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Abstract—In large-array millimeter-wave (mmWave) systems, 

hybrid multi-user precoding is one of the most attractive 

research topics. This paper first presents a low-dimensional 

manifolds architecture for the analog precoder. An objective 

function is formulated to maximize the Energy Efficiency (EE) 

in consideration of the insertion loss for hybrid multi-user 

precoder. The optimal scheme is intractable to achieve, so that 

we present a user clustering hybrid precoding scheme. By 

modeling each user set as a manifold, we formulate the problem 

as clustering-oriented multi-manifolds learning. We discuss the 

effect of non-ideal factors on the EE performance. Through 

proper user clustering, the hybrid multi-user precoding is 

investigated for the sum-rate maximization problem by 

manifold quasi conjugate gradient methods. The high signal to 

interference plus noise ratio (SINR) is achieved and the 

computational complexity is reduced by avoiding the 

conventional schemes to deal with high-dimensional channel 

parameters. Performance evaluations show that the proposed 

scheme can obtain near-optimal sum-rate and considerably 

higher spectral efficiency than some existing solutions. 

Index Terms—mmWave massive MIMO; manifold 

discriminant analysis; hybrid precoding; user clustering 

I. INTRODUCTION

Millimeter-wave (mmWave) massive MIMO 

(multiple-input multiple-output) communication is a 

promising technology for next generation wireless 

communication owing to its abundant frequency 

spectrum resource [1]-[3]. Due to the high carrier 

frequency, mmWave signal suffers from high propagation 

loss so that large-scale antenna arrays are leveraged for 

path compensation [4]. However, a large number of 

antennas could lead to the severe hardware cost and 

power consumption if each antenna requires a Radio 

Frequency (RF) chain as in conventional fully-digital 

MIMO systems [5]. To overcome this problem, hybrid 

MIMO has been emerging to trade off hardware cost with 

the Spectral Efficiency (SE) and Energy Efficiency (EE) 

[6]-[8]. Nevertheless, how to design the hybrid precoding 

over broadband channels is challenging. 

How to obtain the optimal precoding matrix is the key 

issue for hybrid precoding. The large antenna arrays 
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challenge the low-complexity design of hybrid precoding 

[9]. In particular, the hybrid precoding may require 

matrix operations with a scale of antenna size, which is 

generally large in mmWave communication [8]. To 

reduce the complexity of hybrid precoding in mmWave 

massive MIMO system, some advanced schemes based 

on the beamspace hybrid precoding have been proposed 

[10]-[12]. The key ideas of [13]-[17] are to efficiently 

explore the sparsity of beamspace channel by sparse 

signal processing techniques. The problem of finding the 

optimal precoder with a hybrid architecture is posed as a 

sparse reconstruction problem in [13], [14], leading to 

algorithms and solutions based on basis pursuit methods. 

Specifically, a compressive sensing-based hybrid 

precoding has been proposed in [15], [16], where the 

channel sparsity is ingeniously exploited to design hybrid 

precoding with the aid of orthogonal matching pursuit 

(OMP) algorithm.  In multi-user scenario, a low-

complexity multi-user hybrid precoding for mmWave 

systems has been investigated in [17]. A Kronecker 

decomposition for hybrid beamforming (KDHB) for 

multi-cell multiuser massive MIMO systems over 

mmWave channels characterized by sparse propagation 

paths is proposed [18]. 

However, considering the limited beamspace 

resolution, the sparsity of beamspace channel may be 

impaired by power leakage, indicating that the beamspace 

channel is not ideally sparse and there are many small 

nonzero entries. Therefore, some works have considered 

hybrid precoding for practical interference mmWave 

channels [19], [20]. Handling interference is challenging 

due to the large channel dimensionality and the high 

complexity associated with implementing large precoding 

matrices [21]. To address the high interference problem, a 

closed-form wideband hybrid precoding solution was 

proposed in [22]-[25]. An analytical framework of hybrid 

beamforming (AFHB) in multi-cell millimeter-wave 

systems was proposed [26]. The general methodology 

analytically computes the expected per-cell spectral 

efficiency of an mmWave multi-cell single-stream system 

using phase-shifter-based analog beamforming and 

regularized zero-forcing digital beamforming. 

Very recently, manifold learning has been proposed to 

integrate with mmWave massive MIMO systems. In [27], 

a manifold optimization (MO) based hybrid precoding 

algorithm, as well as some low-complexity algorithms, 

was proposed. A Riemannian conjugate gradient 
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manifold algorithm is proposed by viewing the feasible 

region of the constant envelope problem as a complex 

circle manifold [28]. A Riemannian vector perturbation 

manifold is explored by jointing design of hybrid RF-

baseband precoding for multi-user massive MIMO 

systems [29]. The nonlinear least squares problem is 

solved with much lower complexity than both gradient 

descent and constant envelope optimization. A 

Riemannian Trust-Region Newton Manifold (RTRNM) is 

proposed for the optimization beamforming in multi-

cluster scenarios [30]. The optimization beamforming is 

utilized to mitigate inter-cell interference by dividing 

multi-users into multi-clusters with spatial correlation. 

