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Abstract—Wireless Sensor Network (WSN) architectures are 

widely used in a variety of practical applications. In most cases 

of application, the event information transmitted by a sensor 

node via the network has no significance without the knowledge 

of its accurate geographical localization. In this paper, a method 

based on Machine Learning Technique (MLT) is proposed to 

improve node accuracy localization in WSN. We propose a 

Single Hidden Layer Extreme Learning Machine (SHL-ELM) 

and a Two Hidden Layer Extreme Learning Machine (THL-

ELM) based methods for nodes localization in WSN. The 

suggested methods are applied in different Multi-hop WSN 

deployment cases. We focused on range-free localization 

algorithm in isotropic case and irregular environments. 

Simulation  results  demonstrate that the  proposed  THL-

ELM  algorithm greatly  minimizes  the  average  

localization errors  when compared  to the Single Hidden 

Layer Extreme Learning Machine and the Distance  Vector  

Hop (DV- Hop) algorithm. 
 

Index Terms—Wireless sensors network, range free, 

localization, deep extreme learning machine. 

I. INTRODUCTION 

In recent years, Wireless Sensor Networks (WSNs) 

have grown considerably therefore attracting researchers 

and industrials. A WSN consists of a high number of 

small radio frequency sensor devices, generally 

characterized by limited communication capability and 

strict energy constraint. Each device (sensor node) 

acquires data from its sensing environment and 

communicates the obtained information through the 

network infrastructure. The knowledge of both, the 

collected information and the geographical localization of 

the sensor node is very important for many applications. 

Tracking, supervision and security IoT (Internet of 

Things) application can be a typical example [1]. In the 

literature, many research works have focused on the 

geographical localization problem in WSN.  In recent 

works, a particular interest has been given to Machine 

Learning Techniques (MLT) application in this field. 

MLT such as Artificial Neural Network (ANN) [2]-[4]. 

Support Vector Machine (SVM) [5], [6], Deep Learning 
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approach [7], and statistical models [8] are used in 

different domains for classification, density estimation or 

process modelling. Indeed, the machine learning 

technique permits to generate a parametric model in order 

to predict process behaviour. ANN paradigm can be 

effortlessly used for this modelling task. This technique 

was used in many research works, [9]-[12], for different 

localization techniques  (range-based and range-free) and 

for different WSN topologies  (isotropic and anisotropic. 

In the range-based techniques, usually used in the case of 

large scale applications, the sensor nodes localization 

ANN inputs (Fig. 1 and the Fig. 2 ) are composed of 

physical characteristics of the received signals such as the 

RSSI (Received Signal Strength Indication), ToA (Time 

of Arrival), the TDoA (Time Difference of Arrival) or the 

AoA (Angle of Arrival) [13]-[16]. In this case, the more 

expensive the measuring hardware is, the better the 

localization accuracy is. In range-free techniques, the 

sensor node localization is based on connectivity and 

minimum hop counts.  This permits to avoid the use of a 

high number of signals and expensive measurement 

devices. For this technique, the positions of a limited 

number of nodes called Anchors must be known.  The 

remaining nodes (with unknown position) are to be 

localized. These nodes are called normal nodes. Based on 

network connectivity information and anchors’ positions, 

normal nodes localization could be estimated without 

additional hardware to measure and evaluate the distance 

between whole nodes. This method could be adapted to 

any type of isotropic wireless network and ensures 

acceptable accuracy. In this work we suggest novel 

localization algorithms based on Extreme Learning 

Machine (ELM). They consist of Two-Hidden-Layers 

(THL) ELM algorithms. The new variants of the ELM 

represent a new way to treat the WSN localization based 

on Range-Free technique. The proposed algorithms will 

be experimented for different scenarios in isotropic 

environments to show the effectiveness of the proposed 

method.  The rest of the paper is organized as follows. In 

section 2, we recall a set of works treating the localization 

problem in WSN. Section 3 and 4 are dedicated 

respectively to the presentation of the single hidden layer 

ELM and the two hidden layer ELM applications for the 

localization task. Simulation results will be presented and 
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analysed to compare the performance of the proposed 

ELM architectures in section 5. Finally, conclusions are 

drawn in Section 6. 

