
Fault Tolerant List Scheduler for Time-Triggered

Communication in Time-Sensitive Networks

Maryam Pahlevan, Sarah Amin, and Roman Obermaisser
University of Siegen, 57068 Siegen, Germany

Email: maryam.pahlevan@uni-siegen.de; sarah.amin@uni-siegen.de; roman.obermaisser@uni-siegen.de

Abstract—The performance and dependability of modern

mission-critical systems significantly depends on the

communication infrastructure. In this context, the Time-

Sensitive Networking (TSN) task group addressed different

requirements of cyber-physical systems such as timing and

reliability constraints. TSN provides real-time capabilities

through sharing a global time reference and employing

transmission schedule tables called Gate Control Lists (GCL).

On the other hand, TSN masks faulty behaviors within a system

through a technique called Frame Replication and Elimination

for Reliability (FRER). FRER fulfills the safety requirements of

mission-critical systems by message replication and

transmission of message replicas over redundant paths. The

scheduling problem for the GCL synthesis is NP-complete. For

simplification of the scheduling process, several state-of-the-art

solutions provide schedulers for fault-free networks. However,

this assumption is very optimistic and in practice networks

experience different faulty-behaviors over time. This paper

extends our heuristic TSN scheduler which was developed for

fault-free TSN systems to support the FRER mechanism. Our

fault-tolerant TSN scheduler focuses on enhancing the

reliability of a mission-critical system while meeting the

deadlines of time-critical jobs. To achieve this goal, we

introduce a novel reliability analysis approach for a mission-

critical system with a TSN communication infrastructure. This

approach models and evaluates the reliability of a system based

on the reliability of message transmissions between safety-

critical jobs. The reliability of message transmissions is

computed based on the reliability of the network components

that form the forwarding paths. Thereby, our reliability model

enables the system designers to plan networks more optimally.

Index Terms—TSN, GCL, FRER, scheduling, reliability model,

system reliability analysis



I. INTRODUCTION

Due to tremendous success and wide spread

deployment of Ethernet technologies, the Time Sensitive

Network (TSN) [1] group has introduced a series of IEEE

802.1 sub-protocols to offer a fault-tolerant and

deterministic communication infrastructure for executing

safety-critical applications over an Ethernet based

network. In TSN networks, devices which support the

IEEE 802.1ASRev [2] synchronize to a global clock

reference. The TSN scheduling approach, Time Aware

Shaper (TAS) [3] enforces a gate control list (GCL) at

each port. The port-specific GCL determines the specific

instant of time each egress queue is permitted to transmit

Manuscript received January 23, 2021; revised June 15, 2021.

doi:10.12720/jcm.16.7.250-258

a message. The computation of a TSN schedule is a NP-

complete problem and the ever increasing number of

network devices significantly increases the execution time

for scheduling. Consequently, several solutions reduce the

complexity of scheduling process by making abstractions.

For instance, most of the state-of-the-art schedulers solve

the routing and scheduling problem sequentially rather

than computing them together. Most of the studies also

assume that the communication infrastructure is

completely fault-free which is a highly optimistic

assumption. In practice, a TSN network may experience

different changes over time such as device

reconfiguration or device failure during transmission of

messages. Failures in the TSN-aware devices of a cyber-

physical system may lead to irreparable environmental

damages and huge financial loss. Fault-tolerance based on

temporal and spatial redundancy is required to solve the

safety-requirements. Transient or intermittent faults are

mitigated through temporal redundancy which is the

transmission of two copies of the same message at

different instants. In contrast, Frame Replication and

Elimination for Reliability (FRER) is used to alleviate

both transient and permanent failures. In FRER, every

message is replicated and forwarded over one or more

redundant routes. Several studies have been performed to

implement fault-tolerant schedulers for Time-Triggered

(TT) communication but most of these studies focus on

certain faults (e.g. link failures or device crashes) to

simplify the process.

The goal of this paper is to extend the time-triggered

scheduler introduced in [4] to include optimization of

system reliability while satisfying the real-time

constraints of the application. The algorithm considers, i)

redundant and non-redundant real-time jobs, ii) the

redundancy in the platform model and the reliability of

the TSN platform devices (e.g. end systems, switches,

and links) and iii) TSN-based fault tolerance mechanisms

such as FRER. We also introduce a new reliability

technique for safety-critical systems. Our reliability

model considers real-time jobs as system constituents and

the relation between different jobs as control

dependencies. This approach calculates the reliability of

the overall system by first calculating the reliability of

each message using the reliability of TSN-aware devices

and then using it to compute the reliability of each safety-

critical job. In addition to the control dependencies

introduced in [4], this paper also introduces conditional

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 250

transfers between different safety-critical jobs. It means

that the overall system reliability is calculated using only

those messages that are essential to the receiving job. This

work only considers the permanent failures but FRER also

supports transient failures. To implement FRER and to

reduce network utilization, we assume that a message is

duplicated on the junction of a disjoint path.