However, the multi-user high-dimensional channels are 

not embedded in the low-dimensional subspaces to 

achieve dimensionality reduction. A manifold learning 

two-tier fully-digital beamforming scheme optimizes 

resource management in massive MIMO networks [31]. 

The manifold learning algorithm is used to reduce the 

multi-user high-dimensional channels. It reduces the 

computational complexity while mitigating inter-cell 

interference-based fully-digital beamforming. It focuses 

on the local linear spatial structure between user channels, 

and ignores the global spatial characteristics. 

In this paper, we propose user clustering hybrid 

precoding to enable efficient and low-complexity 

operation in mmWave massive MIMO, where a large 

number of antennas are embedded in low-dimensional 

subspaces. The mmWave channel measurement results 

show that the mmWave has a diffuse scattering 

phenomenon on the surface of the rough scatterer, and the 

scattering range will increase as the wavelength decreases 

[32]. For scenarios where users are dense, when there is 

not enough space between users, diffuse scattering may 

cause adjacent users to receive signals of the same path. 

Therefore, it causes serious inter-user interference. Our 

objective is to design the hybrid precoding matrices, such 

that (i) they manage the intra-cell and inter-cell 

interferences with low requirements on the channel 

knowledge, and (ii) they can be implemented using low 

complexity hybrid analog/digital architectures, i.e., with a 

small number of RF chains compared to the number of 

antennas. A discriminative learning method is presented, 

called Manifold Discriminant Analysis (MDA) [33], to 

solve the problem of set classification. By modeling each 

user set as a manifold, we formulate the problem as 

clustering-oriented multi-manifolds learning. The 

manifold discriminative learning seek to learn the 

embedding low-dimensional manifolds, where manifolds 

with different user cluster labels are better separated, and 

the  local spatial correlation of the high-dimensional 

channels within each manifold is enhanced. Most of the 

high-dimensional channels are embedded in the low-

dimensional manifolds by manifold discriminative 

learning, while retaining the potential spatial correlation 

of the high-dimensional channels. The nonlinearity of 

high-dimensional channel is transformed into global and 

local nonlinearity to achieve dimensionality reduction. In 

low-dimensional manifolds, the intra-cluster channels 

become more clustered and the separability of embedded 

features is enhanced. Through proper user clustering, the 

hybrid precoding is investigated for the sum-rate 

maximization problem by manifold quasi conjugate 

gradient methods [34]. In order to improve the spectral 

efficiency of the system, the design of each cluster analog 

RF precoder should strike a balance between optimizing 

self-transmission and the interference. The digital 

precoding matrix is obtained by Karush Kuhn Tucker 

(KKT) [35]-[37]. The high signal to interference plus 

noise ratio (SINR) is achieved and the computational 

complexity is reduced by avoiding the conventional 

schemes to deal with high-dimensional channel 

parameters. Performance evaluations show that the 

proposed scheme can obtain near-optimal sum-rate and 

considerably higher spectral efficiency than the 

conventional schemes. 

The remainder of this paper is organized as follows. 

Section 2 introduces system model and channel models. 

We focus on dimensionality reduction based on multiuser 

high-dimension channel in Sections 3, and Sections 4 

describes hybrid precoding algorithm based on channel 

dimensionality reduction. Some simulation results are 

provided in Section 5. Finally, we conclude this paper in 

Section 6. 

Notations: Upper and lower-case boldface letters 

represents matrices and vectors, respectively.  
H

 ,  
1

 ,

 
T

 ,  
*

 ,  tr  , and
F

  are the Hermitian transpose, 

inverse, transpose, complex conjugate, trace, and 

Forbenius norm of a matrix, respectively.  E   is the

expectation. ( )diag  denotes diagonal matrix. is the 

cardinality of the set .  indicates the Kronecker 

product.  20,  represents the zero-mean complex

Gaussian distribution with zero mean and the variance 
2 .  span Y  denotes the subspace spanned by the

column vectors of Y .     indicates gradient. Finally,

NI denotes the N N identity matrix. 

II. SYSTEM MODEL AND CHANNEL MODEL

A. System Model

We consider a hybrid mmWave massive MIMO

system model consisting of B cells. We assume that a 

base station (BS) equipped with tN antenna and RFN  RF 

chains ( t RFN N K  ) serves K single-antenna users, 

as shown in Fig. 1. To manage the interference and 

improve the data rate for users, the users are partitioned 

into L  clusters 1 , , L with =i ig ,
1

L

i

i

g K


 and 

ii   , i i  . i is thi cluster, where 1, ,i L  . 

The sets 1{ , , }L  are all user clusters. 
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 Fig. 1.  Hybrid mmWave massive MIMO system model 

Let , ,b i ku , 1, , ik g  denote the thk  user of i in 

the thb cell ( 1,2, ,b B ). The hybrid precoding is 

performed in two stages: digital precoding in the 

baseband domain and analog precoding in the RF domain. 

