
End-to-End Secure IoT Node Provisioning

Ilker Yavuz1,2 and Berna Ors1
1 Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, 34469, Turkey

2 AirTies Wireless Networks, Istanbul, 34394, Turkey

Email: {yavuzi; siddika.ors}@itu.edu.tr

Abstract—Security of Internet of Things (IoT) has been one of

the most critical topics since IoT devices took part in daily life.

Due to resource constrained nature of IoT networks, meeting

requirements of a secure infrastructure always becomes a

challenge. The most prevalent method is to rely on conventional

application layer protocols to secure IoT network traffic but due

to IoT device capabilities, limited mobile network resources and

battery powered structure of IoT nodes, most of them are not

applicable in practice. Provisioning a new node into a running

network also suffers from these challenges. In this study, we

investigate whether pure algorithm based protocols can be used

to solve secure provisioning of resource limited IoT devices

problem. Trusted IoT node provisioning requires new node

authentication, authorization for network credentials, secret key

generation for data privacy, and distribution of secret keys.

Besides that, key management for rejoining nodes should be

considered due to mobility of IoT nodes. We propose an Elliptic

Curve Cryptography (ECC) based solution to cover these

security requirements. Our design environment has also ability

to analyze power consumption of each node during node

enabling into a secure network.

Index Terms—IoT, provisioning, bootstrapping, Elliptic Curve,

digital signature, public key cryptography, power, security,

COOJA, Contiki, Powertrace, wireless sensor networks

I. INTRODUCTION

The characteristics of IoT nodes are measuring huge

amount of data, mobility, and wireless connectivity over

a variety of links such as IEEE 802.15.4, low-power

IEEE 802.11, or IEEE 802.15.1. The privacy of these

data is an important part of IoT networks and depends on

limited resources of the nodes. By the nature of IoT

networks, nodes have limited processing power, battery

and ensuring security under these limitations requires

lightweight solutions which is differentiating from

conventional internet security frameworks.

Due to resource constrained structure of IoT nodes,

secure node provisioning for a running network before

being functional should be considered differently. Most

of IoT networks are dynamic environments and network

nodes are not static. Besides that, generally, nodes are

mobile devices and need to leave and rejoin networks

several times. For example, a cloud based voice assistant

should have security credentials before collecting and

sending environment data for the privacy of users or a

temperature sensor on a moving device in an industrial

Manuscript received February 7, 2021; revised July 4, 2021.

Corresponding author email: yavuzi@itu.edu.tr

doi:10.12720/jcm.16.8.341-346

area leaves a network and then rejoins during its

operation and needs to be provisioned several times

depending on security policies of the network.

As given above examples, each IoT node needs to be

provisioned with network related information and key,

before being functional. There are several methods

proposed by standards for network device provisioning

[1]. These standards are not directly point out the solution

so we target to propose an efficient and secure

provisioning method using elliptic curve cryptography [2].

Our contribution to the literature will be surveying

previous studies and proposing a new, optimized method.

In this paper, we present our end-to-end public key

cryptography based IoT node provisioning method. Our

method is based on elliptic curve cryptography and

optimized for lightweight IoT nodes. The proposed

schema offers node authentication, node authorization

and privacy without using certificate based application

layer protocol. In addition, our proposed schema is

resistant to man in the middle attacks [3] and replay

attacks [4].

A detailed literature survey on standards and secure

provisioning methods for IoT networks are given in

section II. Our motivation for this research, our proposed

schema, and background for underlying security

algorithms are given in section III. Implementation

details, findings and numerical results are given in IV. In

the last section, we evaluate our findings, discuss on them

and list the future works.

II. RELATED WORK

When applying conventional security schema to IoT

devices, limited device resources become a barrier

therefore pre-shared key based solutions became quickest

solution to overcome resource constrained environment

bottlenecks [5]. Flashing a security key on an IoT device

during manufacturing avoids considerable process during

run-time but brings along several problems such as key

leakage management [5].

For the sake of attacking open issues in secure device

provisioning, we will first elaborate networking group

standards to classify present methods and then list recent

studies in the literature. Based on the survey [6]

conducted by Network Working Group, IoT

bootstrapping mechanisms are classified into managed,

opportunistic and leap-of-faith, hybrid, and peer-to-peer

(P2P) methods. Each method is discussed with their

examples, advantages and disadvantages. Managed

Journal of Communications Vol. 16, No. 8, August 2021

©2021 Journal of Communications 341

methods are based on sharing credentials in advance

during manufacturing or via token such as smart card.