The remainder of this paper is structured as follows:

Section II discusses the related work on fault-tolerant

schedulers for real-time systems, Section III presents the

problem and outlines the system and fault models, Section

IV describes our reliability model and Section V discusses

our fault-tolerant list scheduler. The results are presented

in Section VI and the last section concludes this paper.

II. RELATED WORK

In recent years, several algorithms have been proposed

regarding the TAS scheduling problem. Authors in [5] and

[6] use a fixed routing policy to synthesize the GCL of the

TSN-aware devices. Most of these studies ignore the

dependencies between the routing and scheduling

constraints, providing only a sub-optimal solution. To

address this problem, we have proposed a list scheduler in

[4] that considers both the routing and scheduling

constraints in a single step. There are other recent works

that also consider joint routing and scheduling problem

but unlike them, our work supports inter-flow

dependencies and job scheduling. These features play an

important role in the deployment of TSN-aware devices

vital for modern cyber-physical systems. However, these

scheduling algorithms assume that the safety-critical

system remains completely fault-free during the execution

of the application. This assumption is highly optimistic,

since in practice the system may encounter any number of

faults during its function.

In case of failures in the communication network,

authors in [7] developed the greedy list scheduler for the

fault-tolerant communication over the multi-bus

heterogeneous systems. This scheduling strategy

addresses the transient bus failures with the data

fragmentation. Moreover, authors in [8] proposed a TT

scheduler that masks multiple link failures through a

localized fault-tolerant protocol rather than spatial

redundancy that increases the bandwidth of non-critical

traffic. The authors in [9] proposed a method that uses a

CEGAR-based approach to find a (k,l)-resistant

transmission schedule. In this approach, the algorithm

delivers at least l copies of a message to the receiving

application through k separate links. The mentioned

works only consider the faults in the links while assuming

that the system processors are fault-free.

For the failures in the system processors, [10] proposed

a distributed list scheduler that computes the fault-tolerant

schedules for the multi-processor real-time architecture

via task redundancy. This work assumed that all tasks run

over the same cycle. The authors in [11]-[14] use

Primary-Backup (P/B) approach to address processor

failures during the execution of the application. A

contention-aware fault-tolerant (CAFT) scheduler was

proposed in [15] that uses active replication to solve the

occurrence of failures in multiple number of processors.

Similarly, [16] compute a fault-tolerant schedule through

active replication and re-execution of jobs. Both these

algorithms use optimal task binding and resource

allocation to hamper the need for any additional hardware

resources. These works consider faults only in processors

with the assumption that the links are completely fault-

free. In [17] and [18], authors proposed algorithms that

consider faults in both the system processors and the

communication network but these works do not consider

the timing constraints of the safety-critical systems or

component redundancy to mitigate failures.

In this paper, we introduce a fault-tolerant TT

scheduler that meets the temporal requirements of the

hard real-time system while optimizing the overall system

reliability. In contrast to the state-of-the-art, we consider

both the processor and link failure while optimizing the

overall system reliability. Moreover, we use a conditional

graph with conditional precedence constraints between the

safety-critical jobs that lead to a more efficient and

realistic transmission schedule.

III. PROBLEM FORMULATION

In this paper, we develop a fault-tolerant scheduler

based on the scheduling and routing constraints defined in

[4] with the purpose to increase the reliability of the

safety-critical system. To achieve this goal, we use a

novel reliability analysis technique to model and compute

the reliability of the system. Following constraints defined

before in [4] are also used in this work,

1. The scheduling is non-preemptive i.e. an end-

system executes only one job at a time.

2. Each TT message is transmitted through a

component only once to avoid loops.

3. Each TT message is transmitted through a link

only if there is no hindrance in the transmission

i.e. no other message is transmitted through the

link during that duration.

4. Our model uses periodic TT messages and all the

iterations of a message are transmitted through

the same link.

5. A job starts its execution only when all the

essential TT messages from the predecessor jobs

are received.

6. Each TT message must reach the destination

within the deadline of the receiver job.

A. System Model

Our fault-tolerant time-triggered model is defined

through two distinct graphs, i.e. a conditional application

graph and an architecture graph. The application graph

represents the set of real-time jobs that are implemented

on the system depicted by the architecture graph.