In a downlink system, the transmit symbols are first 

applied with digital precoders and the resulting signals 

are fed to RF chains. The output of the RF chains is 

processed using analog precoding and subsequently fed to 

the antenna elements. The transmitted signal vector , ,b i kx  

at the BS is firstly precoded with a digital precoding 

, ,b i kW . The resulting signals are fed to analog 

precoding , ,b i kF . The received signal , ,b i ky of user , ,b i ku  

can be given by  

, , , , , , , , , , , , , , , , , ,

1,

i

H H

b i k b i k b i k b i k b i k b i k b i k b i k b i k

k k k

y h F W x h F W x  

  

    

, , , , , , , , , ,

1, 1,

         
L B

H H

b i b i b i b i b i b i b i b i b i k

i i i b b b

h F W x h F W x n           

      

     

 (1) 

where , ,
tN

b i kh  is the channel vector between the BS 

and user
, ,b i ku . , ,

t

b i k

N
x  represents the transmit signal of 

user 
, ,b i ku .  2

, , 0,b i kn is the spatially white 

additive Gaussian noise. ,

, ,
t RF iN n

b i kF


  is the analog 

precoding matrix that adaptively steers an 

,RF in dimensional RF beamspace for the coverage 

of i with ,  iRF in g . 
,

, ,  RF in

b i kW is the digital precoding 

matrix.  is the set of complex numbers. 

,, , , , , , ,

1,
  

  


i

i k

H

b i k b b i k b i k

k k k

h F W x are intra-cluster interference. 

, , , ,

1,
  

  

 i

L
H

b i b b i b i

i i i

h F W x are inter-cluster interference. 

, , , ,

1,
      

  

 i

B
H

b i b b i b i

b b b

h F W x  are inter-cell interference. 

Although the hybrid method is more accurate than the 

statistical approach, while generating faster and more 

generalized results than the deterministic approach, 

nevertheless it does not provide sufficient intra-cluster 

angular modeling accuracy necessary for beamforming 

and inter-cluster interference optimizations [29], [38]. 

 

B. Channel Model 

To capture the limited spatial selectivity or scattering 

characteristics in mmWave massive MIMO channel, we 

adopt a widely used Saleh-Valenzuela (SV) model in this 

paper [39], where the channel matrix ,i kh  of the thk  user 

in thi  cluster can be expressed as: 

   , , , ,, ,

1

lN

i l r r i l t t i li k

l

h   


 a a                        (2) 

where lN denotes the number of paths, l  is the complex 

gain of the thl path,  , ,r r i la  and  , ,t t i la  are the array 

response vectors at the user and the BS, respectively, 

where , ,r i l denotes the angle of arrival (AoA) at the user, 

and , ,t i l  is the angle of departure (AoD) at the BS. For 

the simple uniform linear line (ULA) antenna array of 

N elements, the array response vector is 

           2 sin 1 2 sin1
= 1, , ,ULA ULA

T
j d j N j d

e e
N

     


 
 

a   (3) 

where  is the wavelength, and ULAd denotes the antenna 

spacing. Because of the limited spatial scattering in 

mmWave propagation, the mmWave massive MIMO 

channel
,i kh is low-rank. As a result, we can leverage a 

finite number of RF chains to achieve the near-optimal 

throughput. 

III. USER CLUSTERING HYBIRD PRECODING SCHEME 

Our objective is to design the hybrid precoding 

matrices, such that (i) they manage the intra-cluster, inter-

cluster and inter-cell interference with low requirements 

on the channel knowledge, and (ii) they can be 

implemented using low complexity hybrid analog/digital 

architectures, i.e., with a small number of RF chains 

compared to the number of antennas. Next, we present 

the main idea of hybrid precoding based on manifold 

discriminative learning, a potential solution to achieve 

these objectives. 

A. Manifold Discriminative Learning for User Clusters 

As the number of service antennas and users tend to 

infinity in the mmWave massive MIMO system, the 

performance is limited by directed inter-cell and intra-cell 

interferences. The high-dimensional channel matrix 

requires high complexity hybrid analog/digital 

architectures. By modeling each user set as a manifold, 

we formulate the problem as clustering-oriented manifold 

discriminative learning.  

The undirected similarity graph of multi-users is 

represented by graph embedding method. By modeling 

each user set as a manifold, the user channel 

characteristic graphs   ,
1

,i k k
i

L

jh m


,  are constructed, as 

shown in Fig. 2. 
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Fig. 2.  User cluster undirected characteristic graph 

 0

,'i k represents the intra-cluster channel weight function 

between user k  and user j . , ,k jm represents the inter-

cluster channel weight function between user k  and j . 

The sets of the cluster channel weight functions are 

  : , 1, ,k jM k j Km  , . The weight function , ,k jm  

of the intra-cluster is defined as follows: 

      
, , in the intra-cluste0 1,   ,  

0,  other

r

wise 

k jm k j 



                (4) 

The weight functions of the intra-cluster show that 

when user k  and j  are the same cluster, the weight is 

larger; when user k  and j  are the different cluster, the 

weight is 0. 