 

Fig. 1. (a) Isotropic WSN deployment (without obstacles), (b) 

Anisotropic WSN deployment (with obstacles) 

 

Fig. 2. Range based Deep-ANN localization modes 

II. RELATED WORK 

In the last decades, based on smart computing and 

machine learning, some approaches have been carried out 

such as ANN, SVM, ELM (Extreme Learning Machine) 

and Deep Learning to solve the localization problem in 

the wireless networks. Indeed, Zheng et al. proposed an 

Enhanced Mass-Spring Optimization (EMSO) method to 

develop different range-free algorithms. These algorithms 

are based on single ANN or a set of ANNs with different 

architectures to estimate the position of the unknown 

normal nodes by using the neighboring anchors positions 

and the hop-counts information [2]. As expected, the set 

of ANNs localizer gave better performance than a single 

ANN localizer. Tran et al. proposed a range-free 

localization algorithm based on a modified SVM method 

(LSVM or Location SVM). The localization task is then 

treated as a classification problem where a set of clusters 

(sets of unknown normal nodes) is defined in order to 

estimate the unknown nodes positions [5]. LSVM uses 

the correspondence between anchors coordinates and hop 

count distances as a set of training data in the learning 

process.  The case of two-dimensional spaces was treated 

in this paper (X, Y). The classification process (LSVM) is 

built following the sets of classes (X-Classes and Y-

Classes), and each localized node is assigned to the pair 

(X-Classes, Y-Classes). In the same work, the authors 

proposed a modified version of mass-spring optimization 

to improve the location estimation with LSVM. Javadi et 

al. exploited the SVM and the Twin-SVM learning 

algorithms in WSNs for sources (normal nodes) 

localization. First, the authors considered that the WSN 

detects the region of the expected event to be localized 

and using the distributed learning algorithm, the centroid 

of the event proximity nodes is computed. The average of 

the nodes positions in the event region is then considered 

as the position of the event to be located [17], Chatterjee 

et al. proposed the exploitation of the supervised 

feedforward neural-network as a localization classifier in 

the case of a 2-D sensor net- work  (X-Classes and Y-

Classes). The feedforward neural network uses the multi-

hop connectivity information and anchors positions of a 

large number of sensor nodes.  This work is based on 

conjugate gradient algorithm for training the multilayered 

feedforward neural network. In this paper, it has been 

verified that the ANN-based localizer has better accuracy 

than the LSVM [18], [19]. Cottone et al. address the 

localization problem, exploiting knowledge acquired in 

different environment samples and extensible.  

Localization problem is transformed into learning 

problem solved by a statistical algorithm. Additionally, 

based on connectivity information, the SVM auto-tuning 

parameters are formulated as an optimization problem [8]. 

Zheng et al. exploited the Regularized Extreme Learning 

Machine (RELM) for the large-scale multi-hop 

localization problem in WSNs and proposed a Multi 

Scale RELM (ML-RELM). The proposed algorithm 

consists of three steps:  acquiring data   for the learning 

process via the equivalence between hop count and 

physical distances, modeling the distances between 

known and unknown nodes using the RELM, and the 

localization process is given by the Trilateration or the 

Multilateration procedure [4]. Many metaheuristics like 

GA and PSO have been applied for WSN localization 

problem [20], [21]. Phoemphon et al. presented a 

cooperative localization models (fuzzy weighted centroid 

results and ELM model) optimized by the Particle Swarm 

Optimization (PSO) metaheuristics for WSNs localization. 

