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Abstract—We consider iterative channel detection and 

estimation for coded multiuser systems. The conventional A 

Posteriori Probability (APP) channel detector has a 

computational complexity growing exponentially with the 

number of users. In this paper, we study the channel detection 

problem from a combinatorial optimization viewpoint and 

derive a low-complexity soft-output channel detector based on 

the Evolutionary Programming (EP) optimization algorithm. An 

iterative channel estimator based on tentative soft estimates fed 

back from channel decoders is used to provide refined channel 

parameters to the channel detector. It is shown that the proposed 

iterative receiver can significantly reduce the computational 

complexity with slight performance degradation compared to 

the conventional receiver based on APP detection.  

 
Index Terms—Evolutionary programming, combinatorial 

optimization, channel detection, coded multiuser systems 

 

I. INTRODUCTION 

A number of modern communication and data storage 

systems can be formulated by linearly correlated 

equations, e.g., multiuser underwater acoustic networks 

[1], multiple-input multiple-output (MIMO) systems [2], 

two-dimensional (2-D) bit-patterned media recording [3], 

filter-bank multi-carrier (FBMC) systems [4], solid-state 

non-volatile memory (NVM) devices [5], to name a few.   

In the scenario of coded multiuser systems [1] [6]-[8], 

it is well-known that a synchronous channel can be 

viewed as a block code, while an asynchronous channel is 

equivalent to a time-varying convolutional code. This 

observation has significantly stimulated the research on 

iterative decoding techniques for coded multiuser systems. 

In [9], iterative receivers for coded multiuser systems 

were developed. The proposed receiver consists of a soft-

input/soft-output (SISO) channel detector based on the a 

posteriori probability (APP) algorithm and a bank of 

channel decoders. Simulation results have shown that 

with iterative decoding schemes, the performance of 

coded multiuser systems can approach that of the channel 

code over additive white Gaussian noise (AWGN) 

channels for moderate-to-high signal-to-noise ratios 

(SNR). The computational complexity of the APP 

detector, however, is prohibitive for medium-to-large 

systems.  
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In this paper, we consider the channel detection 

problem from a combinatorial optimization viewpoint. To 

make optimal decisions for channel detection, we need to 

solve a binary-constrained optimization problem that is 

known as a binary quadratic program (BQP) in the area 

of optimization. It is well known that optimal multiuser 

detection is, in general, a non-deterministic polynomial-

time (NP)-hard BQP. Various optimization algorithms 

have been proposed to solve the BQP approximately. 

Evolutionary programming (EP), which is a type of 

evolutionary algorithms inspired by biological evolution 

and natural selection, is known for its high efficiency as a 

global optimization procedure. EP was first proposed by 

Fogel in [10] as a method to generate artificial 

intelligence. Since then, it has been extended to process 

arbitrary data structures, such as applications involving 

continuous parameter optimization and combinatorial 

optimization. EP optimization incorporating self-adaptive 

mutations was introduced in [11]. Comprehensive 

investigations into various applications [12] [13] [14] 

suggest that evolutionary algorithms have the potentials 

of being applied to solve the channel detection problem 

over multiuser channels as well. The challenge, however, 

is that they converge slowly to a near-optimal solution 

and have high computational complexities as a large 

number of generations or population size (in the order of 

tens or hundreds) is typically used. In addition, the 

schemes produce only hard decisions of transmitted bits 

and hence are not suitable for iterative detection over 

coded multiuser channels. In this paper, we propose a 

low-complexity soft-output channel detector based on a 

computationally efficient implementation of the EP 

optimization algorithm. The proposed detector uses 

tentative hard estimates fed back from channel decoders 

to form the initial population. This new scheme gives a 

complexity of O(G2Q+1+K)  per bit, where G is the 

number of generations, and Q (0≤Q≤K) is an arbitrary 

integer that controls the population size. 

The performance of the proposed channel detector is 

investigated over low-density parity-check (LDPC) [15] 

and convolutional coded multiuser channels, respectively. 

We also assume that channel parameters remain constant 

over the frame duration. No a priori knowledge of 

channel statistical properties or channel noise variance is 

known to the receiver. Hence, we consider the joint 

channel detection and estimation problem in that the 

receiver needs to estimate channel coefficients on a block 
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basis. In this paper, we develop an iterative channel 

estimator based on tentative soft estimates fed back from 

decoders to provide refined parameters to the detector at 

each iteration. It is noted that the channel estimator itself 

can be viewed as an optimization procedure that searches 

for a better solution over one dimension at a time. 