The weight function , ,k jm  of the inter-cluster is 

defined as follows: 

      
, , in the inter-cluster0 1,  ,  

0,  otherwise 

k j km j 



                 (5) 

The weight functions of the inter-cluster show that 

when user k  and j are different cluster, the weight is 

larger; when user k  and j are the same cluster, the weight 

is 0. The manifold discriminative learning seek to learn 

the embedding low-dimensional manifolds, where 

manifolds with different user cluster labels are better 

separated, and the  local spatial correlation  of the  high-

dimensional channels within each manifold is enhanced. 

 

Fig. 3.  Schematic diagram of dimension reduction 

Some existing manifold learning algorithms, such as 

LLE [40], can't retain the complete global nonlinear 

channel structure of user clusters.  

We propose to perform the manifold discriminative 

learning for global dimensionality reduction. The high-

dimensional channels are embedded in the low 

dimensional manifolds, as shown in Fig. 2. In order to 

reveal the potential non-linear manifold structure of high-

dimensional channels, intra-cluster graph and inter-

cluster graph are constructed by using the label 

information of user characteristics. In addition, it can 

make the low-dimensional channels more clustered, and 

enhance the separability of embedded low dimensional 

channels. The RF eigen-beamformers are shown as an 

optimal solution for user cluster transmission. The 

channel eigenvector learning corresponding to the 

maximum eigenvalue is taken as the spatial direction. In 

theory, the main direction learned is the beamforming. 

Multi-users of the same cluster have highly correlated 

transmission paths. We seek to learn a generic 

mapping A that is defined as: 

= T

k kh A h                                     (6) 

where A is projection matrix, kh  is the thk user low-

dimensional mapping of the high-dimensional 

channels kh . The original high-dimensional channels kh  

can be transformed into the low-dimensional channels 

kh .The relative spatial relationship of neighboring users 

in high-dimensional channels remains unchanged in low-

dimensional manifolds. In order to maintain the manifold 

structure of the high-dimensional channels, the 

optimization problem is the projection direction of 

manifold, i.e.,  ,k jh h k j  of the intra-cluster, the 

objective function of the intra-cluster can be obtained as 

 
2

,

, ,max j
A

k j

k k jh h m                         (7) 

Therefore, the projection is posed as a solution 

maximizing the sum across all uses of the intra-cluster, 

i.e., 

 

 

2

,

2

,

T T T T

, ,

, ,

local

T

max

1
max

2

max

max

j
A

k j

j
A

k j

A

A

k k j

T T

k k j

h h m

h h m

A HD H A A H H A

A S A

A A

M





 





 

 







,

                          (8) 

where  a

T

loc l =S H D HM  , is local manifold 

structure of the intra-cluster, D is diagonal matrix and 

( , )
k j

D M k j 


 . 

According to the SV model, H

, , ,i k i k i khR E h    is the 

covariance matrix of the thk user in the thi cluster. Users 
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in the same cluster have the similar transmit covariance 

matrix, hence,
,i kR , i.e., 

,, , ,

H

i k i k ii kkR U U                          (9) 

where ,
t iN r

i kU


 is a matrix of eigenvectors 

corresponding to ir (
tir N ) non-zero eigenvalues of 

,i kR . 
,i k  is diagonal matrix whose elements are the 

nonzero eigenvalues of ,
t tN N

i kR


  corresponding to the 

nonzero eigenvalues, satisfying r

k

r  .  Since users in 

the same user cluster have similar spatial correlations, 

they have similar local scattering,
, ,i k iiR R k   . The 

criteria of measuring the similarity degree between users 

is the distance function and the similarity coefficient 

function. Since ( ) Tspan U UU ,
, ,,i k i kU U   , the 

similarity measurement function between any two users 

based on the distance of subspace projection matrix can 

be expressed as 

    

 

 

2

, ,

1
,

2

1
                           =

2

T T T

k k i k

T

pm i F

T

k i k i

k i iU U V U U VVd V

tr  

 

                (10) 

       

where kU  is eigenvectors matrix of kR  in any cluster, i.e., 
H

k k k kR U U  , and iV  is eigenvectors matrix of the 

thi cluster center iR . , = k k

T T

k i i iU U VV  is the symmetric 

positive semidefinite matrix that needs to be learned. The 

global manifold structure ,globalS  of intra-cluster is 

measured as 

   ,glo , ,bal

1

1

2

1
  

 


i

T

k

L

i k i

i k i

S tr
g

                 (11) 

To effectively utilize the global characteristics and 

local manifold structure of intra-cluster channels, we can 

get the intra-cluster dispersion  by combining equations 

(9) and (11)[33] 

,global local(1 )S S       ,                        (12) 

where are constants.  