1) Application model

The system application is represented through a

conditional directed acyclic graph 𝐺𝑐 =< 𝐽, 𝐸 >. In this

graph each vertex 𝑗𝑖 ∈ 𝐽 presents a non-divisible real-time

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 251

job and each conditional directed edge 𝑒𝑖𝑘 ∈ 𝐸 depicts the

precedence constraint between jobs 𝑗𝑖 and 𝑗𝑘 where 𝑗𝑖 is

the parent of 𝑗𝑘 . Each real-time job 𝑗𝑖 ∈ 𝐽 is represented

through a tuple < 𝑤𝑖 , 𝑟𝑖 , 𝑑𝑖 > where 𝑤𝑖 is the worst case

execution time, 𝑟𝑖 is the probability of successful

execution (reliability) and 𝑑𝑖 is the dead-line for the

execution of the job. Each TT message 𝑒𝑖𝑘 ∈ 𝐸 is defined

through the tuple < 𝑝𝑖𝑘, 𝑡𝑖𝑘, 𝑟𝑚𝑖𝑘 , 𝑖𝑖𝑘, 𝑐𝑖𝑘 > . Here 𝑝𝑖𝑘 is

the time-period, 𝑡𝑖𝑘 is the transmission time and is 𝑟𝑚𝑖𝑘 the

probability of successful transmission (reliability) of the

message. 𝑖𝑖𝑘 represents the injection time or in other

words the time at which sender job 𝑗𝑖 starts the

transmission of the message. Lastly 𝑐𝑖𝑘 is the conditional

transfer, i.e. it determines if the message is essential for

the receiver job 𝑗𝑘 or if it can be replaced with a TT

message from other parent jobs. This is an important

characteristic as a job cannot start its execution before

receiving all the required incoming messages. To simplify

matters, we assume that a receiver job has at least two

incoming conditional edges that can be substituted with

each other for a successful execution. An example of such

a graph is given in Fig. 1.

Fig. 1. An example of system model (the left graph is an application graph and the right one is an architecture graph)

2) Architecture model

The system architecture is depicted through a

undirected graph 𝐺𝐴 =< 𝑆, 𝐿 > . In this graph, each

vertex 𝑠𝑖 ∈ 𝑆 is either a TSN end system or a TSN switch,

i.e. 𝑠𝑖 = 𝐸𝑆𝑖 ∪ 𝑆𝑊𝑖 whereas each edge 𝑙𝑖 ∈ 𝐿 is a duplex

physical link between TSN aware devices, i.e. TSN end

system and TSN switch. A duplex link means that two

messages can transmit on the link simultaneously

provided that they traverse in opposite directions. Each

network component 𝑐𝑖 ∈ 𝑆 ∪ 𝐿 = 𝐺𝐴 is defined by a

reliability 𝑟𝑐𝑖 which is the probability of the components

𝑐𝑖 to operate successfully. An example of the system

architecture is given in Fig. 1. It has to be noted that a

real-time jobs are allocated only on end systems and

messages are scheduled on the TSN-aware switches that

lie between the sending and receiving end systems.

3) Fault model

Our fault model considers only one permanent failure

in any network component including TSN-aware devices

and links, at a given time. It means that a failure in a link

does not effect the operation of its connected devices. Due

to limited number of resources, our solution only

considers the duplication of TT messages at the junction

of disjoint paths in the system. However, this method can

easily be extended to tolerate several permanent failures in

system components by including various redundant routes

and multiple message replications at the expanse of a

greater network load. In addition to redundant routes, our

method also considers redundant real-time jobs through

conditional edges as described in Section III-A.1. It means

that if one of the redundant real-time jobs executes

successfully then the failure of the other redundant jobs

will not effect the operation of the safety-critical system.

IV. RELIABILITY MODEL

The reliability of the safety-critical system is calculated

using the reliability of the real-time jobs and the reliability

of the TT messages. This section explains our reliability

model in detail.

A. Reliablity of Safety-Critical Messages

The successful transmission of a TT message depends

upon the reliability of all the components constituting the

transmitting path. The reliability 𝑟𝑐𝑖 of a system

component 𝑐𝑖 ∈ 𝐺𝐴 can be expressed as [19],

 𝑟𝑐𝑖(𝑡) = 𝑒−𝜆𝑡 (1)

where λ is the failure rate that specifies the number of

faults a device experiences per unit of time. Moreover, the

total reliability of the TSN-aware devices connected in

series with each other is given as [19],

 𝑅(𝑡) = ∏ 𝑁
𝑖=1 𝑟𝑐𝑖(𝑡) (2)

Whereas the total reliability of a message transmitted

on a path where TSN-aware devices are connected in

parallel to each other is given as [19],

 𝑅(𝑡) = 1 − ∏ 𝑁
𝑖=1 (1 − 𝑟𝑐𝑖(𝑡)) (3)

As described in Section III.B, a TT message is

duplicated at the junction of two parallel paths and each

copy is transmitted over one or the other disjointed path.