Numerical results show that the proposed receiver can 

significantly reduce the complexity with slight 

performance degradation compared to the APP algorithm. 

Moreover, the proposed approach can be readily extended 

to more complex MIMO channels, which is generally 

viewed as a dominant solution for next-generation 

wireless communication systems due to their potential to 

achieve higher capacity, diversity gain and superior 

interference suppression capabilities. 

This paper is organized as follows. In Section II, the 

system model is introduced. In Section III, a soft-output 

channel detector based on EP optimization is proposed. 

An iterative channel estimator is also developed. In 

Section IV, performance results over coded multiuser 

channels are presented. Lastly, the conclusion is drawn in 

Section V. 

 

II. S  

We focus on synchronous coded multiuser channels as 

shown in Fig. 1. The binary data bits dk for user k, 
k=1,…,K, are encoded using a channel encoder. We 

assume that the same channel code is used for all users. 

The code bits bk are binary-phase shift-keying (BPSK) 

modulated and multiplied by a normalized signature 

sequence skt with duration N chips. The signature 

sequence employed by the kth user skt is supported over 

one bit interval [0,Tb) and consists of N chips, i.e., 
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where  N

ik NN 1,1, s  is a uniformly distributed 

random signature sequence assigned to the kth user at the 

ith bit interval and c(t) is a rectangular chip waveform of 

duration Tc  with Tc=Tb/N.  The continuous-time 

waveform observed at the ith bit interval is given by 
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where ni(t) is additive white Gaussian noise (AWGN) 

with zero mean and variance σ2=No/2, No is the one-sided 

power spectral density level, and wk is the kth user’s 

signal amplitude. At the receiver, the waveform is 

converted to a discrete-time signal by passing through a 

filter matched to the chip waveform followed by being 

sampled at the chip rate 1/Tc. The output of the chip 

matched filter (MF) can be expressed in a matrix notation 

as 

                            
iiiii nbWSr                               (3) 

where Wi is a diagonal matrix, i.e., Wi=diag(w1,...,wK), Si 

is a N×K matrix defined in terms of the signature 

sequence employed by each user at the ith bit interval, i.e., 

Si=[s1,i,…,sK,i], bi=[b1,i,…,bK,i]
T is a K1 vector of code 

bits, ni=[n1,i,…,nK,i]
T is a K1 AWGN vector with zero 

mean and auto-correlation   N

T

iiE Inn
2 , and IN is an 

identity matrix of rank N. The SNR per data bit of the kth 

user is defined as 
ckob RwNE 22 2 , where Rc is the 

code rate. Let L denote the length of code bits per user 

per frame. The chip-matched filter output for the entire 

bit interval i={0,…,L−1}  can be expressed as  

                          
nSWbr 

                                         (4) 

where S is a LN×LK matrix of K users’ spreading 

sequences, i.e., S=diag(S0,...,SL-1), W=diag(W0,...,WL-1) is 

a LK×LK diagonal matrix of K users’ signal amplitudes,  

 TT

L

T

10 ,,  bbb   is a LK×1 vector of code bits, and 

 TT

L

T

10 ,,  nnn   is a LN×1 AWGN vector.  

Please note that (4) is a generalized formulation in the 

literature to model received signals over correlated 

channels. As described in Section IV, the proposed 

approach can be readily extended to more complex 

MIMO channels and has the potentials as well to be 

applied to systems in [1]-[8]. 

 
Fig. 1. A coded multiuser system. 

III. ITERATIVE RECEIVER 

A. Full-Complexity Receiver 

For channel detection over synchronous multiuser 

channels, it is sufficient to consider the chip matched 

filter output in one bit interval as shown in (3). The full-

complexity multiuser detector based on the APP 

algorithm produces the a posteriori log-likelihood ratio 

(LLR) for the kth code bit at the ith bit interval, which is 

given by, 
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where the superscript m denotes the channel detector. 