The weight functions , ,k jm  of the intra-cluster can be 

obtained as 

 , ,, = exp /
 kk j jdm s                            (13) 

where s is constants, 
,k jd is the similarity measurement 

function between user k and user j . 

In order to maintain the manifold structure of the inter-

cluster user channels, the optimization problem is the 

projection direction of manifold, i.e.,  ,k jh h k j  of 

the inter-cluster, the objective function of the inter-cluster 

can be obtained as 

 
2

,

, ,max  k

k

j

j

k j
A

mh h                       (14) 

Therefore, the projection is posed as a solution 

maximizing the sum across all uses of the inter-cluster, 

i.e., 

 

 

, ,

, ,

,l

2

,

2

,

T

ocal

T T T

T

max

1
   max

2

   max

   max





 





 

 







k k j

T T

k k

j
A

k j

j
A

j

A

A

j

k

m

A A

h h

h h

A H H A A HM H

A S

m

D A

A

                 (15) 

where  l

T

,loca = MS H D H   is local manifold structure 

of the inter-cluster, D  is diagonal matrix and 

( , )
k j

D M k j 


 . The global inter-cluster ,globalS is 

measured as 

 ,glo , ,bal

1

1

2

1
  

  





i

T

k i k i

i k i

L

S tr
K g

              (16) 

To effectively utilize the global characteristics and 

local manifold structure of inter-cluster channels, we can 

get the inter-cluster dispersion  by combining equations 

(15) and (16) 

,global ,local(1 )     S S                      (17) 

whereare constants.  

The weight functions , ,k jm  of the inter-cluster can be 

obtained as 

 , ,, = exp /
 kk j jm s d                         (18) 

where s is constants. 

The discriminative function  J A  is transformed as: 

  max







T

TA

A
J

A
A

A A
                               (19) 

 
 
 

,whole local

,whole ,loc

T

al

, ,

T (1 )
max

(1 )

. . i k i k

A

T

A S S A
J A

A S S A

s t h hA

 

 

  


  



,

             (20) 

According to equation (20), the low-dimensional 

mapping of the thk user channel matrix ,i kh  is determined 

by the projection matrix A . By solving the generalized 

eigenvalues of the discriminative function, we can obtain 

the projection matrix  1, , nA A A  . n is the 

dimensionality reduction of user channel matrix. After 

user clustering, the channel correlation of users in the 

same cluster is enhanced. 

Then, according to the intra-cluster graph and inter-

cluster graph constructed by using the label information 

of user characteristics, the user clusters can be divided 

more accurately with lower complexity. Based on the 

maximum and minimum distances and the weighted 

likelihood similarity criterion, an improved spatial fuzzy 

c-means clustering algorithm is proposed. The algorithm 
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is an iterative optimization that minimizes the cost 

function defined as follows: 

 , , ,

1 1

 

 


K L

i k i k i k

k i

J d                            (21) 

where  , ,,

1

2
= T

k ik ki itrd   is the similarity measurement 

function between the thk  user and the thi  cluster 

center.
,i k  represents the membership function of user 

,i ku  in the thi cluster, and  is a constant. The parameter 

 controls the fuzziness of the resulting partition, and 

=2  is used in this study. The cost function  ,i kJ   is 

minimized when user 
,i ku  close to the cluster center is 

assigned high membership values, and low membership 

values are assigned to user 
,i ku  far from the cluster center. 

The membership function represents the probability that a 

user 
,i ku belongs to a specific cluster. The membership 

functions and cluster centers are updated by the following: 

 ,

,
1/ ( 1)

,

1

1

/













i k

i ik

i

L

id d

                      (22) 

and 

  
,

1

,

1

,

,

,

,

















K

i k i k

T

i k
T k

i k i k

i k

K

k

VV

U U

                          (23) 

where  , ,,

1

2
= T

i ii i iid tr     is the similarity measurement 

function between the thi  cluster center and the thi  

cluster center. In summary, by modeling each user set as 

a manifold, the process of clustering-oriented manifold 

discriminative learning is as follows: 

Step 1: Construct the user channel characteristic 

graphs   ,
1

,i k k
i

L

jh m


, ;  

Step 2: Find out the two most distant iU  and 
iU  , and 

use them as the central point of the initial user clusters, 

i.e., 
 0 (0)

1 2,i iV U V U   .The number of the  user clusters 

is 2i  ; 

Step 3: According to Euclidean distance criterion 

   , ,

1
,

2

T T T

pm i ki i ik kkd V tV rU U   , all users are 

clustered into i  user clusters; 

Step 4: In the i user clusters that completed the 

clustering, the weakest similar point (i.e., the point with 

the largest distance) is found in each user cluster, and 

i user clusters are obtained. Then we calculate the sum 

distance ,i kd  between the user ( 1,2,..., )k k K , the 

membership functions 
 0

,i k and the center point 

(0) ( 1,2,..., )iV i L of each user cluster in turn. 