Extensible Authentication Protocol (EAP) [7] based

TLS certificate and PSK (Pre-Shared Key) methods are

given as examples for managed provisioning method. An

application layer protocol based CoAP-EAP [8] and

Protocol for Carrying Authentication for Network Access

(PANA) [9] are other managed provisioning method

examples. PANA does not define a new protocol on the

other hand uses EAP over UDP. A good example for

PANA was given in [10]. Sarikaya et. al. shows how a

6LowPAN border router functions as a PANA

Authentication Agent (PAA) and authenticates a

constrained PANA Client identity while joining to

network. In their schema, router is responsible to network

and security parameters to the joining device after client

authenticated successfully. Another bootstrapping method

in this class Generic Bootstrapping Architecture (GBA)

which is based on 3GPP Authentication [11]. Kerberos

protocol [12] is also given as a network authentication

protocol allowing endpoints to communicate over an

insecure network using symmetric keys [6].

Peer to peer methods given in [6] solved credential

pre-sharing problems. This method generally relies on

out-of-band (OOB) channel communication to protect to

communication man-in-the-middle attacks. OOB

communication requires extra channel so it requires extra

cost and management. EAP-NOOB [13] is one the

implementations of P2P OOB based provisioning method.

Opportunistic and Leap-of-faith bootstrapping method

is the last one counted in this group. [14] was given as an

example of this method. Secret key sharing is based on

some messaging sequences. This method is open for

vulnerabilities since secret key is shared without any

security protection after first negotiation.

To the best of our knowledge, classification given in [6]

covered methods in the literature. For instance, [15], [13],

[16], [17], and [18] can be grouped in EAP or EAP-P2P

hybrid methods. EAP authentication framework details

can be found in [16]. In addition, [19] is another P2P

provisioning method based on OOB communication

channel for credential sharing.

Certification based provisioning solutions such as [5],

[20] require more storage for certification. This is one of

the well-known weaknesses of certificate based

provisioning methods given in the literature. Given

studies [21] and [22] use compression methods to shrink

certificate size as well.

III. PROPOSED PROVISIONING ARCHITECTURE

A. Security Properties

1) Elliptic curve common secret generation

In this study, Elliptic Curve Based Diffie-Hellman

(ECDH) key establishment protocol is used to generate

shared secret since ECDH is energy efficient and requires

less ROM/RAM compared to RSA [23].

ECDH is a key agreement protocol which provides

each node holding a public-private key pair to create a

shared secret agreement over an unsecure communication

channel.

In public key infrastructure, the only thing that nodes

have to align is elliptic curve domain parameters which

can be public.

ECDH relies on two public parameters, a large prime

number p and an integer g that is less than p. These

parameters can be predefined public values for the

network. Each node chooses a private integer, node owns

private key for ECDH, which are 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐴 = 𝑎 and

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐵 = 𝑏, respectively. Then each node generates its

public keys, 𝑃𝑢𝑏𝑙𝑖𝑐𝐴 = 𝑔𝑎𝑚𝑜𝑑𝑝 and 𝑃𝑢𝑏𝑙𝑖𝑐𝐵 =

𝑔𝑏𝑚𝑜𝑑𝑝 , based upon the known public parameter and

their corresponding private keys. The private keys are

unique and different for each node. Each node sends its

public to other party via public communication channel.

(𝑔𝑎)
𝑏
𝑚𝑜𝑑𝑝 = (𝑔𝑏)

𝑎
𝑚𝑜𝑑𝑝 (1)

2) Elliptic Curve Digital Signature Algorithm

(ECDSA)

Digital Signature is a kind of unique message derived

from a message that is generated by the authority who

owns the private key and can be verified by many who

has the public key of signer [24]. Elliptic Curve Digital

Signature is also a kind of Digital Signature Algorithm

(DSA) which uses ECC background to generate and

verify unique message.

Public and private key pairs are used for digital signing

process therefore ECDSA has 2 main steps which are key

generation and signing.

Verification step needs signers public key, message

which is signed and sign of the message therefore

receiver can verify if received sign is derived from

acquired message with senders’ public key. Message

signing process is not applied directly to message. Instead,

unique message hash is signed hence signed data size is

reduced. Block level architecture for digital signing flow

can be seen in Fig. 1.