Using Bayes’ rule, we can write (5) as 
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where the a priori probability of code bit vector bi is 

related to its a priori LLR iλ  as, 
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It is assumed that different user’s bits are independent 

of each other. The first term at the right-hand side (RHS) 

of (7) does not depend on bi and thus can be omitted in 

the calculation. The conditional probability density 

function (pdf) of the chip matched filter output ri is given 

by 
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where C is a constant. Based on (7) and (8), we can 

rewrite the LLR expression as. 
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where the metric of binary vector bi is given by 
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The summations in the numerator and denominator of 

(9) are over all 2K-1 binary vectors with bk,i=1 and bk,i=−1, 

respectively. Hence, the computational complexity of the 

APP detector is O(2K) per bit, which is prohibitive for 

medium-to-large systems. 

B. Soft-Output EP Detector 

The computational complexity of the APP algorithm 

can be effectively reduced by decoupling the soft-output 

channel detection problem into two separate feasible 

stages. In the first stage, EP optimization is used to search 

for a near-optimal hard estimate of transmitted code bits; 

while in the second stage, we produce the a posteriori 

information based on trial vectors searched in the EP 

procedure as well as those in a local neighborhood of the 

EP hard estimate. It can be seen that EP optimization 

starts with a population of potential solutions, where the 

population size NEP is generally fixed for all generations. 

At each generation, each member in the population 

generates an offspring via mutation, and better 

individuals among parents and offspring are selected as 

parents of the next generation based on their fitness 

values. The cycle (mutation, selection, and replacement) 

as shown in Fig. 2 can be repeated until an optimization 

criterion is met. 

 
Fig. 2. Flowchart of the proposed EP-based detector for coded multiuser 

channels. 

1) Initialization of the Population 

In many EP applications, the initial population of 

potential solutions is randomly selected from the search 

space. In this study, a different approach is adopted. In 

particular, we form tentative hard estimates 
ib̂  of 

transmitted bits based on the a posteriori LLR 
iΛ  at the 

output of channel decoders as 
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where k=1,…,K. The initial population is generated by 

identifying and perturbing the Q least reliable bits 

ijijij Q
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  in the vector 
ib̂ . Hence, the population 

consists of NEP=2Q members and can be expressed as a set 

of binary vectors   l

ibε ˆ
1  , 12,,0  Ql  , as  
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where we define the reliability of bit bk,i as the absolute 

value of its a posteriori LLR 
ik , . At the first iteration 

(i.e., iteration between the channel detector and decoders), 

no a priori information is available. A conventional 

channel detector has to be employed to deliver the input 

vector 
ib̂  to EP, for example, a minimum-mean-square-

error (MMSE) multiuser detector. Compared with a 

solution randomly selected from the search space 

{−1,+1}K, 
ib̂  benefits from channel decoding efficiency 

and is a better estimate of transmitted bits, thus resulting 

in faster convergence of the algorithm 

2) Efficient fitness evaluation of parents  

The goal of the fitness function is to evaluate the status 

of each member in the population. In the channel 

detection problem, the fitness level is evaluated based on 

the objective function (10) derived from the APP 

algorithm. The direct implementation of (10) for all 2Q 

members in the initial population involves 2Q(K2+3K) 

floating-point operations, which could be 

computationally intensive for large values of K and Q. 

Based on the inherent structure of the set ε1, we can 

develop a recursive approach to compute fitness values 

efficiently. Note that the direct calculation is still required 

for the first vector in ε1, that is, we have     00 ˆ
ib . 

After some manipulation, the fitness values associated 

with the other 2Q−1 vectors in the initial population can 

be computed based on a recursive approach as  
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where n=l+2h, h=0,…,Q−1, l=0,…,2h−1, n=1,…,2Q−1. 

The recursive relation in (13) is based on the observation 

that  n

ib̂  and  l
ib̂  differ only in bit position jh. With this 
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efficient approach, the number of operations required for 

calculating 2Q fitness values is reduced to K2+2QK. For 

example, for a system with K=15 and Q=4, the 

computational effort can be saved by 89%.     

3) Mutation operator 

There are three major operations in an evolutionary 

algorithm: crossover, selection, and mutation. EP places 

emphasis on the behavioral linkage between parents and 

offspring rather than emulating specific genetic operators. 

Hence, mutation is the main operation in EP and is 

introduced to maintain a bias between exploiting local 

neighborhood and exploring large search space. From a 

performance point of view, Cauchy (or Lévy) mutation 

might be preferable when search points are far away from 

the global optimum due to its high probability of making 

long jumps; whereas Gaussian mutation is usually 

adopted when search points are in the neighborhood of 

the global optimum due to its better fine-tuning ability. 