Step 5:  Calculate the spatial membership function and 

update the center point (0) ( 1,2,..., )iV i L of each user 

cluster with

 

 

,

,

,

1

, ,

1

,

K

i k i k

K

T

i k
T k

i k i k

i k

k

U U

V V






















; 

Then the maximum value among ,i kd  is found. 

(0)

1 ,arg maxi i k
k

V d  . All users into ( 1)i   are redivided 

into different user clusters; 

Step 6: When the current number of user groups 

1i i L    is true, perform step 5; otherwise repeat step 

3; 

Step 7: 1/2
2

( )k ik

H

F
U V  is computed, and each user is 

assigned to the user clusters with the largest similarity 

coefficient; 

Step 8: Output cluster result, and the number of users 

in each cluster; 

Step 9: Calculate the , ,k jm and , ,k jm  according to 

equation (13) and (18); Construct intra-cluster graph and 

inter-cluster graph by using the label information of user 

characteristics; 

Step 10: Calculate the 
,wholeS

, localS , , ,localS and 

,wholeS  according to equation (9), (11), (15)and (16); 

Step 11: Calculate the  and 
  according to equation 

(12) and (17); 

Step 12: Optimize the discriminative function  J A  

according to equation (20); 
Step 13: According to the obtained projection matrix, 

get the projection in low-dimensional subspace ,i kh . 

B. Manifold Discriminative Learning for User Clusters 

On the basis of manifold discriminative learning for 

global dimensionality reduction and user clustering, we 

investigate the sum-rate maximization problem for hybrid 

precoding. Our objective is to design the precoding 

matrices
i i
WF , such that they manage intra-cluster 

interference and inter-cluster interference. In order to 

improve the spectral efficiency of the systems, the design 

of each cluster analog precoding should strike a balance 

between optimizing self-transmission and the interference.  

By modeling each user set as a manifold, the received 

signal of the thi cluster can be represented as 

, , , ,

1,

1

+

i i

i

i i i i i i

i i i

i

i i

H

k k k k

k

i

L

i

k

H

H

i

k

H W x

H F W

y F F

x n

H W x

   

  

 

  










,

             (24) 

where ,1 ,,,
i i ii

T
T T

gy yy  
   represents the received 

signal, ,1 ,, ,
i i i igH H H 

   represents the channel 
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matrix for the thi  cluster, 

,1 ,, ,
i i i igF F F    and  ,1 ,, ,

i i i igW diag W W  .

,, , ,

1,

i

i ki i i

H

k k k

k k k

H F W x
  

  

  are the intra-cluster 

interference,
1

i i i i

L
H

i i i

H F W x
   

  


,

 are the inter-cluster 

interference after the low-dimensional mapping. In order 

to adapt to special scenarios and requirements, the hybrid 

precoding matrix can be determined by per-cluster 

processing (PCP). The goal of PCP is to balance the 

performance and complexity by effectively separating the 

clusters in the RF beam domain.  

In PCP mode, the analog precoding matrix
i

F of each 

cluster is calculated according to manifold quasi-

conjugate gradient algorithm, while the digital precoding 

matrix
i

W  is calculated by each user cluster according to 

their equivalent channel matrix. Let 
H

eqH H F denote 

the equivalent channel matrix after analog precoding, and 

it is an approximate block diagonal matrix, which can be 

expressed as 

1

1

1 1 2 1

2 2 2 2

1 2

 
 
 

  
 
 
 

L

L

L L L L

H H H

H H H

eq

H H H

H H H

H H H

F F F

F F F

F F F

H

H H H

                 (25) 

where =
i ii

H

eqH H F  represents the diagonal elements of 

the matrix in (22), off-diagonal elements of the 

matrix  
i i

H FH i i


 represents the interference channel 

matrix between user clusters. After analog precoding, the 

inter-cluster interference is eliminated, that is, 

0
i j

H FH  . eqH  can be expressed as 

1

2

1

2

0 0

0 0

0 0

 
 
 

  
 
 
 L L

H

H

eq

H

F

F

F

H

H
H

H

                    (26) 

The digital precoding matrix W is a block diagonal 

matrix, which can be expressed as 

 
1

diag , , 
L

W W W                                (27) 

With scalar equalization 1

i
  , the signal estimate ˆ

i
x for 

i can be expressed as 

,, , ,

,

1

1

ˆ +=
i

i i i i i i i i ii k

H

k k k

H

k k k

x F H F WH x xW
  

 












1
i i i i i

L
H

i i i

H F W x n
   

  






,

             (28) 

where 
i

  is a scaling equalization that is jointly 

optimized with the hybrid precoding. The conditional 

mean square error (MSE) for i  is defined as 

 
2

ˆ, =,
i i i i i

W E x xF   
  

    

                           
2

1  =
i i i i i i

HE x H F W x   
  

 

                                   
,, , ,

1

1

,

i

i ki i i i

H

k k k

k k k

H F W xE 




 

  

 
 

  
  

       
2

1 2

1 ,

 
   

 

  

 
 

 

,

i i i i i i i

H

i

L

i i

FE H W x n                  (29) 