However, the device at the other end of the junction

transmits only one copy and discards the other. To

calculate the total reliability of a TT message, we model

the redundant routes in the form of series and parallel

components where each system component represents a

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 252

separate module. These modules are connected together

through the specified route topology. A reliability model

for the transmission of 𝑚3 which is sent from 𝑒𝑠0 to 𝑒𝑠1

is given in Fig. 2. For simplicity, it is assumed that TSN

end systems are fault-free. We also assume that all TSN

switches are identical and have the same failure rate. The

same assumption is made in case of the duplex links.

Therefore, we denote the reliability of a switch and a link

as 𝑟𝑠𝑤 and 𝑟𝑙 respectively. Since the successful

transmission of a message correlates with the reliability of

the overall system so according to Eq. 2 and Eq. 3, the

reliability of message 𝑚3 in Fig. 2 is,

 𝑟𝑚3
(𝑡) = 𝑟𝑙

2𝑟𝑠𝑤
2 (𝑟𝑙 + 𝑟𝑙

2𝑟𝑠𝑤 − 𝑟𝑙
3𝑟𝑠𝑤) (4)

Fig. 2. Reliability model of message m3

B. Reliability of Safety-Critical Jobs

The reliability of a job depends upon the successful

execution of its predecessors, transmission of all the

required TT messages and correct operation of the

assigned end system. If a job has no predecessor then its

reliability is equal to the reliability of the assigned end

system. We depict the job reliability model in the form of

series and parallel systems using the conditional transfer

described in Section III.A.1. In this context, each job and

the corresponding TT message is considered as a separate

module. The modules are connected together through

conditional control dependencies described in the

application graph. An example of such a reliability model

is given in Fig. 3 for job 𝑗5 . Here the conditional path

shows that the TT messages from job 𝑗4 are essential for

the execution of 𝑗5 but TT messages from either 𝑗0 or 𝑗3

are sufficient to start 𝑗5.

Fig. 3. Reliability model of job j5

Eq. 2 and Eq. 3 can also be applied here to solve the

series-parallel connection of the modules. Hence,

according to Fig. 3 the total reliability of job 𝑗5 can be

given as,

𝑟5 = [1 − (1 − 𝑟0𝑟𝑚0
)(1 − 𝑟3𝑟𝑚2

)]𝑟4𝑟𝑚4
 (5)

Since 𝑟3 = 𝑟𝑒𝑠𝑟𝑚1

 , 𝑟4 = 𝑟𝑒𝑠𝑟𝑚3
 and 𝑟0 = 𝑟𝑒𝑠 therefore

Eq. 5 can be simplified to Eq. 6. Here the reliability of the

messages𝑚1 ,𝑚2 , 𝑚4 and 𝑚6 are calculated through the

method described in Section 4.1.

𝑟5 = (𝑟𝑚0
+ 𝑟𝑚1

𝑟𝑚2
− 𝑟𝑚0

𝑟𝑚1
𝑟𝑚2

)𝑟𝑚3
𝑟𝑚4

 (6)

It has to be noted here that the described technique to

calculate job reliability is only applicable when the

respective job shares no module with its respective

predecessors and incoming TT messages. In reality, it is

quite possible that the predecessor jobs and incoming

messages share one or more network modules. In such

cases, it is not possible to use series/parallel module

structure to calculate job reliability. Alternatively, the

model is first expanded for each shared module and then

the job reliability is calculated using different operational

conditions and the total probability of the job completing

its execution on the component.

 𝑟𝑖 = 𝑟𝑐𝑖
. 𝑃𝑟𝑜𝑏𝑐𝑖

+ (1 − 𝑟𝑐𝑖
). 𝑃𝑟𝑜𝑏𝑐𝑖

 (7)

where 𝑟𝑖 is the reliability of the ith job, 𝑟𝑐𝑖
 is the reliability

of the respective network module 𝑐𝑖 , 𝑃𝑟𝑜𝑏𝑐𝑖
 is the

probability of the job completing its execution on a fault-

free 𝑐𝑖 and 𝑃𝑟𝑜𝑏𝑐𝑖
 is the probability of the job completing

its execution on a faulty 𝑐𝑖 . For better understanding,

consider the reliability model given in Fig. 3 for the last

part i.e. 𝑟𝑚3
𝑟𝑚4

 of Eq. 6. The reliability model has four

common components i.e. 𝑆𝑊1 , 𝑙4 , 𝑆𝑊0 and 𝑙1 . The

common 𝑆𝑊1 and 𝑙4 components are connected in series

with each other therefore only one of each is considered

for the reliability model. But the model is expanded for

the other two components and Eq. 7 is used to calculate

the reliability of this statement.