For the channel detection problem considered here, the 

input vector 
ib̂  to EP is obtained from channel decoders 

and is likely to be estimated well. Hence, we use 

Gaussian mutation to generate offspring for each member 

in the population. The EP with self-adaptive Gaussian 

mutation works as follows. 

Each vector  l
ib̂ , l=0,…,2Q−1, in the set ε1 is assigned 

a  real-valued K-tuple vector     l

k

l η , k=1,…,K, where 

 l
η  are standard deviations for Gaussian mutation. For 

each parent  l
ib̂ , we create an offspring  l

ib
~  according 

to the updating rule as 

                         1,01,0exp~
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where N(l)(0,1) stands for a standard Gaussian random 

variable and is fixed for a given member index l, and 

Nk(0,1) is a Gaussian random variable generated anew for 

each bit position k. The parameters   and    are 

commonly set to 
EPN21  and 

EPN21 , where 

NEP=2Q is the population size and is assumed to be the 

same for all generations.  

4) Selection and replacement 

Selection is an operator that emulates the survival-of-

the-fittest mechanism in nature. Selection in EP is usually 

carried out by using the tournament scheme, that is, by 

performing pairwise comparison over the union of 

parents   l

ibε ˆ
1   and offspring   l

ibε
~

2  , l=0,…,2Q−1. For 

each individual member, opponents are chosen uniformly 

at random from all the parents and offspring. If the 

individual’s fitness is no smaller than that of the 

opponent, the individual receives a “win”. Based on 

comparison results, the 2Q members out of ε1 and ε2 that 

have the most wins are selected as parents of the next 

generation. Based on the above principle, we rank the 

parents and offspring in the descending order of their 

fitness values and select the first 2Q members to form the 

basis of the next generation. The fitness values of the 

selected members are also passed along to avoid repeated 

computation.  

Steps 3) and 4) described above can be repeated until 

the maximum number of generations G is reached. In the 

end, we have a set ε that consists of all trial binary 

vectors searched in EP with cardinality |ε|=G2Q+1 as well 

as the best individual member  EP

ib  in ε that corresponds 

to the largest fitness value. We consider the solution  EP

ib  

as a suboptimal hard estimate of transmitted bits.     

5) Soft information      

To be incorporated into the iterative receiver, the EP 

detector must produce the a posteriori LLR of code bits 

as the input for channel decoders. One approach is to 

perform the LLR calculation over the set of trial vectors ε. 

From (9), it can be seen that a simple restriction on ε is 

that for each bit position k=1,…,K, there must exist at least 

two vectors in ε whose kth element are −1 and +1, 

respectively. Otherwise, either the numerator or the 

denominator of (9) becomes zero, thus resulting in an 

infinite LLR. To ensure that this requirement is met as we 

are mainly interested in using a few generations in EP 

optimization for the sake of lower computational 

complexity, we propose to include another set of K binary 

vectors in the LLR calculation. A heuristic scheme to 

form these vectors is based on the 1-opt local search 

neighborhood ξ  of the EP hard estimate  EP

ib ,  
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where 
H
  denotes the Hamming weight of its vector 

argument. The set ζ can be expressed as 
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Note that the fitness value of each vector in ζ can be 

computed efficiently by using a stepwise approach, since 

each vector in ζ differs from  EP

ib  in exactly one bit 

position. Given the union of ε and ζ, we can approximate 

the a posteriori LLR of the kth bit in the ith bit interval as 
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Hence, the computational complexity of the proposed 

soft-output EP detector is given by O(G2Q+1+K) per bit, 

where the complexity is given in terms of the number of 

binary candidate vectors involved in the LLR calculation. 
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C. Channel Estimation 

In the development of the EP channel detector, we 

assume that the receiver has the knowledge of users’ 

signal amplitudes. In this section, we develop an iterative 

channel estimator based on soft estimates fed back from 

channel decoders to provide channel parameters to the 

detector.  

1) Unbiased EM channel estimator 

Let us define a K×1 vector w=[w1,…,wK]T as K-users’ 

signal amplitudes to be estimated for the current frame. It 

is well known that the joint maximum-likelihood (ML) 

detection and estimation is computationally prohibitive; 

while the accuracy of the data-aided estimate based on 

short training sequences is rather low for practical 

applications. On the other hand, the expectation-

maximization (EM) algorithm [16], which can be viewed 

as a unidimensional optimizer, provides us with a feasible 

approximate solution to the ML problem by iteratively 

updating channel estimates.  