The ratios of known nodes to the total known nodes and 

of the sensing coverage range to the maximum coverage 

range were used as adaptive weights for this combined 

process. To improve the efficiency of such hybrid model, 

the concept of resultant force vectors was applied via the 

PSO to minimize the effects of irregular deployments 

[20].  

III. SINGLE HIDDEN LAYER LOCALIZATION PROCESS 

Due to its simple principle, random projection concept 

has recently gained a lot of popularity, especially in the 

area of ANN. The well-known feedforward ANN method 

is the Extreme Learning Machine (ELM), which is based 

on random projection and direct calculation of the output 

layer. In fact, ELM process has become a popular 

supervised training algorithm due to its simple structure 

(single hidden layer and single linear output layer) and its 

fast computational process.  Initially, proposed by Huang 

et al. the main idea of the ELM is presented by the 

exploitation of the Single Layer Feedforward Networks 

(SLFNs). It consists of generating randomly the input 

weights and the hidden bias, and calculating analytically 
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the output weights using the least-square method [22]-

[24]. Indeed, the ELM facilitates the SLFNs 

implementation and allows a significant training time 

reduction. Many variants of the ELM have been proposed 

to improve the efficiency of this learning algorithm [25], 

[26]. 

A. Single Hidden Layer ELM Structure for WSN 

Localization 

In WSN, intuitively the minimum hop count between 

sensors nodes and the anchors nodes and the 

corresponding physical distance (geographical locations) 

are correlated. Using the ELM model, this correlation 

could be exploited for estimating the locations of the 

unknown nodes in the WSN . 

The principle of minimum hop count is given by the 

process. Let us consider an anchor i and an unknown 

node j. Anchor i and node j could be linked using 

different paths (sets of intermediate nodes). The unknown 

node (j) receives information of the (i) anchors position 

(xi,yi) and hop count of the whole paths (starting from the  

anchor  i).  The minimum hops count is then selected and 

defined as hopi,j. A table gathers the minimum hops 

counts between the whole anchors and unknown nodes. 

Table I. gives an example of Hop-count between 4 anchor 

nodes and 9 unknown nodes. The Fig. 3 gives the ELM 

structure for WSN localization in range free cases. 

 

 
Fig. 3. The based hops single ELM localization model 

TABLE I: CORRESPONDENCE BETWEEN HOP COUNT AND XY POSITION  

 A1 A2 A3 A4  

 

 

 

 

ELM 

>>> 

 X Y 

N1 1 4 3 4 N1 x1 y1 

N2 2 3 3 4 N2 x2 y2 

N3 3 4 3 3 N3 x3 y3 

N4 3 2 4 4 N4 x4 y4 

N5 4 2 4 3 N5 x5 y5 

N6 3 3 2 2 N6 x6 y6 

N7 4 4 3 1 N7 x7 y7 

N8 4 4 2 2 N8 x8 y8 

N9 5 5 1 3 N9 x9 y9 

B. Single Hidden Layer ELM  Training and 

Eexploitation Phases for WSN Localization 

The ELM based WSN localization model will estimate 

the geographical location of a target node via the 

minimum hops counts between unknown nodes and 

anchors nodes. In this case, for one unknown j the ELM 

input vector is: 

 

M being the number of anchors and hopi,j  denotes the 

training hops count data between anchors i and unknown 

node j. The ELM output denotes the location (x,y) of the 

unknown nodes.

  Let us suppose that the number of the normal nodes is 

N. The xi and yi coordinates of these nodes are supposed 

to be known (training data), we can write: 

                  XYHβ                       (1)
 

with: 

 

 

 

 
1,1 1,2 1 1

,1 ,2

β , and

z z N N

x y

XY
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 
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β

 

is the solution of the optimization problem:    

           
 2

XYHβ
β

Minimize
                 (2) 

Using the Least Square Estimator (LSE), the solution 

of this optimization problem is given by: 

                    
†  XYβ H                          (3)

 

where XY is the target vector and †
H is the Moore 

Penrose generalized inverse of matrix H. The calculation 

of the MP-inverse matrix is given by: 

                   
? T TH (H H) H                       (4) 

In the case of a singular matrix HH
T, we can introduce 

the regularization factor C to calculateβ . The regularized 

pseudo-inverse of matrix H becomes: 

              

? 1T TId
C

  H (H H ) H
               (5)

 

where: Id represents the (z × z) identity matrix. 

