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Abstract—The performance and dependability of modern 

mission-critical systems significantly depends on the 

communication infrastructure. In this context, the Time-

Sensitive Networking (TSN) task group addressed different 

requirements of cyber-physical systems such as timing and 

reliability constraints. TSN provides real-time capabilities 

through sharing a global time reference and employing 

transmission schedule tables called Gate Control Lists (GCL). 

On the other hand, TSN masks faulty behaviors within a system 

through a technique called Frame Replication and Elimination 

for Reliability (FRER). FRER fulfills the safety requirements of 

mission-critical systems by message replication and 

transmission of message replicas over redundant paths. The 

scheduling problem for the GCL synthesis is NP-complete. For 

simplification of the scheduling process, several state-of-the-art 

solutions provide schedulers for fault-free networks. However, 

this assumption is very optimistic and in practice networks 

experience different faulty-behaviors over time. This paper 

extends our heuristic TSN scheduler which was developed for 

fault-free TSN systems to support the FRER mechanism. Our 

fault-tolerant TSN scheduler focuses on enhancing the 

reliability of a mission-critical system while meeting the 

deadlines of time-critical jobs. To achieve this goal, we 

introduce a novel reliability analysis approach for a mission-

critical system with a TSN communication infrastructure. This 

approach models and evaluates the reliability of a system based 

on the reliability of message transmissions between safety-

critical jobs. The reliability of message transmissions is 

computed based on the reliability of the network components 

that form the forwarding paths. Thereby, our reliability model 

enables the system designers to plan networks more optimally.  

Index Terms—TSN, GCL, FRER, scheduling, reliability model, 

system reliability analysis  

 

I. INTRODUCTION 

Due to tremendous success and wide spread 

deployment of Ethernet technologies, the Time Sensitive 

Network (TSN) [1] group has introduced a series of IEEE 

802.1 sub-protocols to offer a fault-tolerant and 

deterministic communication infrastructure for executing 

safety-critical applications over an Ethernet based 

network. In TSN networks, devices which support the 

IEEE 802.1ASRev [2] synchronize to a global clock 

reference. The TSN scheduling approach, Time Aware 

Shaper (TAS) [3] enforces a gate control list (GCL) at 

each port. The port-specific GCL determines the specific 

instant of time each egress queue is permitted to transmit 
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a message. The computation of a TSN schedule is a NP-

complete problem and the ever increasing number of 

network devices significantly increases the execution time 

for scheduling. Consequently, several solutions reduce the 

complexity of scheduling process by making abstractions. 

For instance, most of the state-of-the-art schedulers solve 

the routing and scheduling problem sequentially rather 

than computing them together. Most of the studies also 

assume that the communication infrastructure is 

completely fault-free which is a highly optimistic 

assumption. In practice, a TSN network may experience 

different changes over time such as device 

reconfiguration or device failure during transmission of 

messages. Failures in the TSN-aware devices of a cyber-

physical system may lead to irreparable environmental 

damages and huge financial loss. Fault-tolerance based on 

temporal and spatial redundancy is required to solve the 

safety-requirements. Transient or intermittent faults are 

mitigated through temporal redundancy which is the 

transmission of two copies of the same message at 

different instants. In contrast, Frame Replication and 

Elimination for Reliability (FRER) is used to alleviate 

both transient and permanent failures. In FRER, every 

message is replicated and forwarded over one or more 

redundant routes. Several studies have been performed to 

implement fault-tolerant schedulers for Time-Triggered 

(TT) communication but most of these studies focus on 

certain faults (e.g. link failures or device crashes) to 

simplify the process. 