After some manipulation, we obtain the unbiased 

channel estimates as 

                                        ttt
YRw

11ˆ
                  (19) 

where the K×K correlation matrix R(t) and the K×1 vector 

Y
(t) are given by, respectively, 
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2) Steepest descent implementation 

A direct implementation of the unbiased channel 

estimate in (19) involves the computation of the matrix 

inverse at each iteration. To reduce the computational 

complexity, we could simply approximate the matrix R(t) 

as a diagonal matrix. This approximation, however, is 

based on the assumption that mutually orthogonal 

signature sequences are used in the system. Simulation 

shows that this approximation results in significant 

performance degradation.  

On the other hand, note that the product       ttt
YRw

11ˆ
   

can be approximated by solving the linear equation 
     ttt

YwR 1ˆ  using iterative methods like the steepest-

descent (SD) algorithm. At the tth iteration, the algorithm 

performs the following computation  

            ttttt
YwRww    ,,1, ˆ2ˆˆ               (22)  

where the parameter μ is the step size chosen to ensure 

convergence of the algorithm. Since channel estimation is 

performed only once per iteration, we use the same 

superscript t to denote both EM iteration and channel 

iteration in the receiver. The superscript (t,τ) denotes the 

quantities obtained at the τth steepest-descent search step 

for the tth channel iteration. The updating step in (22) can 

be repeated as many times as allowed by the 

computational resources. In this paper, the maximum 

number of search steps is set to τmax=2.  

We can improve the convergence speed of the 

steepest-descent channel estimator by choosing the 

optimal step size μopt as [17] 

                              

minmax

1





opt

                       (23) 

where ρmax and ρmin are the maximum and minimum 

eigenvalues of the symmetrical matrix R
(t), respectively. 

To find the optimal step size, we need to solve an 

eigenvalue problem that is usually as costly as solving the 

linear equation itself. To circumvent this problem, we can 

use the Gershgorin circle theorem [18] to obtain 

approximate extreme eigenvalues of R
(t). The theorem 

delivers an interval  maxmin
ˆ,ˆ   such that 

minmin
ˆ    and 

maxmax
ˆ   as    
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The optimal step size μopt is thus approximated by 

using 
min̂  and 

max̂ .  

The steepest-descent algorithm requires an initial 

estimate  0,ˆ t
w  as an input vector. Since each channel 

iteration provides refined estimates, we use the estimate 

from the most recent channel iteration  max,1ˆ t
w  as the 

initial estimate for the current tth iteration, i.e., by setting 
   max,10, ˆˆ 


tt

ww . At the first iteration, however, no a priori 

information is available. In this case, the initial estimate 

can be evaluated in a data-aided fashion by inserting 

training sequences into each user’s transmitted frame. 

D. Receiver Structure 

The proposed receiver consists of three main building 

blocks: a soft-output EP channel detector, an iterative 

channel estimator, and a bank of decoders. The proposed 

receiver involves three iterative processes.  

For each overall iteration between the channel detector 

and decoders, the EP detector operates on G generations 

of potential solutions each with population size 2Q; while 

the channel estimator performs τmax-step steepest-descent 

search to update channel parameters. When LDPC codes 

are used in the system, the LDPC decoder itself involves 

the maximum of P decoding iterations to produce hard 

decisions of data bits as well as the a posteriori LLR of 

LDPC code bits Λ . The details of the sum-product 

algorithm (SPA) for LDPC decoding may be referred to 

[15]. In addition to the a priori information λ  fed back 

to the channel detector, the receiver also feeds back soft 

estimates of coded bits b  to the channel estimator as 

well as tentative hard estimates b̂  to the EP multiuser 

detector as an input vector. Hence, the proposed receiver 

benefits from channel decoding efficiency and time 
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diversity brought by random interleaving. Simulation 

results in Section IV will show that the proposed receiver 

converges with a few generations and significantly 

reduces the computational complexity with slight 

performance degradation compared to the APP algorithm. 

