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Abstract—Security of Internet of Things (IoT) has been one of 

the most critical topics since IoT devices took part in daily life. 

Due to resource constrained nature of IoT networks, meeting 

requirements of a secure infrastructure always becomes a 

challenge. The most prevalent method is to rely on conventional 

application layer protocols to secure IoT network traffic but due 

to IoT device capabilities, limited mobile network resources and 

battery powered structure of IoT nodes, most of them are not 

applicable in practice. Provisioning a new node into a running 

network also suffers from these challenges. In this study, we 

investigate whether pure algorithm based protocols can be used 

to solve secure provisioning of resource limited IoT devices 

problem. Trusted IoT node provisioning requires new node 

authentication, authorization for network credentials, secret key 

generation for data privacy, and distribution of secret keys. 

Besides that, key management for rejoining nodes should be 

considered due to mobility of IoT nodes. We propose an Elliptic 

Curve Cryptography (ECC) based solution to cover these 

security requirements. Our design environment has also ability 

to analyze power consumption of each node during node 

enabling into a secure network. 

 

Index Terms—IoT, provisioning, bootstrapping, Elliptic Curve, 

digital signature, public key cryptography, power, security, 

COOJA, Contiki, Powertrace, wireless sensor networks 

 

I. INTRODUCTION 

The characteristics of IoT nodes are measuring huge 

amount of data, mobility, and wireless connectivity over 

a variety of links such as IEEE 802.15.4, low-power 

IEEE 802.11, or IEEE 802.15.1. The privacy of these 

data is an important part of IoT networks and depends on 

limited resources of the nodes. By the nature of IoT 

networks, nodes have limited processing power, battery 

and ensuring security under these limitations requires 

lightweight solutions which is differentiating from 

conventional internet security frameworks. 

Due to resource constrained structure of IoT nodes, 

secure node provisioning for a running network before 

being functional should be considered differently. Most 

of IoT networks are dynamic environments and network 

nodes are not static. Besides that, generally, nodes are 

mobile devices and need to leave and rejoin networks 

several times. For example, a cloud based voice assistant 

should have security credentials before collecting and 

sending environment data for the privacy of users or a 

temperature sensor on a moving device in an industrial 
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area leaves a network and then rejoins during its 

operation and needs to be provisioned several times 

depending on security policies of the network. 

As given above examples, each IoT node needs to be 

provisioned with network related information and key, 

before being functional. There are several methods 

proposed by standards for network device provisioning 

[1]. These standards are not directly point out the solution 

so we target to propose an efficient and secure 

provisioning method using elliptic curve cryptography [2]. 

Our contribution to the literature will be surveying 

previous studies and proposing a new, optimized method. 

In this paper, we present our end-to-end public key 

cryptography based IoT node provisioning method. Our 

method is based on elliptic curve cryptography and 

optimized for lightweight IoT nodes. The proposed 

schema offers node authentication, node authorization 

and privacy without using certificate based application 

layer protocol. In addition, our proposed schema is 

resistant to man in the middle attacks [3] and replay 

attacks [4]. 

A detailed literature survey on standards and secure 

provisioning methods for IoT networks are given in 

section II. Our motivation for this research, our proposed 

schema, and background for underlying security 

algorithms are given in section III. Implementation 

details, findings and numerical results are given in IV. In 

the last section, we evaluate our findings, discuss on them 

and list the future works. 

II. RELATED WORK 

When applying conventional security schema to IoT 

devices, limited device resources become a barrier 

therefore pre-shared key based solutions became quickest 

solution to overcome resource constrained environment 

bottlenecks [5]. Flashing a security key on an IoT device 

during manufacturing avoids considerable process during 

run-time but brings along several problems such as key 

leakage management [5].  

For the sake of attacking open issues in secure device 

provisioning, we will first elaborate networking group 

standards to classify present methods and then list recent 

studies in the literature. Based on the survey [6] 

conducted by Network Working Group, IoT 

bootstrapping mechanisms are classified into managed, 

opportunistic and leap-of-faith, hybrid, and peer-to-peer 

(P2P) methods. Each method is discussed with their 

examples, advantages and disadvantages. Managed 
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methods are based on sharing credentials in advance 

during manufacturing or via token such as smart card.  