 𝑟𝑠4
= 𝑟𝑠𝑤0

. 𝑃𝑟𝑜𝑏𝑠𝑤0
+ (1 − 𝑟𝑠𝑤0

). 𝑃𝑟𝑜𝑏𝑠𝑤0
 (8)

where 𝑃𝑟𝑜𝑏𝑠𝑤0

 and 𝑃𝑟𝑜𝑏𝑠𝑤0
 are given as,

 𝑃𝑟𝑜𝑏𝑠𝑤0
=

𝑟𝑙1
. 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) + (1 − 𝑟𝑙1

). 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) (9)

 𝑃𝑟𝑜𝑏𝑠𝑤0
= 𝑟𝑙1

. 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) + (1 − 𝑟𝑙1
). 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) (10)

Fig. [4c-4e] represents the expansion of the reliability

model of 𝑟𝑚3
𝑟𝑚4

 on 𝑆𝑊0 and 𝑙1. The expansion continues

until a model is obtained that has no common components

and after that series-parallel structure is used to calculate

the reliability of 𝑗5 . This approach is applied to every

component that constitutes the reliability model of job 𝑗5

until a model is achieved that has no common component.

C. Reliability of Safety-Critical System

The reliability of a safety-critical system depends upon

the successful execution of all the mission critical jobs

within

the system. In order to calculate the reliability, a

dummy sink vertex is added to the system application

graph such that all jobs that have no successors are

connected to this vertex as predecessors. In Fig. III.A.1, a

sink vertex is added as a successor to jobs 𝑗5 and 𝑗6. Since

the sink vertex is a dummy node without any impact on

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 253

the application, it is assumed that the reliability of all the

TT messages transmitted to the sink vertex is always

equal to one. Moreover, the overall system reliability is

equal to the reliability of the sink vertex of the application

graph. So the reliability of the system given in Fig. 1 is,

 𝑟𝑡 = 𝑟𝑠𝑖𝑛𝑘 = 𝑟5𝑟6 since 𝑟𝑚8
= 𝑟𝑚9

=

1 (11)

Fig. 4. Reliability model of 𝑟𝑚3

𝑟𝑚4
 when it is expanded on common network components

V. FAULT-TOLERANT LIST SCHEDULER

We modify the list scheduler presented in [4] so that it

fulfills the temporal requirements of the mission-critical

applications while increasing the overall reliability of the

system. The list scheduler works in two phases [20],

firstly priorities are assigned to the jobs in the application

graph and then these jobs are scheduled onto end systems

based on their priority and precedence constraints. We

used the critical path method to calculate the priorities of

the jobs. The details of the priority assignments are given

in [4]. Once the priorities are assigned, the scheduler adds

the jobs whose precedence constraints have been fulfilled

to a ready list. The list is then arranged in descending

order of the priorities of the jobs. The scheduler then

selects the jobs from this list and assigns them to an

eligible end system (J.CanRunOn) one by one. Once an

end system has been selected, the scheduler finds all

possible routes between the sender and receiver end

systems using the multiplication adjacency matrix. Then

permutation is used to calculate all the possible redundant

routes between the sender and receiver. For each pair, the

message reliability is calculated and the pair of forwarding

routes with the best reliability values are selected. The

scheduler then finds the earliest injection time of each

job’s ingress flow. After that it obtains the message’s

arrival time (aik) based on the transmission delay of the

message (e2eik). The details of the transmission delay

calculation are given in [4]. If the chosen time slot does

not meet the job’s deadline, then another end system is

selected. Algorithm 1 gives a pseudo-code representation

of the fault-tolerant list scheduler.

VI. EXPERIMENTS AND EVALUATION

Our fault-tolerant list scheduler was implemented in

C++ and the experiments were carried out on a T460

Linux ThinkPad with 32GB memory and Intel i5

processor. The system model used for the experiments

were generated using the SNAP library [21]. We have five

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 254

separate test cases with different properties that are

defined in Table I. The characteristics used for these

experiments are as follows:

a) System Architecture: For the architecture graph,

we use the grid network with different number of

components as defined in Table I. Fig. 5 gives an example

of an architecture that is used for the use case 1. The use

case 1 represents the small size network while the use

case 2 and 3 represent medium size and large scale

networks respectively.

b) System Application: Each safety-critical

application is generated in the form of a Random Forest

Fire Directed graph using the SNAP library [21]. The

number of jobs in the safety-critical application varies

between 8 and 16 as shown in Table I. The period of the

TT flows is chosen from the set <50,100,150> (ms) and

the transmission time of a TT frame from one device to

the neighboring device is taken as 10 μs. To simplify

things, we make the assumption that all jobs have the

same worst-case execution time i.e. 80 μs and deadline i.e.

1.75 ms.