IV. THE TWO HIDDEN LAYER ELM LOCALIZATION 

PROCESS 

Geographical localization of unknown position nodes 

is performed following two steps: based on the minimum 

hop count between the sensor nodes and the anchors, the 

first step (first hidden layer) consists of estimating the 

distances between each unknown node and the whole 

anchors. The second step (second hidden layer), whose 

input is the estimated distances, aims to estimate the 

geographical localization of each unknown position node.  
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A. Two Hidden Layer ELM Structure for WSN 

Localization  

For training phase, inputs and outputs of the first 

hidden layer are the supervised information HOP counts 

and the Euclidean distances (DIST) between unknown 

nodes to the anchors, respectively. Once parameters 

matrix of the first hidden layer β1 is identified using ELM, 

then estimated distances (Dist) using the first hidden 

layer could be calculated. In order to identify β2 using 

ELM, the estimated distances (Dist) and the XY   

information become the inputs and the outputs of the 

second hidden layer, respectively.  The flowchart and the 

THL-ELM structure of the proposed two hidden layers 

ELM for localization process are given by Fig. 4, and Fig. 

5, respectively. 

 
Fig. 4.  The flowchart of the Two hidden layers ELM 

 

were H1=g(Inputs,W,B); H2= g(H1, β1) ; Outputs= H2 β2 

B. The Two Hidden Layer ELM Interpretation 

The first hidden layer interpretation gives: 

                   1 1 DISTH β
                            (6)

 

where: 
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β

 

Then:  

           
1

1 1 1 1 DISTT T β (H H ) H                           (7)
 

The second hidden layer interpretation gives: 

            1 1Dist  H β
                                       (8) 
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Finally, during the training localization phase, we 

consider the static WSN here we assume that the nodes 

positions do not change.  The two hidden layers ELM 

algorithm constructs a model based on the training 

database. The number of hidden neurons, input weights 

matrices and bias vectors are then defined. After that, the 

weights matrix between the two hidden layers and the 

output weights is calculated by the two hidden layer ELM 

localization algorithm.  

V. SIMULATION RESULTS AND COMPARAISON 

This section is dedicated to evaluate the performance 

of our proposed two hidden layer ELM algorithm. 

Original DV-Hop algorithm, single hidden layer ELM 

localization algorithm and our proposed two hidden 

layers are compared in the isotropic cases with the same 

simulation conditions.  We used Matlab-R2018a for ELM 

implementation and simulation. We performed 100 times 

randomly deployment scenarios, and we calculated the 

average values of these scenarios.  In all simulation   

cases, the unknown nodes are deployed in a 2-D area 

which surface is S=100m×100m with 50 anchors nodes 

and the same communication range for each node R=20m.  

During  the  localization  phase,  we assume  that  all the  

nodes and  the  anchors  in the  network  are static.  

Firstly, for the learning process in isotropic case, the 

WSN structure considers N = 200 unknown nodes and 

M=60 anchor nodes.  The anchors nodes are deployed 

following random, circle, spiral and sinusoidal 

deployment scenarios. The data learning set consider 25 

scenarios for the 200 unknown nodes, 25×200=5000 

WSN nodes.  In the case of single hidden layer and two 

hidden layer, each layer involves 250 neurons with a 

sigmoidal activation function 250 hidden neurons for the 

ELM hidden layer and the sigmoidal activation function. 