The goal of this paper is to extend the time-triggered 

scheduler introduced in [4] to include optimization of 

system reliability while satisfying the real-time 

constraints of the application. The algorithm considers, i) 

redundant and non-redundant real-time jobs, ii) the 

redundancy in the platform model and the reliability of 

the TSN platform devices (e.g. end systems, switches, 

and links) and iii) TSN-based fault tolerance mechanisms 

such as FRER. We also introduce a new reliability 

technique for safety-critical systems. Our reliability 

model considers real-time jobs as system constituents and 

the relation between different jobs as control 

dependencies. This approach calculates the reliability of 

the overall system by first calculating the reliability of 

each message using the reliability of TSN-aware devices 

and then using it to compute the reliability of each safety-

critical job. In addition to the control dependencies 

introduced in [4], this paper also introduces conditional 
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transfers between different safety-critical jobs. It means 

that the overall system reliability is calculated using only 

those messages that are essential to the receiving job. This 

work only considers the permanent failures but FRER also 

supports transient failures. To implement FRER and to 

reduce network utilization, we assume that a message is 

duplicated on the junction of a disjoint path. 

The remainder of this paper is structured as follows: 

Section II discusses the related work on fault-tolerant 

schedulers for real-time systems, Section III presents the 

problem and outlines the system and fault models, Section 

IV describes our reliability model and Section V discusses 

our fault-tolerant list scheduler. The results are presented 

in Section VI and the last section concludes this paper. 

II.   RELATED WORK 

In recent years, several algorithms have been proposed 

regarding the TAS scheduling problem. Authors in [5] and 

[6] use a fixed routing policy to synthesize the GCL of the 

TSN-aware devices. Most of these studies ignore the 

dependencies between the routing and scheduling 

constraints, providing only a sub-optimal solution. To 

address this problem, we have proposed a list scheduler in 

[4] that considers both the routing and scheduling 

constraints in a single step. There are other recent works 

that also consider joint routing and scheduling problem 

but unlike them, our work supports inter-flow 

dependencies and job scheduling. These features play an 

important role in the deployment of TSN-aware devices 

vital for modern cyber-physical systems. However, these 

scheduling algorithms assume that the safety-critical 

system remains completely fault-free during the execution 

of the application. This assumption is highly optimistic, 

since in practice the system may encounter any number of 

faults during its function. 

In case of failures in the communication network, 

authors in [7] developed the greedy list scheduler for the 

fault-tolerant communication over the multi-bus 

heterogeneous systems. This scheduling strategy 

addresses the transient bus failures with the data 

fragmentation. Moreover, authors in [8] proposed a TT 

scheduler that masks multiple link failures through a 

localized fault-tolerant protocol rather than spatial 

redundancy that increases the bandwidth of non-critical 

traffic. The authors in [9] proposed a method that uses a 

CEGAR-based approach to find a (k,l)-resistant 

transmission schedule. In this approach, the algorithm 

delivers at least l copies of a message to the receiving 

application through k separate links. The mentioned 

works only consider the faults in the links while assuming 

that the system processors are fault-free. 

For the failures in the system processors, [10] proposed 

a distributed list scheduler that computes the fault-tolerant 

schedules for the multi-processor real-time architecture 

via task redundancy. This work assumed that all tasks run 

over the same cycle. The authors in [11]-[14] use 

Primary-Backup (P/B) approach to address processor 

failures during the execution of the application. A 

contention-aware fault-tolerant (CAFT) scheduler was 

proposed in [15] that uses active replication to solve the 

occurrence of failures in multiple number of processors. 

Similarly, [16] compute a fault-tolerant schedule through 

active replication and re-execution of jobs. Both these 

algorithms use optimal task binding and resource 

allocation to hamper the need for any additional hardware 

resources. These works consider faults only in processors 

with the assumption that the links are completely fault-

free. In [17] and [18], authors proposed algorithms that 

consider faults in both the system processors and the 

communication network but these works do not consider 

the timing constraints of the safety-critical systems or 

component redundancy to mitigate failures. 

In this paper, we introduce a fault-tolerant TT 

scheduler that meets the temporal requirements of the 

hard real-time system while optimizing the overall system 

reliability. In contrast to the state-of-the-art, we consider 

both the processor and link failure while optimizing the 

overall system reliability. Moreover, we use a conditional 

graph with conditional precedence constraints between the 

safety-critical jobs that lead to a more efficient and 

realistic transmission schedule. 