Fig. 1. Digital signature scheme

ECDSA steps are similar to the DSA scheme and

explained with the following steps.

Key Generation for ECDSA:

1. Use an elliptic curve 𝐸 with modulus 𝑝 , curve

coefficients 𝑎, b, and point 𝐴 which generates a

cyclic group of prime order 𝑞

Journal of Communications Vol. 16, No. 8, August 2021

©2021 Journal of Communications 342

2. Choose a random integer d with 0 < 𝑑 < 𝑞

3. Compute 𝐵 = 𝑑. 𝐴

The keys are now 𝑘𝑝𝑢𝑏 = (𝑝, 𝑎, 𝑏, 𝑞, 𝐴, 𝐵) , k𝑝𝑟 =

 (d). Note this is a discrete logarithm problem where the

integer d is the private key and the result of the scalar

multiplication, point B, is the public key. Similar to DSA,

the cyclic group has an order q which should have a size

of at least 160 bit or more for higher security levels [23].

ECDSA Signature Generation:

Like DSA, an ECDSA signature consists of a pair of

integers (r, s). Each value has the same bit length as q,

which makes for fairly compact signatures. Using the

public and private key, the signature for a message x is

computed as follows:

1. Choose a random integer as ephemeral key k𝐸

with 0 < kE < q.

2. Compute R = kE. 𝐴

3. Let r = xR (𝑟 = 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of the point 𝑅)

4. Compute𝑠 ≡ (ℎ(𝑥) + 𝑑 ∙ 𝑟)𝑘𝐸
−1𝑚𝑜𝑑 𝑞

The message 𝑥 has to be hashed using the function ℎ in

order to compute 𝑠. The hash function output length must

be at least as long as 𝑞.

ECDSA Signature Verification:

1. Compute auxiliary value 𝜔 ≡ 𝑠−1𝑚𝑜𝑑 𝑞

2. Compute auxiliary value 𝑢1 ≡ 𝜔 ∙ ℎ(𝑥)𝑚𝑜𝑑𝑞

3. Compute auxiliary value 𝑢2 ≡ 𝜔 ∙ 𝑟 𝑚𝑜𝑑𝑞

4. Compute 𝑃 = 𝑢1𝐴 + 𝑢2𝐵

5. The verification verkpub
(x, (r, s))follows from:

𝑥𝑝 = {
≡ 𝑟 𝑚𝑜𝑑 𝑞, 𝑉𝑎𝑙𝑖𝑑 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒
≢ 𝑟 𝑚𝑜𝑑 𝑞, 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

In the fifth step, the notation xp indicates the x −

coordinate of the point 𝑃 . The verifier accepts a

signature (r, s) only if the xp has the same value as the

signature parameter 𝑟 (𝑚𝑜𝑑 𝑞).

B. Key Management Topology

Our proposed secure IoT node provisioning schema is

based on ECC functionalities listed in section III-A. The

main problems of IoT node provisioning are new node

authentication, authorization for relevant credentials and

security key distribution. Storing node information to

grant access is the authentication problem. It is not

feasible to distribute all nodes' credentials to all border

routers on the field so credential should be stored in

central location and distributed on demand. When a new

node requests to join an IoT network, credentials are

distributed to master node with the permission of central

vault which is called Authentication Cloud (AC). AC can

be manufacturer's cloud location which stores nodes'

identity and related security credentials which are serial

number (SN) and public key pairs. Once master node has

the approval of AC for new nodes, the node can be added

to trusted list and is eligible to share network secret key.

Since all these operations have identity information and

secret key, ECC based sign & verification mechanism

given in section III-A are used for cryptographic

operations. Therefore, our ECC implementation is

deployed on all IoT nodes and on server side. Under this

assumption, interoperability problem will not be a

concern. Beyond that, sharing ECC curve parameters will

be enough for interoperability.

Fig. 2. Secure IoT node provisioning schema.

Our implementation given in Fig. 2 has following steps:

Message 1: When a new node requests to join the

network, it sends a provisioning request to border router.

This message includes SN for identity check and MAC

address and time stamp (TS) of node signed by private

key of the node for challenge-response check on AC.

Message 2: Since authentication process runs on AC,

the responsibility of border router is to forward this

request via a secure channel.

Message 3: TS check for replay attack runs on AC.