Secondly, in the exploitation phase, the positions of the  

anchors  nodes  remain  the  same   as  those  used  in  the  

training phase (unchanged positions  of anchors). These 

simulations correspond to the random, circle, spiral and 

sinusoidal scenarios deployments.  

 
Fig. 5. Samples of localization results for Random, Circular, Spiral and 

Sinusoidal anchors deployment scenarios 

The Fig. 5 gives the example of localization results of 

the unknown sensor nodes by THL-ELM algorithm for 
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different anchors deployment scenarios.  In this  figure, 

symbol ’o’ denotes  the  real location  of the  unknown  

node and  blue straight line represent the  localization 

errors between exact position and the estimated position,  

the black points denote the anchors  nodes positions. In 

the following, we validate our proposed approaches SHL-

ELM and THL- ELM by comparing their results with the 

well-known DV-hop algorithm for the isotropic case. 

These comparisons are conducted under the same 

network settings and spiral anchors deployment scenario. 

The  metric  that we use  to  evaluate  the  performance  

of our  localization algorithms is Cumulative Distribution 

Function (CDF)  of the Normalized  Localization  Error  

(NLE).  The normalized localization error characterizes 

the localization accuracy and defined by the following 

equation. 

2 2

1

1
( - ) ( - )

N
est est

i i i i

i

NLE x x y y
N R 

 



            (10) 

where N and R represent respectively the number of 

unknown nodes and the communication range fixed in 

our simulation (R=20m). The (xi ,yi) are real coordinates 

and the (xest,yest) are estimated coordinates  of the i’th 

unknown sensor node position. 

 
Fig. 6. CDF results for SHL-ELM, THL-ELM and the DV-hop 

algorithm for spiral anchors deployment. 

Fig. 6 gives the NLE’s CDF results achieved by our 

proposed localization algorithms SHL-ELM and THL-

ELM and the DV-hop algorithm for spiral anchors 

deployment scenario. The localization results show that 

the accuracy due to the two proposed localization 

algorithms based on the ELM surpasses largely the 

localization results accuracy given by the original DV-

hop algorithm. For instance, the THL-ELM algorithm, 

the SHL-ELM algorithm and the DV-hop algorithm give 

respectively 98%, 90% and 63% for accuracy equal to 

0.2×R.  This further demonstrates the accuracy of the 

THL-ELM model when compared to SHL-ELM and DV-

hop. 

Fig. 7 describes the normalized localization error (NLE) 

with different strategies of the anchors deployment 

scenarios (random, circle, sinusoidal and spiral scenarios). 

As it can be observed from this figure, regardless of the 

anchors deployment scenario, the results achieved by the 

ELM algorithms are better than the DV-hops results.  

Concerning the ELM algorithms, THL-ELM gives better 

results than the SHL-ELM algorithm. THL-ELM gives 

double precision when compared to the DV-hop 

algorithm in the entire anchors deployment scenario 

 
Fig. 7. Accuracy results for SHL-ELM, THL-ELM and the DV-hop 

algorithm for spiral anchors deployment 

VI. CONCLUSION 

In this paper, a two hidden layer (THL) algorithm 

based on the Extreme Learning Machine (ELM) has been 

proposed in order to optimize node localization accuracy 

in WSN. The suggested THL-ELM algorithms are based 

on Range Free technique in isotropic WSNs. They 

represent a new way to tackle the WSN localization. For 

the performances evaluation the Cumulative Distribution 

Function (CDF) of the Normalized Localization Error 

(NLE) has been applied. Simulation results show that for 

the same NLE value, THL-ELM presents better accuracy 

when compared to SHL-ELM and DV-hop algorithms. In 

addition, computation time in the case of THL-ELM and 

SHL- ELM algorithms is relatively low when compared 

to DV-hop. These advantages make THL-ELM algorithm 

a very promising candidate for treating the WSN 

localization problem in real time. The FPGA 

implementation of the proposed algorithms will be treated 

in the next work. 
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