III. PROBLEM FORMULATION 

In this paper, we develop a fault-tolerant scheduler 

based on the scheduling and routing constraints defined in 

[4] with the purpose to increase the reliability of the 

safety-critical system. To achieve this goal, we use a 

novel reliability analysis technique to model and compute 

the reliability of the system. Following constraints defined 

before in [4] are also used in this work,   

1. The scheduling is non-preemptive i.e. an end-

system executes only one job at a time.  

2. Each TT message is transmitted through a 

component only once to avoid loops.  

3. Each TT message is transmitted through a link 

only if there is no hindrance in the transmission 

i.e. no other message is transmitted through the 

link during that duration.  

4. Our model uses periodic TT messages and all the 

iterations of a message are transmitted through 

the same link.  

5. A job starts its execution only when all the 

essential TT messages from the predecessor jobs 

are received.  

6. Each TT message must reach the destination 

within the deadline of the receiver job. 

A. System Model 

Our fault-tolerant time-triggered model is defined 

through two distinct graphs, i.e. a conditional application 

graph and an architecture graph. The application graph 

represents the set of real-time jobs that are implemented 

on the system depicted by the architecture graph. 

1) Application model 

The system application is represented through a 

conditional directed acyclic graph 𝐺𝑐 =< 𝐽, 𝐸 >. In this 

graph each vertex 𝑗𝑖 ∈ 𝐽 presents a non-divisible real-time 
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job and each conditional directed edge 𝑒𝑖𝑘 ∈ 𝐸 depicts the 

precedence constraint between jobs 𝑗𝑖  and 𝑗𝑘  where 𝑗𝑖  is 

the parent of 𝑗𝑘 . Each real-time job 𝑗𝑖 ∈ 𝐽 is represented 

through a tuple < 𝑤𝑖 , 𝑟𝑖 , 𝑑𝑖 > where 𝑤𝑖  is the worst case 

execution time, 𝑟𝑖  is the probability of successful 

execution (reliability) and 𝑑𝑖  is the dead-line for the 

execution of the job. Each TT message 𝑒𝑖𝑘 ∈ 𝐸 is defined 

through the tuple < 𝑝𝑖𝑘, 𝑡𝑖𝑘, 𝑟𝑚𝑖𝑘 , 𝑖𝑖𝑘, 𝑐𝑖𝑘 > . Here 𝑝𝑖𝑘  is 

the time-period, 𝑡𝑖𝑘 is the transmission time and is 𝑟𝑚𝑖𝑘 the 

probability of successful transmission (reliability) of the 

message. 𝑖𝑖𝑘  represents the injection time or in other 

words the time at which sender job 𝑗𝑖  starts the 

transmission of the message. Lastly 𝑐𝑖𝑘 is the conditional 

transfer, i.e. it determines if the message is essential for 

the receiver job 𝑗𝑘  or if it can be replaced with a TT 

message from other parent jobs. This is an important 

characteristic as a job cannot start its execution before 

receiving all the required incoming messages. To simplify 

matters, we assume that a receiver job has at least two 

incoming conditional edges that can be substituted with 

each other for a successful execution. An example of such 

a graph is given in Fig. 1. 