Message 4: Once the request is approved in terms of

TS in AC, second check will be if the node is approved in

Journal of Communications Vol. 16, No. 8, August 2021

©2021 Journal of Communications 343

terms of credentials. If received SN is in the trust list of

AC, the signed message is checked with the public key of

node if related MAC address is correct.

Message 5: Successful operation results in sending the

requester node public key to border router through a

secure channel to approve that the node is in trusted list

of AC.

Message 6: Border router adds the node into its trusted

list and stores the public key.

Message 7: Border router still does not share any secret

in unprotected mode. Instead, encrypts session secret key

with requester node's public to protect and sends it to the

node therefore any attacker or eavesdropper cannot able

to access secret key.

Message 8: Requested node decrypts the message and

stores the secret for secure communication.

IV. IMPLEMENTATION AND RESULTS

Our proposed schema requires digital signature,

verification, and encryption algorithms. Since our

proposal is for resource constrained IoT environments,

the implementation bottleneck is device resources. To

solve this problem, our implementation is based on

elliptic curve. We selected, 160-bit Koblitz elliptic curve

[2] over Fp with the parameters given standards. Our

implementation is configurable for other elliptic curve

parameters given in standards.

In order to analyze the tradeoff between

implementation burden of security protocols and power

consumption, we conducted some experimental tests on

our secure IoT network topology. The choice of the

ContikiOS has allowed us to use multi-threaded

environment, IPv6 and RPL [25] protocols for

communication and power analysis environment. Packet

transmission, receiving, routing features are analyzed

with COOJA. COOJA reports network timing

information and simulates lossy environment behavior. In

addition, Powertrace [26] power profiling tool are used to

monitor power consumption of active, Low power (LPM)

modes, RX and TX. Power analysis requires a real

hardware information therefore we choose Zolertia

experimenter board which is based on msp430f2617

based with CC2420 TRX module.

The key performance indexes for our proposal are

defined as implementation efficiency which are code size

and speed. In addition, we targeted power efficiency as an

important performance metric for our design hence

measured our implementation power consumption using

Powertrace power profiling tool.

A. Code Size Results

Code size performance of our implementation for a

node on MSP430 is given in Table I. Flash memory is

crucial since cryptographic algorithms require

considerable amount of code size, especially asymmetric

algorithms' parameters such as elliptic curve parameters

and symmetric algorithms' permutation and combination

blocks. Besides that, RAM size is a constraint for IoT

nodes specially for elliptic curve multiplication

operations.

TABLE I: CODE SIZE INFORMATION FOR NODE (SIZES ARE GIVEN IN

DECIMAL)

 Text Size Data Size BSS Size

Noze.Z1 55389 Bytes 358 Bytes 5346 Bytes

Area Flash RAM RAM

Total Size 99208 8192 Bytes 8192 Bytes

B. Power Consumption Results

Powertrace is used for power profiling analysis. It has

a linear model which means instantaneous power is the

sum of all active power states. In this model, measuring

the time during which component m has been in state n

has important role since Powertrace tracks system states

by using this time difference during which components

are in each power state. For this purpose, software stack

is modified to report a time difference when a component

changes its state.

The profiling tool reports Energest value which is

obtained by taking the difference between number of

ticks between a time interval and its previous time

interval.

TABLE II: PLATFORM PARAMETERS FOR POWER MODEL

Parameter Value Description

CPU Voltage 3V Between 1.8V to 3.6V

CPU_ACTIVE 10mA CPU current. Consumption in

active mode.

CPU_LPM 0.5uA CPU current. consumption in

standby mode.

RX 8.8mA TRX module current

consumption in receive mode.

TX 17.4mA TRX module current

consumption in transmit mode.

RTIMER_SECOND 32768 Real time clock tick count

The power consumption is calculated by using the

bellow formula where current and voltage parameters are

the datasheet values of the module in the measured state

as given in Table II. RTIMER_SECOND is the clock

frequency and Runtime is the time interval in which we

perform measurements.

𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛 =
𝐸𝑛𝑒𝑟𝑔𝑒𝑠𝑡_𝑉𝑎𝑙𝑢𝑒.𝐶𝑢𝑟𝑟𝑒𝑛𝑡.𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑅𝑇𝐼𝑀𝐸_𝑆𝐸𝐶𝑂𝑁𝐷.𝑅𝑢𝑛𝑡𝑖𝑚𝑒
 (2)

TABLE III: IMPLEMENTATION RESULTS (TIMING, POWER, AND

ENERGY CONSUMPTION)

Operation #Times Time Power Energy

ECC Sign 1 5.73 seconds 32mW 173mJ

ECC

Decrypt

1 5.3 seconds 30mW 160mJ

Since Energest value which is reported by Powertrace

is number of ticks for a time interval,
Energest_Value

RTIMER_SECOND

equals to time spent for reported operation in seconds.