Extensible Authentication Protocol (EAP) [7] based 

TLS certificate and PSK (Pre-Shared Key) methods are 

given as examples for managed provisioning method. An 

application layer protocol based CoAP-EAP [8] and 

Protocol for Carrying Authentication for Network Access 

(PANA) [9] are other managed provisioning method 

examples. PANA does not define a new protocol on the 

other hand uses EAP over UDP. A good example for 

PANA was given in [10]. Sarikaya et. al. shows how a 

6LowPAN border router functions as a PANA 

Authentication Agent (PAA) and authenticates a 

constrained PANA Client identity while joining to 

network. In their schema, router is responsible to network 

and security parameters to the joining device after client 

authenticated successfully. Another bootstrapping method 

in this class Generic Bootstrapping Architecture (GBA) 

which is based on 3GPP Authentication [11]. Kerberos 

protocol [12] is also given as a network authentication 

protocol allowing endpoints to communicate over an 

insecure network using symmetric keys [6]. 

Peer to peer methods given in [6] solved credential 

pre-sharing problems. This method generally relies on 

out-of-band (OOB) channel communication to protect to 

communication man-in-the-middle attacks. OOB 

communication requires extra channel so it requires extra 

cost and management. EAP-NOOB [13] is one the 

implementations of P2P OOB based provisioning method. 

Opportunistic and Leap-of-faith bootstrapping method 

is the last one counted in this group. [14] was given as an 

example of this method. Secret key sharing is based on 

some messaging sequences. This method is open for 

vulnerabilities since secret key is shared without any 

security protection after first negotiation. 

To the best of our knowledge, classification given in [6] 

covered methods in the literature. For instance, [15], [13], 

[16], [17], and [18] can be grouped in EAP or EAP-P2P 

hybrid methods. EAP authentication framework details 

can be found in [16]. In addition, [19] is another P2P 

provisioning method based on OOB communication 

channel for credential sharing. 

Certification based provisioning solutions such as [5], 

[20] require more storage for certification. This is one of 

the well-known weaknesses of certificate based 

provisioning methods given in the literature. Given 

studies [21] and [22] use compression methods to shrink 

certificate size as well. 

III. PROPOSED PROVISIONING ARCHITECTURE 

A. Security Properties 

1) Elliptic curve common secret generation 

In this study, Elliptic Curve Based Diffie-Hellman 

(ECDH) key establishment protocol is used to generate 

shared secret since ECDH is energy efficient and requires 

less ROM/RAM compared to RSA [23]. 

ECDH is a key agreement protocol which provides 

each node holding a public-private key pair to create a 

shared secret agreement over an unsecure communication 

channel. 

In public key infrastructure, the only thing that nodes 

have to align is elliptic curve domain parameters which 

can be public. 

ECDH relies on two public parameters, a large prime 

number p and an integer g that is less than p. These 

parameters can be predefined public values for the 

network. Each node chooses a private integer, node owns 

private key for ECDH, which are 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐴 = 𝑎  and 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐵 = 𝑏, respectively. Then each node generates its 

public keys, 𝑃𝑢𝑏𝑙𝑖𝑐𝐴 = 𝑔𝑎𝑚𝑜𝑑𝑝  and 𝑃𝑢𝑏𝑙𝑖𝑐𝐵 =

𝑔𝑏𝑚𝑜𝑑𝑝 , based upon the known public parameter and 

their corresponding private keys. The private keys are 

unique and different for each node. Each node sends its 

public to other party via public communication channel. 

 

(𝑔𝑎)
𝑏
𝑚𝑜𝑑𝑝 = (𝑔𝑏)

𝑎
𝑚𝑜𝑑𝑝                     (1) 

2) Elliptic Curve Digital Signature Algorithm 

(ECDSA) 

Digital Signature is a kind of unique message derived 

from a message that is generated by the authority who 

owns the private key and can be verified by many who 

has the public key of signer [24]. Elliptic Curve Digital 

Signature is also a kind of Digital Signature Algorithm 

(DSA) which uses ECC background to generate and 

verify unique message. 

Public and private key pairs are used for digital signing 

process therefore ECDSA has 2 main steps which are key 

generation and signing. 