 
Fig. 1. An example of system model (the left graph is an application graph and the right one is an architecture graph) 

2) Architecture model 

The system architecture is depicted through a 

undirected graph  𝐺𝐴 =< 𝑆, 𝐿 > . In this graph, each 

vertex 𝑠𝑖 ∈ 𝑆 is either a TSN end system or a TSN switch, 

i.e. 𝑠𝑖 = 𝐸𝑆𝑖 ∪ 𝑆𝑊𝑖 whereas each edge 𝑙𝑖 ∈ 𝐿 is a duplex 

physical link between TSN aware devices, i.e. TSN end 

system and TSN switch. A duplex link means that two 

messages can transmit on the link simultaneously 

provided that they traverse in opposite directions. Each 

network component 𝑐𝑖 ∈ 𝑆 ∪ 𝐿 = 𝐺𝐴  is defined by a 

reliability 𝑟𝑐𝑖 which is the probability of the components 

𝑐𝑖  to operate successfully. An example of the system 

architecture is given in Fig. 1. It has to be noted that a 

real-time jobs are allocated only on end systems and 

messages are scheduled on the TSN-aware switches that 

lie between the sending and receiving end systems.  

3) Fault model 

Our fault model considers only one permanent failure 

in any network component including TSN-aware devices 

and links, at a given time. It means that a failure in a link 

does not effect the operation of its connected devices. Due 

to limited number of resources, our solution only 

considers the duplication of TT messages at the junction 

of disjoint paths in the system. However, this method can 

easily be extended to tolerate several permanent failures in 

system components by including various redundant routes 

and multiple message replications at the expanse of a 

greater network load. In addition to redundant routes, our 

method also considers redundant real-time jobs through 

conditional edges as described in Section III-A.1. It means 

that if one of the redundant real-time jobs executes 

successfully then the failure of the other redundant jobs 

will not effect the operation of the safety-critical system. 

IV. RELIABILITY MODEL 

The reliability of the safety-critical system is calculated 

using the reliability of the real-time jobs and the reliability 

of the TT messages. This section explains our reliability 

model in detail.  

A. Reliablity of Safety-Critical Messages 

The successful transmission of a TT message depends 

upon the reliability of all the components constituting the 

transmitting path. The reliability 𝑟𝑐𝑖  of a system 

component 𝑐𝑖 ∈ 𝐺𝐴 can be expressed as [19],  

                 𝑟𝑐𝑖(𝑡) = 𝑒−𝜆𝑡                               (1) 

where λ is the failure rate that specifies the number of 

faults a device experiences per unit of time. Moreover, the 

total reliability of the TSN-aware devices connected in 

series with each other is given as [19],  

                       𝑅(𝑡) = ∏  𝑁
𝑖=1 𝑟𝑐𝑖(𝑡)                  (2) 

Whereas the total reliability of a message transmitted 

on a path where TSN-aware devices are connected in 

parallel to each other is given as [19],  

                    𝑅(𝑡) = 1 − ∏  𝑁
𝑖=1 (1 − 𝑟𝑐𝑖(𝑡))              (3) 

As described in Section III.B, a TT message is 

duplicated at the junction of two parallel paths and each 

copy is transmitted over one or the other disjointed path. 

However, the device at the other end of the junction 

transmits only one copy and discards the other. To 

calculate the total reliability of a TT message, we model 

the redundant routes in the form of series and parallel 

components where each system component represents a 
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separate module. These modules are connected together 

through the specified route topology. A reliability model 

for the transmission of 𝑚3 which is sent from 𝑒𝑠0 to 𝑒𝑠1 

is given in Fig. 2. For simplicity, it is assumed that TSN 

end systems are fault-free. We also assume that all TSN 

switches are identical and have the same failure rate. The 

same assumption is made in case of the duplex links. 

Therefore, we denote the reliability of a switch and a link 

as 𝑟𝑠𝑤  and 𝑟𝑙  respectively. Since the successful 

transmission of a message correlates with the reliability of 

the overall system so according to Eq. 2 and Eq. 3, the 

reliability of message 𝑚3 in Fig. 2 is,  

               𝑟𝑚3
(𝑡) = 𝑟𝑙

2𝑟𝑠𝑤
2 (𝑟𝑙 + 𝑟𝑙

2𝑟𝑠𝑤 − 𝑟𝑙
3𝑟𝑠𝑤)          (4) 