Based on Fig. 3 and Fig. 4 our findings can be seen in

ECC sign row of Table III. As observed in Fig. 3, there

are some spikes on power consumption. To elaborate this

spikes, transmit power is analyzed and it is observed that

Journal of Communications Vol. 16, No. 8, August 2021

©2021 Journal of Communications 344

although we don’t send any packets, due to RPL protocol

internals, periodic synchronization packets consume

considerable power.

Fig. 3. CPU power consumption during periodic ECC-Sign operation.

Fig. 4. Transmit power consumption during periodic ECC-Sign

operation.

Fig. 5. CPU power consumption for periodic ECC-Sign operation (TX

is disabled)

Fig. 6. CPU power consumption for single decryption operation.

To observe power consumption for ECC sign operation

more clear, we removed transmission and receive power

consumption just for measurements. We disabled

CC2420 transmitter module at driver level for this

purpose. Disabled transmit module configuration can

never be the real use case since due to nature of RPL

protocol, periodic network related packets have to be in

the network. TX power eliminated plots can be found on

Fig. 5.

As given in section III-B, IoT nodes in our schema

requires 1 signing and 1 decryption operation. In addition

to our results and findings for signing operation given

above, decryption results can be found in ECC-decrypt

row in Table III. As it is seen on Fig. 6, an IoT nodes

consumes approximately 30mW for a single operation

and this operation takes 5.3 seconds on our platform.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced an end-to end secure IoT

node provisioning schema and its power analysis. Our

proposed schema does not need any application layer

certificate based protocol. Besides that, as we list in

section II, some studies rely on dedicated credential

server or hardware. On the other hand, our mechanism is

based on efficient elliptic curve cryptography without

dedicated local credential server. For all we know, our

schema differs from previous studies in the literature with

these features. Since we don't use any certificate based

schema and high level agreement protocol such as

Internet Key Exchange(IKE) [27], our proposal is

suitable for resource constrained environments. As it is

given in Table I our implementation fits into limited

RAM and ROM area. In addition, our power

consumption results show that, an IoT node consumes

32mW power for single sign operation for step 1 and

30mW for step 8 which are given in section III-B.

A potential future direction would be to implement

different asymmetric encryption algorithms and evaluate

timing, code size, and power consumption for same

schema. A combination of symmetric and asymmetric

algorithms can be applied to extend proposed solution as

well. In addition, efficient elliptic curve implementations

and improvements listed in the literature is another

potential research direction.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHOR CONTRIBUTIONS

The first author Ilker Yavuz conducted the research;

including implementation, simulation, and data analyzes.

The co-author Prof. Berna Ors examined the results and

supervised the research. Both authors had approved the

final version.

REFERENCES

[1] M. Sethi, B. Sarikaya, and D. Garcia-Carillo, “Secure IoT

Bootstrapping: A Survey,” Internet Engineering Task

Force, 2020.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics

of Computation, vol. 48, pp. 203–209, 1 1987.

[3] L. Lamport, “Password authentication with insecure

communication,” Commun. ACM, vol. 24, pp. 770–772,

1981.

[4] C. Adams, “Replay attack,” in Encyclopedia of

Cryptography and Security, H. C. A. van Tilborg and S.

Jajodia, Eds., Boston, MA: Springer US, 2011, pp. 1042–

1042.

[5] J. Höglund, S. Lindemer, M. Furuhed, and S. Raza,

“PKI4IoT: Towards public key infrastructure for the

internet of things,” Comput. Secur., vol. 89, 2020.

[6] R. Cragie, Y. Ohba, R. S. Moskowitz, Z. Cao, and B.

Sarikaya, Security Bootstrapping Solution for Resource-

Constrained Devices, 2012.

Journal of Communications Vol. 16, No. 8, August 2021

©2021 Journal of Communications 345

[7] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H.

Levkowetz, Extensible Authentication Protocol (EAP),

RFC Editor, 2004.

[8] D. Garcia-Carrillo and R. López, EAP-based

Authentication Service for CoAP, 2017.