Verification step needs signers public key, message 

which is signed and sign of the message therefore 

receiver can verify if received sign is derived from 

acquired message with senders’ public key. Message 

signing process is not applied directly to message. Instead, 

unique message hash is signed hence signed data size is 

reduced. Block level architecture for digital signing flow 

can be seen in Fig. 1. 

 
Fig. 1. Digital signature scheme 

ECDSA steps are similar to the DSA scheme and 

explained with the following steps. 

Key Generation for ECDSA: 

1. Use an elliptic curve 𝐸 with modulus 𝑝 , curve 

coefficients 𝑎, b, and point 𝐴 which generates a 

cyclic group of prime order 𝑞 
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2. Choose a random integer d with 0 < 𝑑 < 𝑞 

3. Compute 𝐵 = 𝑑. 𝐴 

The keys are now 𝑘𝑝𝑢𝑏 = (𝑝, 𝑎, 𝑏, 𝑞, 𝐴, 𝐵) ,  k𝑝𝑟 =

 (d). Note this is a discrete logarithm problem where the 

integer d is the private key and the result of the scalar 

multiplication, point B, is the public key. Similar to DSA, 

the cyclic group has an order q which should have a size 

of at least 160 bit or more for higher security levels [23]. 

ECDSA Signature Generation: 

Like DSA, an ECDSA signature consists of a pair of 

integers (r, s). Each value has the same bit length as q, 

which makes for fairly compact signatures. Using the 

public and private key, the signature for a message x is 

computed as follows: 

1. Choose a random integer as ephemeral key k𝐸 

with 0 <  kE <  q. 

2. Compute R =  kE. 𝐴 

3. Let r = xR (𝑟 =  𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of the point 𝑅) 

4. Compute𝑠 ≡ (ℎ(𝑥) + 𝑑 ∙ 𝑟)𝑘𝐸
−1𝑚𝑜𝑑 𝑞 

The message 𝑥 has to be hashed using the function ℎ in 

order to compute 𝑠. The hash function output length must 

be at least as long as 𝑞. 

ECDSA Signature Verification: 

1. Compute auxiliary value 𝜔 ≡ 𝑠−1𝑚𝑜𝑑 𝑞 

2. Compute auxiliary value 𝑢1 ≡ 𝜔 ∙ ℎ(𝑥)𝑚𝑜𝑑𝑞 

3. Compute auxiliary value 𝑢2 ≡ 𝜔 ∙ 𝑟 𝑚𝑜𝑑𝑞 

4. Compute 𝑃 = 𝑢1𝐴 + 𝑢2𝐵 

5. The verification verkpub
(x, (r, s))follows from: 

𝑥𝑝 = {
≡ 𝑟 𝑚𝑜𝑑 𝑞,  𝑉𝑎𝑙𝑖𝑑 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒
≢ 𝑟 𝑚𝑜𝑑 𝑞, 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

 

In the fifth step, the notation xp indicates the x −

coordinate of the point  𝑃 . The verifier accepts a 

signature (r, s) only if the xp has the same value as the 

signature parameter 𝑟 (𝑚𝑜𝑑 𝑞).  

B. Key Management Topology 

Our proposed secure IoT node provisioning schema is 

based on ECC functionalities listed in section III-A. The 

main problems of IoT node provisioning are new node 

authentication, authorization for relevant credentials and 

security key distribution. Storing node information to 

grant access is the authentication problem. It is not 

feasible to distribute all nodes' credentials to all border 

routers on the field so credential should be stored in 

central location and distributed on demand. When a new 

node requests to join an IoT network, credentials are 

distributed to master node with the permission of central 

vault which is called Authentication Cloud (AC). AC can 

be manufacturer's cloud location which stores nodes' 

identity and related security credentials which are serial 

number (SN) and public key pairs. Once master node has 

the approval of AC for new nodes, the node can be added 

to trusted list and is eligible to share network secret key. 

Since all these operations have identity information and 

secret key, ECC based sign & verification mechanism 

given in section III-A are used for cryptographic 

operations. Therefore, our ECC implementation is 

deployed on all IoT nodes and on server side. Under this 

assumption, interoperability problem will not be a 

concern. Beyond that, sharing ECC curve parameters will 

be enough for interoperability. 
 