IV. PERFORMANCE RESULTS 

A. Full-Complexity Receiver 

In this section, we present simulation results of the 

proposed iterative receiver for synchronous LDPC coded 

multiuser systems. All the users in the system employ the 

same rate-1/2 (504,252) random LDPC code with column 

weight 3 and are assumed to have the same received 

power. Each user uses a different random interleaver that 

is updated for every frame transmission. The MMSE 

detector is used as the first stage to deliver initial hard 

estimates to the EP detector. 
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Fig. 3. BER performance of the full-complexity iterative receiver for a 

K=5, N=7 LDPC coded multiuser system with perfect channel 

knowledge. 

First, we consider the iterative receiver based on the 

full-complexity APP algorithm (i.e., full-complexity 

iterative receiver) over a 5-user channel with random 

signature sequences of length 7, i.e., K=5 and N=7, where 

we assume that the receiver has the perfect knowledge of 

channel amplitudes and channel noise variance. Fig. 3 

shows the bit-error-rate (BER) performance of the 

receiver at the 8th iteration. In the simulation, the 

maximum number of local iterations inside LDPC 

decoders varies from P=5 to P=30 per overall iteration. 

For comparison purposes, we also present the 

performance of the receiver over a 16-state (31o, 33o) 

convolutional coded channel (curve labeled “Conv”) as 

well as the performance of single-user (SU) LDPC 

decoding with 30 decoding iterations (P=30). It is shown 

that the number of local LDPC iterations P has an effect 

on BER performance. Increasing P from P=5 to P=7 

results in a performance gain of about 0.5 dB at BER of 

10-5, while increasing P further to P=10 brings an 

additional gain of 0.2 dB. Compared with the 

convolutional coded system, the performance of the 

LDPC coded system is much better for moderate-to-high 

SNR. At BER of 10-5, the performance gain with P=30 is 

about 1.5 dB. Fig. 3 shows that with 30 local iterations, 

the system can approach closely the performance of the 

LDPC code.  
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Fig. 4. BER performance of the full-complexity iterative receiver for a 

K=5, N=7 LDPC coded multiuser system with estimated channel 

parameters. 

In Fig. 4, we present the performance of the receiver 

for the same system considered in Fig. 3. However, no 

knowledge of channel parameters is assumed here at the 

receiver. For comparison purposes, we fix the number of 

local iterations within LDPC decoders to P=30. A set of 

mutually orthogonal training sequences of length 12 is 

used to provide the data-aided channel estimate at the 

first overall iteration. Fig. 4 shows that approximating the 

correlation matrix R(t) in (20) as a diagonal matrix (curve 

labeled “Diag. Approx.”) results in the worst performance 

among several channel estimation methods. On the other 

hand, the channel estimator provides a gain of 2 dB at 

BER of 10-5 at the expense of the matrix inverse 

computation. However, due to the bias of channel 

estimates, there is still a performance loss of 1 dB 

compared to the system with perfect channel knowledge 

(curve labeled “Perfect Est.”). Fig. 4 shows that we can 

further improve BER performance by using the steepest-

descent (SD) algorithm in (22) to realize unbiased 

channel estimation. It is shown that the receiver with 2-

step channel estimation has negligible performance loss 

at BER of 10-5.   

Next, we consider the performance of the iterative 

receiver based on the EP optimization. Fig. 5 shows the 

performance of a LDPC coded system with K=5 and N=7, 

where perfect channel knowledge is assumed at the 

receiver. In the following simulations, we set the 

maximum number of local iterations within LDPC 

decoders to P=30. Three soft-output EP detectors with 

G=1 and Q=1, 2, 3 are considered in the simulation, 

respectively, where G denotes the number of generations 

and Q determines the population size (i.e., NEP=2Q). For 

this system, EP converges with 1 generation and 

increasing the value of G results in similar performance. 
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The proposed EP detector with G=1 and Q=1, 2, 3 

searches 9, 13, 21 binary vectors in the LLR calculation, 

respectively. For comparison purposes, the performance 

of the full-complexity (FC) iterative APP receiver at the 

8th iteration is also presented. Compared with the full-

complexity receiver, the EP receiver with Q=1 has a 

performance loss of 0.5 dB at BER of 10-2. However, the 

performance loss becomes negligible for moderate SNR 

and the receiver with Q=1 approaches the LDPC code 

performance within 0.2 dB at BER of 10-4. Fig. 5 shows 

that the performance can be improved by increasing the 

population size. The receiver with Q=3 performs close to 

the LDPC code performance within 0.1 dB at BER of 10-3 

and has a negligible loss at BER of 10-5. In Fig. 6, we 

present the performance of the EP receiver for the same 

5-user system, where a 2-step steepest-descent (SD) 

algorithm is used to estimate channel parameters. 