[9] D. Forsberg, B. Patil, H. Tschofenig, and A. Yegin,

Protocol for Carrying Authentication for Network Access

(PANA), RFC Editor, 2008.

[10] B. Sarikaya, Y. Ohba, Z. Cao, and R. Cragie, “Security

bootstrapping of resource-constrained devices,” Internet

Engineering Task Force, 2010.

[11] 3GPP, “Generic Authentication Architecture (GAA),”

Technical Specification Group Services and System

Aspects, 2016.

[12] D. C. Neuman, S. Hartman, K. Raeburn, and T. Yu, The

Kerberos Network Authentication Service (V5), RFC

Editor, 2005.

[13] T. Aura and M. Sethi, “Nimble out-of-band authentication

for EAP (EAP-NOOB),” Internet Engineering Task Force,

2020.

[14] O. Bergmann, S. Gerdes, and C. Bormann, Simple Keys

for Simple Smart Objects, 2012.

[15] A. Peltonen, E. Inglés, S. Latvala, D. Garcia-Carrillo, M.

Sethi, and T. Aura, “Enterprise security for the internet of

things (IoT): Lightweight bootstrapping with EAP-

NOOB,” Sensors, vol. 20, p. 6101, 10 2020.

[16] G. Zorn and D. Harkins, Extensible Authentication

Protocol (EAP) Authentication Using Only a Password,

RFC Editor, 2010.

[17] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari,

“IoT-OAS: An oauth-based authorization service

architecture for secure services in IoT scenarios,” IEEE

Sensors Journal, vol. 15, no. 2, pp. 1224–1234, 2015.

[18] D. Garcia-Carrillo and R. Marin-Lopez, “Lightweight

CoAP-Based bootstrapping service for the internet of

things,” Sensors, vol. 16, p. 358, 2016.

[19] M. Hossain and R. Hasan, “Boot-IoT: A privacy-aware

authentication scheme for secure bootstrapping of IoT

Nodes,” in Proc. IEEE International Congress on Internet

of Things, 2017.

[20] D. Simon, R. Hurst, and D. B. D. Aboba, The EAP-TLS

Authentication Protocol, RFC Editor, 2008.

[21] J. Sanchez-Gomez, D. Garcia-Carrillo, R. Marin-Perez, R.

Sanchez-Iborra, and A. F. S. Gomez, “Secure

bootstrapping and header compression for IoT constrained

networks,” in Global Internet of Things Summit (GIoTS),

2020.

[22] A. Ghedini and V. Vasiliev, TLS Certificate Compression,

RFC Editor, 2020.

[23] B. Preneel, “New European Schemes for Signature,

Integrity and Encryption (NESSIE): A status report,” in

Public Key Cryptography, Berlin, 2002.

[24] . L. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public-key cryptosystems,”

Commun. ACM, vol. 21, pp. 120–126, 2 1978.

[25] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P.

Levis, K. Pister, R. Struik, J. P. Vasseur, and R.

Alexander, RPL: IPv6 Routing Protocol for Low-Power

and Lossy Networks, RFC Editor, 2012.

[26] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes,

Powertrace: Network-level Power Profiling for Low-

power Wireless Networks, 2011.

[27] D. Harkins and D. Carrel, The Internet Key Exchange

(IKE), RFC Editor, 1998.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Ilker Yavuz received his B.Sc. and

M.Sc. degrees in Electronics &

Communication Engineering from

Istanbul Technical University (ITU),

Turkey, in 2004 and 2008, respectively.

He is currently a Ph.D. candidate in the

same major in ITU. He has been in the

software industry since 2004 and

working for AirTies Wireless Networks

as a Principal Software Engineer since 2017. His research

interests are in areas of cryptology, embedded systems, and

wireless sensor networks.

Berna Ors received the Electronics &

Communication Engineering degree and

the MSc degree in 1995 and 1998,

respectively, both from the Istanbul

Technical University (ITU), Turkey. She

received the Electrical Engineering

degree in applied sciences from the

Katholieke Universiteit Leuven, Belgium,

in 2005. Currently, she is a Professor at

ITU. Her main research interests include cryptography,

embedded systems, and side-channel attacks.

Journal of Communications Vol. 16, No. 8, August 2021

©2021 Journal of Communications 346

https://creativecommons.org/licenses/by-nc-nd/4.0/