 

Fig. 2. Secure IoT node provisioning schema. 

Our implementation given in Fig. 2 has following steps: 

Message 1: When a new node requests to join the 

network, it sends a provisioning request to border router. 

This message includes SN for identity check and MAC 

address and time stamp (TS) of node signed by private 

key of the node for challenge-response check on AC. 

Message 2: Since authentication process runs on AC, 

the responsibility of border router is to forward this 

request via a secure channel. 

Message 3: TS check for replay attack runs on AC. 

Message 4: Once the request is approved in terms of 

TS in AC, second check will be if the node is approved in 
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terms of credentials. If received SN is in the trust list of 

AC, the signed message is checked with the public key of 

node if related MAC address is correct. 

Message 5: Successful operation results in sending the 

requester node public key to border router through a 

secure channel to approve that the node is in trusted list 

of AC. 

Message 6: Border router adds the node into its trusted 

list and stores the public key. 

Message 7: Border router still does not share any secret 

in unprotected mode. Instead, encrypts session secret key 

with requester node's public to protect and sends it to the 

node therefore any attacker or eavesdropper cannot able 

to access secret key. 

Message 8: Requested node decrypts the message and 

stores the secret for secure communication. 

IV. IMPLEMENTATION AND RESULTS 

Our proposed schema requires digital signature, 

verification, and encryption algorithms. Since our 

proposal is for resource constrained IoT environments, 

the implementation bottleneck is device resources. To 

solve this problem, our implementation is based on 

elliptic curve. We selected, 160-bit Koblitz elliptic curve 

[2] over Fp  with the parameters given standards. Our 

implementation is configurable for other elliptic curve 

parameters given in standards. 

In order to analyze the tradeoff between 

implementation burden of security protocols and power 

consumption, we conducted some experimental tests on 

our secure IoT network topology. The choice of the 

ContikiOS has allowed us to use multi-threaded 

environment, IPv6 and RPL [25] protocols for 

communication and power analysis environment. Packet 

transmission, receiving, routing features are analyzed 

with COOJA. COOJA reports network timing 

information and simulates lossy environment behavior. In 

addition, Powertrace [26] power profiling tool are used to 

monitor power consumption of active, Low power (LPM) 

modes, RX and TX. Power analysis requires a real 

hardware information therefore we choose Zolertia 

experimenter board which is based on msp430f2617 

based with CC2420 TRX module. 

The key performance indexes for our proposal are 

defined as implementation efficiency which are code size 

and speed. In addition, we targeted power efficiency as an 

important performance metric for our design hence 

measured our implementation power consumption using 

Powertrace power profiling tool. 

A. Code Size Results 

Code size performance of our implementation for a 

node on MSP430 is given in Table I. Flash memory is 

crucial since cryptographic algorithms require 

considerable amount of code size, especially asymmetric 

algorithms' parameters such as elliptic curve parameters 

and symmetric algorithms' permutation and combination 

blocks. Besides that, RAM size is a constraint for IoT 

nodes specially for elliptic curve multiplication 

operations. 

TABLE I: CODE SIZE INFORMATION FOR NODE (SIZES ARE GIVEN IN 

DECIMAL) 

 Text Size Data Size BSS Size 

Noze.Z1 55389 Bytes 358 Bytes 5346 Bytes 

Area Flash RAM RAM 

Total Size 99208 8192 Bytes 8192 Bytes 

B. Power Consumption Results 

Powertrace is used for power profiling analysis. It has 

a linear model which means instantaneous power is the 

sum of all active power states. In this model, measuring 

the time during which component m has been in state n 

has important role since Powertrace tracks system states 

by using this time difference during which components 

are in each power state. For this purpose, software stack 

is modified to report a time difference when a component 

changes its state.  

The profiling tool reports Energest value which is 

obtained by taking the difference between number of 

ticks between a time interval and its previous time 

interval.  

TABLE II: PLATFORM PARAMETERS FOR POWER MODEL 

Parameter Value Description 

CPU Voltage 3V Between 1.8V to 3.6V 

CPU_ACTIVE 10mA CPU current. Consumption in 

active mode. 