Fig. 5. Grid network topology used for case 1

TABLE I: THE CHARACTERISTICS OF THE EXPERIMENTAL USE CASE

Use Case 1 2 3 4 5

Number of nodes 71 83 95 47 71

Number of links 76 89 102 50 76

Number of jobs 12 14 16 8 12

Number of messages 30 60 90 20 50

Link/Device

reliability distribution

.99:10%

.991:10%

…

.999:10%

.99:25%

.993:25%

…

.999:25%

A. Results

We have divided our results in two separate scenarios.

The first scenario comprises of the first three use cases

given in Table I. It focuses on comparing the average

system reliability and average network load between the

schedules generated by the list scheduler given in [4]

which computes schedule with optimized makespan for

the fault-free TSN systems and our fault-tolerant list

scheduler. We compare these factors with respect to

varying number of messages, devices and links. In the

second scenario, we study the trend of system reliability

with varied level of job redundancy and component

reliability. Use case 4 and 5 in Table 1 give the properties

of this scenario. For each mentioned use case, we generate

100 synthetic system models that have different inter-flow

dependencies and use the grid network topology.

1) List Scheduler vs. Fault-tolerant list scheduler

In the first part of the experiments, we study the effect

of the basic list scheduler and fault-tolerant list scheduler

on the average system reliability and average network

load respectively. This part uses the properties of the first

three use cases given in Table I. We assume that all the

TT messages are essential for the execution of successor

jobs and that the reliability of each network component

remains constant throughout the execution of the

application. The characteristics of these models, i.e.

number of system components etc, are given in Table I.

The reliability of the devices, in each case, varies between

0.99 and 0.999 by a probability of 10%.

For the use case 1 given in Table I, Fig. 6a shows the

average system reliability of 100 synthetic models for the

basic list scheduler and Fault-Tolerant List Scheduler

(FTLS). The figure shows that the average system

reliability is improved by approximately 9% after the

usage of the fault-tolerant list scheduler. This

improvement is carried out through message duplication

and transmission of messages on redundant paths in the

fault-tolerant list scheduler compared to the single copy of

each TT message scheduled over only one path in the

basic list scheduler. This improvement in system

reliability, however, has few drawbacks. Message

duplication leads to a higher number of scheduled

messages by FTLS that increases the overall network load.

This is proven through the results given in Fig. 6b where

the network load is approximately 2 % higher in FTLS

compared to the basic list scheduler. Therefore, FTLS

increases the system reliability at the expanse of the

network load. The increased number of messages in FTLS

also increases the overall makespan of the schedule. Fig.

6c shows that, for use case 1, the average makespan for

the schedule obtained through the basic list scheduler is

0.943 ms whereas it is 1.055 ms in case of FTLS. So, the

basic list scheduler provides a more optimal solution than

FTLS but at the expanse of lower system reliability.

For use case 2, our fault-tolerant scheduler improves

the system reliability approximately by 7% at the expanse

of a 2% increase in the network load as shown in Fig. 6a,

6b. The average makespan for FTLS is 1.498 ms

compared to 1.325 ms obtained through the basic list

scheduler as shown in Fig. 6c. Similarly, for use case 3,

FTLS improves the system reliability by approximately 4%

at an increased network load of 2% (see Fig. 6a, 6b). The

average makespan for basic list scheduler is 1.630 ms

compared to the increased makespan of 1.851 ms in FTLS.

TABLE II: AVERAGE EXECUTION TIME OF LS AND FTLS FOR USE CASE

1-3

Scheduler use case 1 use case 2 use case 3

 (s) (s) (s)

 LS 7 20.2 58.7

 FTLS 8 35 625.5

The last factor to consider in all three cases is the

schedulability ratio that, theoretically, should decrease in

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 255

FTLS because of the message duplication compared to the

basic list scheduler. However, in use case 1 the

schedulability ratio remains same for both schedulers

mainly because the total number of messages is low

compared to the number of devices and links. So the

duplication of messages does not affect the chances of

obtaining an optimal schedule. This is shown in Fig. 6d.

When the number of messages are increased to 60 in use

case 2 without a considerable increase in the number of

devices and links, the schedulability ratio decreases by 4%

as shown in Fig. 6d. Use case 3, however, shows a

significant drop in the schedulability ratio from 92 in the

basic list scheduler to 24 in FTLS. Since the number of

messages, in this case, is thrice more than in use case 1 so

the total number of message duplication is also increased

approximately three times but there is not enough increase

in the number of devices and links to cater this change.

Therefore, there is a lower chance of getting an optimal

schedule in this case.

Fig. 6. Experimental results derived from the schedules generated by FTLS and basic LS for different number of nodes, links, and TT messages

Table II shows the average execution time of FTLS

compared to the basic list scheduler. It shows that the

execution time of FTLS dramatically increases with each

use case. It is mainly because FTLS needs to explore a

bigger search space to find valid fault-tolerant schedules

compared to the basic list scheduler.

