F. Al-Salti, K. Day, N. Alzeidi, and A. Touzene, “Multiple

sink placement strategy for underwater wireless sensor

networks,” in Proc. Int’l Symp. on Networks, Computers

and Comm., IEEE ISNCC, Rome, 2018, pp. 1-6.

[21] P. Xie, et al., “Aqua-Sim: An NS-2 based simulator for

underwater sensor networks,” in Proc. MTS/IEEE Biloxi -

Marine Technology for Our Future: Global and Local

Challenges (OCEANS 2009), 2009, pp. 1–7.

[22] T. Issariyakul, E. Hossain, T. Issariyakul, and E. Hossain,

“Introduction to network simulator 2 (NS2),” in Intro. to

Network Simulator NS2, Springer US, 2012, pp. 21–40.

[23] N. Nicolaou, A. See, and P. Xie, “Improving the robustness

of location-based routing for underwater sensor networks,”

Proceedings of the OCEANS 2007 - Europe, IEEE, UK,

June 2007, pp. 1–6.

[24] P. Xie, Z. Zhou, Z. Peng, J.-H. Cui, and Z. Shi, “Void

avoidance in three-dimensional mobile underwater sensor

networks,” in Wireless Algorithms, Systems, and

Applications, Springer, 2009, pp. 305–314.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 97

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC

BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is properly

cited, the use is non-commercial and no modifications or

adaptations are made.

Khaled Day completed his undergraduate

studies in Tunisia in 1986. He received

the MSc and PhD degrees from the

University of Minnesota (USA) in 1989

and 1992, respectively. He is currently

Professor at the Department of Computer

Science at Sultan Qaboos University. His

research interests are in the areas of

parallel and distributed computing and networks. He is a senior

member of IEEE.

Faiza Al-Salti received the BSc, MSc and

PhD degrees in computer science from

Sultan Qaboos University in 2012, 2015

and 2019, respectively. She worked as a

Lecturer at the University of Technology

and Applied Sciences, Oman, and then

joined in 2021 the Sultan Qaboos

Comprehensive Cancer Care and

Research Center. Her research interests include communication

protocols and terrestrial and underwater wireless sensor networks.

Nasser Alzeidi received his PhD degree

in computer science from the University

of Glasgow (UK) in 2007. He is currently

an Associate Professor of computer

science and the Director of the Center for

Information Systems at Sultan Qaboos

University. His research interests include

performance evaluation of

communication systems, wireless networks, interconnection

networks, System on Chip architectures and parallel and

distributed computing. He is a member of the IEEE.

Abderezak Touzene received his BS

from the University of Algiers in 1987,

the M.Sc. degree from Orsay Paris-Sud

University in 1988 and the PhD degree

from the Institute Polytechnique de

Grenoble (France) in 1992. He is

Professor at the Department of Computer

Science at Sultan Qaboos University. His

research interests include Cloud Computing, Parallel and

Distributed Computing, Wireless and Mobile Networks,

Network on Ship (NoC), Cryptography and Network Security,

Interconnection Networks, Performance Evaluation, Numerical

Methods. He is a member of the IEEE.

Journal of Communications Vol. 17, No. 2, February 2022

©2022 Journal of Communications 98

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