CPU_LPM 0.5uA CPU current. consumption in 

standby mode. 

RX 8.8mA TRX module current 

consumption in receive mode. 

TX 17.4mA TRX module current 

consumption in transmit mode. 

RTIMER_SECOND 32768 Real time clock tick count 

 

The power consumption is calculated by using the 

bellow formula where current and voltage parameters are 

the datasheet values of the module in the measured state 

as given in Table II. RTIMER_SECOND is the clock 

frequency and Runtime is the time interval in which we 

perform measurements. 

𝑃𝑜𝑤𝑒𝑟_𝐶𝑜𝑛 =
𝐸𝑛𝑒𝑟𝑔𝑒𝑠𝑡_𝑉𝑎𝑙𝑢𝑒.𝐶𝑢𝑟𝑟𝑒𝑛𝑡.𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑅𝑇𝐼𝑀𝐸_𝑆𝐸𝐶𝑂𝑁𝐷.𝑅𝑢𝑛𝑡𝑖𝑚𝑒
           (2) 

TABLE III: IMPLEMENTATION RESULTS (TIMING, POWER, AND 

ENERGY CONSUMPTION) 

Operation #Times Time Power Energy 

ECC Sign 1 5.73 seconds 32mW 173mJ 

ECC 

Decrypt 

1 5.3 seconds 30mW 160mJ 

 

Since Energest value which is reported by Powertrace 

is number of ticks for a time interval, 
Energest_Value 

RTIMER_SECOND 
 

equals to time spent for reported operation in seconds. 

Based on Fig. 3 and Fig. 4 our findings can be seen in 

ECC sign row of Table III. As observed in Fig. 3, there 

are some spikes on power consumption. To elaborate this 

spikes, transmit power is analyzed and it is observed that 
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although we don’t send any packets, due to RPL protocol 

internals, periodic synchronization packets consume 

considerable power. 

 
Fig. 3. CPU power consumption during periodic ECC-Sign operation. 

 
Fig. 4. Transmit power consumption during periodic ECC-Sign 

operation. 

 
Fig. 5. CPU power consumption for periodic ECC-Sign operation (TX 

is disabled) 

 

Fig. 6. CPU power consumption for single decryption operation. 

To observe power consumption for ECC sign operation 

more clear, we removed transmission and receive power 

consumption just for measurements. We disabled 

CC2420 transmitter module at driver level for this 

purpose. Disabled transmit module configuration can 

never be the real use case since due to nature of RPL 

protocol, periodic network related packets have to be in 

the network. TX power eliminated plots can be found on 

Fig. 5. 

As given in section III-B, IoT nodes in our schema 

requires 1 signing and 1 decryption operation. In addition 

to our results and findings for signing operation given 

above, decryption results can be found in ECC-decrypt 

row in Table III. As it is seen on Fig. 6, an IoT nodes 

consumes approximately 30mW for a single operation 

and this operation takes 5.3 seconds on our platform. 

V. CONCLUSION AND FUTURE WORK 

In this paper we introduced an end-to end secure IoT 

node provisioning schema and its power analysis. Our 

proposed schema does not need any application layer 

certificate based protocol. Besides that, as we list in 

section II, some studies rely on dedicated credential 

server or hardware. On the other hand, our mechanism is 

based on efficient elliptic curve cryptography without 

dedicated local credential server. For all we know, our 

schema differs from previous studies in the literature with 

these features. Since we don't use any certificate based 

schema and high level agreement protocol such as 

Internet Key Exchange(IKE) [27], our proposal is 

suitable for resource constrained environments. As it is 

given in Table I our implementation fits into limited 

RAM and ROM area. In addition, our power 

consumption results show that, an IoT node consumes 

32mW power for single sign operation for step 1 and 

30mW for step 8 which are given in section III-B. 

A potential future direction would be to implement 

different asymmetric encryption algorithms and evaluate 

timing, code size, and power consumption for same 

schema. A combination of symmetric and asymmetric 

algorithms can be applied to extend proposed solution as 

well. In addition, efficient elliptic curve implementations 

and improvements listed in the literature is another 

potential research direction. 
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