The conditional MSE in (24) is simplified as  

     1 2
,, = +   

i i i i i
F W                                 (30) 

where 

   
2

1 1    
  i i i i i i i

HE x H W xF                          (31) 

  

 

,, ,

1

,

,

2

1

= + 
  

 





 
 
  
i i i i

i

i k i

H

k k k

k k k

H F WE x

2
1 2

1 ,

 
   

 

  

 
 

 

,

i i i i i i i

H

i

L

i i

FE H W x n             (32) 

Therefore, the hybrid precoding based on interference 

leakage is jointly optimized with
i

F ,
i

W ,
i

 . According 

to the literature [20], 
i

W  can be decomposition 

into
i i i

W W  ,where
i

W  is an unnormalized digital 

precoding matrix, which can be obtained by KKT 

conditions as 

 

 

1
1

1
1    











  

 

i i ii i i

i i i i i i i i

H

H H

e

H H

q eq eqW H H I H

F H H F I F H

                     (33) 

where 
1

i
 

 is regularization factor, which depends on 

noise variance and base station transmit power. 
i

I  can 

be expressed as 

,, , ,

1, 1 ,

= +
i

i i i i i ik ii i i

L
H

k k k

H

i ik k ik

H F WI W x nFHx
    

   

 
,

 

                   (34) 

The optimal value given in [13] is 
1 2/

i tolP K   . tolP  

is the total power of the transmitted signal. The optimal 

scaling factor 
i

 can be obtained from the base station 

transmission power with  H

tol

Htr FWW F P  as 

 
1








i

i i i i

L
H H

i

tolP

tr F W W F

                     (35) 

Accordingly, equation (31) can be expressed as 
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2

1 1-   
  i i i i i i i

HE x H W xF  

      1 1 = tr - -   
  i i i i i i i i i i i i

H
H HE x H W x x H W xF F

      1 1= tr - -   
  i i i i i i i i i i i i

H H H
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E x H W x x H W xF F

     1 = tr - tr -  
 i i i i i i i i
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                (36) 

After simple mathematical derivation, equation (32) 

can be expressed as 
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g H W H gF FW     (37) 

Let  
i

J F represent the objective function. The 

hybrid precoding optimization problem based on 

interference leakage under orthogonal constraints is 

     1 2

1 1

arg min +   s.t.  
 

 i i i i i t
i

n

i i
F

L L
HFJ IF F          (38) 

It can be seen that the solution of the objective 

function is a convex optimization problem. It is 

essentially to find a radio frequency precoding matrix so 

that the objective function obtains a minimum value. This 

problem can be equivalent to an unconstrained 

optimization problem, which can be solved by using 

manifold optimization algorithms [35]. The Euclidean 

conjugate gradient of  
i

J F  can be expressed as 

 
 

*
=





i

i

i

J F
J F

F
                         (39) 

In the next step, the direction vector is updated by 

using gradient as 

 , , 1 , ,+1=- + 
i i i it tt tZ F ZJ                       (40) 

where 

 

 

2

, 1

, 2

,

=





i

i

i

t
F

t

t
F

J

J

F

F

                       (41) 

The manifold quasi-conjugate gradient algorithm based 

on implicit vector transmission applied is as follows: 

Step 1: Initialize the analog precoding matrix ,1i
F , 

error threshold (0,1) , the initial 

gradient  ,1 ,1-
i i

Z J F  , the number of initialization 

iterations 1t  ; 

Step 2: If  ,1i
J F   ， stop; Otherwise, 

search ,i t  satisfying 

   
,

, , , , ,
0

,mi= n
t

i i i i i i
i

t t t t t tZ ZJ F J F
 

  ; 

Step 3: Update the analog precoding matrix , 1i tF   

using , 1 , , ,i i i it t ttF ZF    ; 

Step 4: If t n , perform step 5; otherwise repeat step 6; 

Step 5: Update  , , 1 , ,+1=- +
i i i it t tt JZ F Z  , where 

 

 

2

, 1

, 2

,

=
i

i

i

t
F

t

t
F

FJ

J F








; Update the number of 

iterations 1t t  , repeat step 2; 

Step 6. Update ,1 , 1=
i i tF F  ,  1, ,1=-

i i
Z J F , 1t  , 

repeat step 2. 

Update the analog precoding matrix until convergence 

to satisfy the error threshold condition, the algorithm ends. 

For the intra-cluster, it has been proved that the 

channel correlation between the intra-cluster users. And 

its nearby inter-cluster users are much larger than that of 

the non-adjacent clusters. The interference intensity is the 

same. Therefore, the interference caused by remote user 

clusters to intra-cluster users is negligible. Therefore, the 

SINR for a user cluster i  in the thb cell is given by: 

2

2 2
2

, ,

1, 1

i i i i

i i i i i

i i L

k k

k k

H

i ik i

H W
SINR

I

F P

IN P PN 
 

  



 







 
,

     

                  (42) 

where 
,, , ,=

i ki i i

H

k k kIN H F W
  ,

i i i i

H FIN H W
   
  ，

i
P are 

the transmit power of the thi  cluster, ,i kP  and 
i

P

 are 

the transmit power of the thk  user in the thi cluster and 

the transmit power of the thi   cluster respectively. For 

the inter-cell, its nearby inter-cell users are much larger 

than that of the non-adjacent cells. The interference 

intensity is the same. 