Compared with the receiver with perfect channel 

knowledge (curve labeled “Perfect Est.”), it can be seen 

that the receiver can almost fully compensate the effect of 

imperfect channel estimates. At BER of 10-5, the receiver 

with Q=1 and Q=3 can approach SU performance within 

0.3 dB and 0.1 dB, respectively. 

0 0.5 1 1.5 2 2.5 3 3.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

Q=1,G=1,Iter 8
Q=2,G=1,Iter 8
Q=3,G=1,Iter 8
FC,Iter 8
SU

 
Fig. 5. BER performance of the iterative EP receiver for a K=5, N=7 

LDPC coded multiuser system with perfect channel knowledge. 
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Fig. 6. BER performance of the iterative EP receiver for a K=5, N=7 

LDPC coded multiuser system with estimated channel parameters. 
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Fig. 7. BER performance of the iterative EP receiver for a K=10, N=15 

LDPC coded multiuser system with perfect channel knowledge. 

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

G=3,Q=1,Iter 8,2-step SD 
G=3,Q=2,Iter 8,2-step SD 
G=3,Q=3,Iter 8,2-step SD 
G=3,Q=4,Iter 8,2-step SD 
SU

 
Fig. 8. BER performance of the iterative EP receiver for a K=10, N=15 

LDPC coded multiuser system with estimated channel knowledge. 

In Fig. 7, we consider a larger LDPC coded system 

with K=10 and N=15, where perfect channel knowledge 

is assumed at the receiver. For a 10-user system, the full-

complexity iterative APP receiver is infeasible for 

practical implementation, since it searches through 210 

binary vectors per iteration. The EP receiver, however, 

has a reasonable and adjustable computational 

complexity, and can be easily implemented for large 

systems. The receiver with Q=2 (corresponding to 

population size of 4) and various number of generations 

G=1, 2, 4 searches 18, 26, and 42 binary vectors per 

iteration, respectively; while the receiver with G=1, Q=1, 

and G=2, Q=5 searches 14 and 138 vectors in EP 

optimization, respectively. Fig. 7 shows that increasing 

the values of G and Q results in better performance as 

more trial vectors are used in the LLR calculation. In Fig. 

8, we present the performance of the receiver with 

estimated channel parameters for the same 10-user 

system. In the simulation, the number of EP generations 

is set to G=3, while the value of Q varies from 1 to 4 

(corresponding to population size 2Q). Hence, the EP 

receiver searches 22, 34, 58, and 106 binary vectors out 

of 1024 vectors in EP optimization, respectively. Fig. 8 
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shows that the receiver with G=3 and Q=2 can approach 

SU performance within 0.5 dB at BER of 10-5, while 

increasing the value of Q to 3 reduces the gap to 0.2 dB.  

In Fig. 9, we present the performance of a LDPC 

coded system with K=20 and N=31, where a 2-step 

steepest-descent (SD) channel estimator is used in the 

system. It is shown that the receiver with G=3 and Q=2 

has a performance loss of 1 dB from that of the single-

user system at BER of 10-5, while increasing the value of 

Q to 3 brings a gain of 0.3 dB. At BER of 10-5, the 

receiver with G=3 and Q=4 approaches single-user 

performance within 0.5 dB. For this system, the reduction 

in the computational complexity is significant. The 

receiver with G=3 and Q=1, 2, 3, 4 searches 32, 44, 68, 

and 116 binary vectors in EP optimization, respectively, 

compared with 220=1,048,576 vectors for the full-

complexity APP algorithm. 
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Fig. 9. BER performance of the iterative EP receiver for a K=20, N=31 

LDPC coded multiuser system with estimated channel parameters. 

B. EP Receiver for MIMO Channels 

In this section, we present numerical results to 

demonstrate the performance of the proposed receiver 

over coded multiuser MIMO channels. It is assumed that 

the channel is quasi-static. All users employ the same 

rate-1/2 convolutional code with generator polynomial 

[23o, 25o] in octal notation. The code bit frame size is 

1008, which corresponds to 504 QPSK symbols. In 

addition, we assume that the number of receive antennas 

is the same as the number of K users’ transmit antennas. 