2) System Reliability vs. Varied level of job redundancy

In the second part of the experiments, we study the

impact of a varying degree of redundancy for different

jobs of the application graph on the system reliability. The

characteristics for this set of experiments is given in use

case 4 of Table I. In the first scenario of the use case, we

assume that the jobs in the application graph require all

the TT messages from their predecessors to start their

execution. In the second scenario, the condition of the

control transfer values alternates between two feasible

conditions, i.e. essential and substitutable, with a

probability of 0.5. In both scenarios, it is assumed that the

reliability of the network devices (i.e. end systems and

switches) varies from 0.993 to 0.999 while the links are

fault-free. Fig. 7 shows the results of these experiments. It

is visible from the results that the system reliability is

greatly improved in scenarios where only half of the TT

streams are essential. A higher level of redundancy

between different jobs of the system application results in

a more reliable TT communication schedule.

Fig. 7. Average of system reliability of schedules computed by FTLS

for varying level of job redundancy

3) System Reliability vs. Varied component reliability

In the last part of the experiments, we study the

sensitivity of overall system reliability with respect to

different network components. Use case 5 in Table I

represents the characteristics for these set of experiments.

For this purpose, in the first scenario, we assume that the

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 256

link is fault free (i.e. rl =1) whereas reliability of end

systems and switches varies from 0.993 to 0.999. In the

second scenario reliability of the links varies from 0.993

to 0.999 and res=rsw=1. The results for these experiments

are shown in Fig. 8. From the figure, it is visible that the

average system reliability is increased by 7 % in case of a

greater link reliability compared to other TSN-aware

devices. This implies that more reliable physical links lead

to a more fault-tolerant schedule.

Fig. 8. Average of system reliability of schedules computed by FTLS

for varying component reliability

VII. CONCLUSION

This paper presents a fault-tolerant list scheduler that

schedules safety-critical applications while maximizing

system reliability. The process supports the TSN

redundancy management of message duplication and the

elimination of message replicas. Our reliability model

calculates system reliability by considering the reliability

of each TSN-aware device and physical link that form the

message forwarding paths. Our approach differs from

other state-of-the-art fault-tolerant schedulers that only

focus on either the device or the link failures. We also

consider the conditional control transfer between different

jobs, which raises the reliability of the overall system. The

results illustrate that the fault-tolerant list scheduler

enhances system reliability considerably compared to the

basic list scheduler at the expense of an increase in the

network load. Our results show that overall system

reliability is highly improved by increasing job

redundancy and enhancing the reliability of the physical

links in the system. Our fault-tolerant scheduler improves

the overall system reliability significantly compared to the

basic list scheduler, but it requires a longer time to

coverage to a feasible solution. In future work, we will

look into new optimization algorithms that diminish this

issue.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Maryam Pahlevan designed the reliability model,

developed the scheduler and conducted the research; she

also evaluated the empirical results; Sarah Amin wrote

the manuscript; Prof. Roman Obermaisser supervised the

finding of this work and contributed to design and

validation of the scheduling solution; all authors had

approved the final version.

ACKNOWLEDGEMENT

This work was supported by the DFG research grant

ADISTES OB384/6-1.

REFERENCES

[1] Institute of Electrical and Electronics Engineers, Time-

Sensitive Networking. (2017). In Time-Sensitive

Networking Task Group. [Online]. Available:

http://www.ieee802.org/1/pages/tsn.html

[2] Institute of electrical and electronics engineers, inc.

802.1as-rev - timing and synchronization for time-sensitive

applications. (2017). In Time-Sensitive Networking Task

Group. [Online]. Available:

http://www.ieee802.org/1/pages/802.1AS-rev.html

[3] Institute of electrical and electronics engineers, inc.

802.1qbv-enhancements for scheduled traffic. (2016). In

Time-Sensitive Networking Task Group. [Online].

Available: http://www.ieee802.org/1/pages/802.1bv.html

[4] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic

list scheduler for time triggered traffic in time sensitive

networks,” in Proc. 16th International Workshop on Real-

Time Networks (RTN). ACM, 2018.

[5] S. S. Craciunas, et al., “Scheduling real-time

communication in IEEE 802.1 qbv time sensitive

networks,” in Proc. 24th International Conference on

Real-Time Networks and Systems. ACM, 2016, pp. 183–

192.

[6] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner,

“Design optimisation of cyber-physical distributed systems

using ieee time-sensitive networks,” IET Cyber-Physical

Systems: Theory & Applications, vol. 1, no. 1, pp. 86–94,

2016.

[7] C. Arar, H. Kalla, S. Kalla, and H. Riadh, “A reliable fault-

tolerant scheduling algorithm for real time embedded

systems,” 2013.