The capacity of mmWave massive MIMO system can 

be expressed as 

1

2log (1 )
L

i

i

SINRSUM


                     (43) 

(43) can be written as 
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(44) 

IV. SIMULATION RESULTS 

In this section, we will investigate the SE, and BER 

performance of the proposed hybrid precoder design.  We 

compare our proposed solution with some existing 

solutions i.e., OMP, KDHB, AFHB, MO and RTRNM. 

The basic simulation parameters are as follows: 

The carrier frequency is 60 GHz. The AoAs and AoDs 

are uniformly distributed in  0,2 , and a common AS 

=8 . The complex gain of each path follows the 

distribution  0,1 . The ULA is adopted in 

simulations [27]. In this setting, there is considerable 

overlap between channel power azimuth spectra, which 

results in strong inter-cluster interference. 

Fig. 4 presents the achievable sum-rate achieved by the 

proposed hybrid precoding compared with some existing 

solutions for the mmWave massive MIMO system. We 

set 128tN  , 32RFN  , and 32K  . From Fig. 4 we 

can observe that the proposed hybrid precoding can 

achieve considerably higher sum-rate than other existing 

precodings against different signal-to-noise ratio (SNR). 

This is mainly because the performance of other schemes 

is limited by the resolution of the multi-user high-

dimensional channels nonlinearity. By modeling each 

user set as a manifold, we formulate the problem as 

clustering-oriented multi-manifolds learning. A clustered 

user geometry model is researched for some high-density 

hotspot scenarios of the cell. The proposed scheme can 

better eliminate intra-cluster and inter-cluster 

interferences. The achievable sum-rate of mmWave 

massive MIMO systems is improved by user clustering 

hybrid precoding. 

 
Fig. 4. Achievable sum-rate comparison of different hybrid precoding. 

 

Fig. 5. BER performance comparison of different hybrid precoding 

In Fig. 5, we compare the BER performance of 

different hybrid precoder schemes, where the same 

channel parameters as considered in Fig. 4 are used for 

single-cell scenario. From Fig. 5, similar conclusions to 

those observed for Fig. 4 can be obtained with different 

SNR. In particular, it can be seen that our proposed-based 

manifold discriminative learning scheme achieve a better 

BER performance than other schemes. The proposed 

scheme improves beamspace resolution and reduces the 

influence of power leakage on beamspace channel. 

 

Fig. 6. Average sum rate of two-tier system with different precoding 

As shown in Fig. 6, we compare the average sum rate 

for the proposed scheme, and other existing precoding 

schemes with different numbers of users. We set 

, iRF in g in each cluster. It is observed from Fig. 6 that 

the proposed scheme outperforms other schemes. This is 

mainly because as users increase, the performance of 

other schemes is limited by the resolution of the multi-

user high-dimensional channels nonlinearity. The 

proposed scheme can better eliminate intra-cluster, inter-

cluster and inter-cell interferences. The average sum rate 

of mmWave massive MIMO systems is improved by user 

clustering hybrid precoding. 

Fig. 7 shows the effect of SNR on the system average 

SE is given with increasing cell edge SNR. It can be 
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observed that the proposed scheme provides a 

significantly higher average SE than other existing 

schemes. From Fig. 7, we find that each user high-

dimensional channels and its neighbor user high-

dimensional channels are located in a global and local 

nonlinear neighborhood by the proposed scheme with 

manifold discriminative learning. The clustered user 

geometry model is researched for some high-density 

hotspot scenarios of the cell. The proposed scheme 

manages the multi-user and inter-cell interference and 

improves the data rate for cell-edge users.  

 

Fig. 7. Average SE. versus cell edge SNR. 

V. CONCLUSION 

A user clustering hybrid precoding scheme is proposed 

to enable efficient and low-complexity operation in large 

scale dimensional mmWave massive MIMO, where a 

large number of antennas are used in multiple low-

dimensional manifolds. For the BS of mmWave massive 

MIMO, manifold discriminative learning is used to obtain 

low-dimensional channel matrix. Then user clustering 

hybrid precoding is studied for the transmitted signal 

based on the low-dimensional channel matrix. The 

manifold discriminative learning seek to learn the 

embedding low-dimensional subspace, where manifolds 

with different user cluster labels are better separated, and 

the  local spatial correlation  of the  high-dimensional 

channels within each manifold is enhanced. Through 

proper user clustering, the hybrid precoding is 

investigated for the sum-rate maximization problem by 

manifold quasi conjugate gradient methods. The 

simulation results show that the proposed techniques not 

only reduce the computational complexity in mmWave 

massive MIMO system, but also perform well in 

robustness. 
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