Furthermore, all users transmit their symbols with equal 

power, a scenario that causes severe multiple-access 

interference from the interference suppression viewpoint. 

At the first iteration, the MMSE multiuser detector is 

used as a front stage to deliver initial estimates of 

transmitted code bits. The probability of mutation in the 

EP optimization is set to pm=0.1. We vary the population 

size P and the number of generations G to study their 

effect on BER performance. 

First, we consider a multiuser MIMO system 

transmitted over unknown channels where the number of 

users and the number of transmit antennas per user are 

K=2 and Nt=2, respectively, and the total number of 

receive antennas is Mr=4. The simulation is tested for 8 

iterations. For clarity, only performance curves at the 8th 

iteration are presented in Fig. 10. The curve labeled “Pilot 

only” corresponds to the receiver that performs channel 

estimation only once based on pilot symbols. The other 

solid curves (labeled “est.”) correspond to the receiver 

that estimates the channel at each iteration based on both 

pilot symbols and soft-estimated symbols fed back from 

channel decoders. For comparison purposes, we also 

include in Fig. 10 the performance curve of a single-user 

iteratively MAP-decoded system that is equipped with 

the same number of receive antennas as that in the 

multiuser system (i.e., Nt=2 and Mr=8) over perfectly 

known channels (curve labeled “SU MAP, known”). As 

in the context of multiuser systems [16], it is reasonable 

to view the performance of the iteratively MAP-decoded 

single-user system as a lower bound of coded multiuser 

MIMO systems. Fig. 10 shows that with an increasing 

population size of P=2Q, the proposed receiver gradually 

approaches the performance of the single-user system. 

The receiver with Q=5, G=2, and N=1 searches over 112 

candidate bit vectors and performs close to the single-

user system within 0.5 dB at BER of 10-5.  

-5 -4 -3 -2 -1 0 1 2 3 4 5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

Q=3,G=2,N=1,Pilot only

Q=2,G=2,N=1,est.

Q=3,G=2,N=1,est.

Q=4,G=2,N=1,est.

Q=5,G=2,N=1,est.

SU MAP,known

Q=3,G=2,N=1,known

 
Fig. 10. Performance of the EP-based iterative receiver for a rate-1/2 

coded multiuser MIMO system with K=4, Nt=2, and Mr=8 over 

unknown channels. 

In Fig. 11, we consider an 8-user coded MIMO system 

with Nt=2 transmit antennas per user and a total of Mr=16 

receive antennas. The performance of the iteratively 

MAP-decoded single-user (SU) system with Nt=2 and 

Mr=16 over perfectly known channels is shown in the 

figure. Fig. 11 shows that the proposed receiver performs 

much better than the scheme that uses only pilot symbols 

in channel estimation. Furthermore, even with estimated 

channel knowledge, the receiver with Q=3 

(corresponding to population size P=8) approaches the 

single-user (SU) performance over perfectly known 

channels within 0.5 dB at BER of 10-5 by searching only 

56 candidate vectors, which is a tiny fraction of 
932 103.42  , the total number of hypotheses required for 
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the MAP multiuser detector. In Fig. 12, the averaged 

channel estimation error up to the 15th iteration is 

presented at SNR=-2.0, -0.5, and 2.0 dB, respectively. It 

is shown that with the proposed receiver, the channel 

estimation error is reduced significantly with increasing 

iterations. 
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Fig. 11. Performance of the EP-based iterative receiver for a rate-1/2 

coded multiuser MIMO system with K=8, Nt=2, and Mr=16 over 

unknown channels. 
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Fig. 12. Channel estimation error of the EP-based iterative receiver for a 

rate-1/2 coded multiuser MIMO system with K=4, Nt=2, and Mr=8 over 

unknown channels. 

V. CONCLUSION 

In this paper, we have proposed a generalized EP-

based approach for joint channel detection and estimation 

for coded multiuser systems. We consider the channel 

detection problem from a combinatorial optimization 

viewpoint and developed a computationally efficient soft-

output detector. An iterative channel estimator is 

developed as well based on tentative soft estimates fed 

back from channel decoders. Numerical results show that 

the proposed receiver converges with a small number of 

generations and can significantly reduce the 

computational complexity with slight performance 

degradation compared to the APP algorithm. The 

proposed approach is shown to be readily generalized to 

more complex systems, e.g., coded multiuser MIMO 

channels and achieve an impressive 

performance/complexity tradeoff.  
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