[8] L. Su, H. Wan, Y. Qin, X. Zhao, Y. Gao, X. Song, C. Lu,

and M. Gu, “Synthesizing fault-tolerant schedule for time-

triggered network without hot backup,” IEEE Transactions

on Industrial Electronics, vol. 66, no. 2, pp. 1345–1355,

2018.

[9] G. Avni, S. Guha, and G. Rodriguez-Navas, “Synthesizing

time-triggered schedules for switched networks with faulty

links,” in Proc. International Conference on Embedded

Software (EMSOFT), 2016, pp. 1–10.

[10] M. C. E. Hugue and P. D. Stotts, “Guaranteed task

deadlines for fault-tolerant workloads with conditional

branches,” Real-Time Systems, vol. 3, no. 3, pp. 275–305,

1991.

[11] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-line

real-time fault-tolerant scheduling,” in Proc. Ninth

Euromicro Workshop on Parallel and Distributed

Processing, 2001, pp. 410–417.

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 257

Journal of Communications Vol. 16, No. 7, July 2021

©2021 Journal of Communications 258

[12] D. Mosse, R. Melhem, and S. Ghosh, “Analysis of a fault-

tolerant multiprocessor scheduling algorithm,” in Proc.

IEEE 24th International Symposium on Fault-Tolerant

Computing, 1994, pp. 16–25.

[13] H. Lee, J. Kim, and S. J. Hong, “Evaluation of two load-

balancing primary-backup process allocation schemes,”

IEICE Transactions on Information and Systems, vol. 82,

no. 12, pp. 1535–1544, 1999.

[14] R. Al-Omari, G. Manimaran, and A. K. Somani, “A fault–

tolerant dynamic scheduling algorithm for multiprocessor

real–time systems,” in Proc. Fault-tolerant Computing

Symp. (FTCS), FAST ABSTRACTS, 1999, pp. 63–64.

[15] A. Benoit, M. Hakem, and Y. Robert, “Contention

awareness and fault-tolerant scheduling for precedence

constrained tasks in heterogeneous systems,” Parallel

Computing, vol. 35, no. 2, pp. 83–108, 2009.

[16] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design

optimization of time-and cost-constrained fault-tolerant

distributed embedded systems,” in Proc. Design,

Automation and Test in Europe, 2005, pp. 864–869.

[17] S. M. Shatz, J. P. Wang, and M. Goto, “Task allocation for

maximizing reliability of distributed computer systems,”

IEEE Transactions on Computers, vol. 41, no. 9, pp.

1156–1168, 1992.

[18] A. Dogan and F. Ozguner, “Matching and scheduling

algorithms for minimizing execution time and failure

probability of applications in heterogeneous computing,”

IEEE Transactions on Parallel and Distributed Systems,

vol. 13, no. 3, pp. 308–323, 2002.

[19] I. Koren and C. M. Krishna, Fault-tolerant Systems,

Elsevier, 2010.

[20] O. Sinnen, Task Scheduling for Parallel Systems, vol. 60.

John Wiley & Sons, 2007.

[21] Snap library 4.0, user reference documentation. [Online].

Available: https://snap.stanford.edu/snap/doc/snapuser-

ref/index.html

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Maryam Pahlevan received the Master

degree in communication engineering -

networking technology from the Aalto

University, Helsinki, Finland, in 2013.

She is currently a Ph.D. student at the

Embedded Systems chair, Department of

Elektrotechnik and Informatik,

University of Siegen. Her research

interests include the communication

infrastructures of integrated networked systems, and time-

triggered communication protocols (e.g., TTEthernet or TSN).

She was involved in the European research project called

SAFE4RAIL which was conducted by 11 academic and

industrial partners.

Sarah Amin received the Master degree

in electronic communications and

computer engineering from the

University of Nottingham, Nottingham,

United Kingdom, in 2014. She is

currently a Ph.D. student at the

Embedded Systems chair, Department of

Elektrotechnik and Informatik,

University of Siegen. Her research

interests include multicore/manycore scheduling, embedded

systems, safety-critical systems and incremental system design.

She was involved in the German Government Funded (DFG)

research project ADISTES.

Roman Obermaisser received the Ph.D.

degree in computer science from the

Vienna University of Technology,

Vienna, Austria, in 2004. He is currently

a Professor at the Embedded Systems

chair, Department of Elektrotechnik and

Informatik, University of Siegen. His

research interests include cyber-physical

system architectures, communication infrastructures of advance

integrated systems, and time-triggered communication protocols

(e.g., TTEthernet or TSN). He was involved in many European

research projects like DREAMS, SAFE4RAIL and

SAFEPOWER.

https://creativecommons.org/licenses/by-nc-nd/4.0/