 
Fig. 2. Reliability model of message m3 

B. Reliability of Safety-Critical Jobs 

The reliability of a job depends upon the successful 

execution of its predecessors, transmission of all the 

required TT messages and correct operation of the 

assigned end system. If a job has no predecessor then its 

reliability is equal to the reliability of the assigned end 

system. We depict the job reliability model in the form of 

series and parallel systems using the conditional transfer 

described in Section III.A.1. In this context, each job and 

the corresponding TT message is considered as a separate 

module. The modules are connected together through 

conditional control dependencies described in the 

application graph. An example of such a reliability model 

is given in Fig. 3 for job 𝑗5 . Here the conditional path 

shows that the TT messages from job 𝑗4 are essential for 

the execution of 𝑗5 but TT messages from either 𝑗0 or 𝑗3 

are sufficient to start 𝑗5.  

 
Fig. 3. Reliability model of job j5 

Eq. 2 and Eq. 3 can also be applied here to solve the 

series-parallel connection of the modules. Hence, 

according to Fig. 3 the total reliability of job 𝑗5  can be 

given as,  

𝑟5 = [1 − (1 − 𝑟0𝑟𝑚0
)(1 − 𝑟3𝑟𝑚2

)]𝑟4𝑟𝑚4
 (5) 

 
Since 𝑟3 = 𝑟𝑒𝑠𝑟𝑚1

 , 𝑟4 = 𝑟𝑒𝑠𝑟𝑚3
 and 𝑟0 = 𝑟𝑒𝑠  therefore 

Eq. 5 can be simplified to Eq. 6. Here the reliability of the 

messages𝑚1 ,𝑚2 , 𝑚4  and 𝑚6  are calculated through the 

method described in Section 4.1.  

𝑟5 = (𝑟𝑚0
+ 𝑟𝑚1

𝑟𝑚2
− 𝑟𝑚0

𝑟𝑚1
𝑟𝑚2

)𝑟𝑚3
𝑟𝑚4

 (6) 

 

It has to be noted here that the described technique to 

calculate job reliability is only applicable when the 

respective job shares no module with its respective 

predecessors and incoming TT messages. In reality, it is 

quite possible that the predecessor jobs and incoming 

messages share one or more network modules. In such 

cases, it is not possible to use series/parallel module 

structure to calculate job reliability. Alternatively, the 

model is first expanded for each shared module and then 

the job reliability is calculated using different operational 

conditions and the total probability of the job completing 

its execution on the component. 

 

 𝑟𝑖 = 𝑟𝑐𝑖
. 𝑃𝑟𝑜𝑏𝑐𝑖

+ (1 − 𝑟𝑐𝑖
). 𝑃𝑟𝑜𝑏𝑐𝑖

         (7) 

         

where 𝑟𝑖 is the reliability of the ith job, 𝑟𝑐𝑖
 is the reliability 

of the respective network module 𝑐𝑖 , 𝑃𝑟𝑜𝑏𝑐𝑖
 is the 

probability of the job completing its execution on a fault-

free 𝑐𝑖 and 𝑃𝑟𝑜𝑏𝑐𝑖
 is the probability of the job completing 

its execution on a faulty 𝑐𝑖 . For better understanding, 

consider the reliability model given in Fig. 3 for the last 

part i.e. 𝑟𝑚3
𝑟𝑚4

 of Eq. 6. The reliability model has four 

common components i.e.  𝑆𝑊1 , 𝑙4 , 𝑆𝑊0  and 𝑙1 . The 

common 𝑆𝑊1 and 𝑙4 components are connected in series 

with each other therefore only one of each is considered 

for the reliability model. But the model is expanded for 

the other two components and Eq. 7 is used to calculate 

the reliability of this statement. 

 

          𝑟𝑠4
= 𝑟𝑠𝑤0

. 𝑃𝑟𝑜𝑏𝑠𝑤0
+ (1 − 𝑟𝑠𝑤0

). 𝑃𝑟𝑜𝑏𝑠𝑤0
         (8) 

 
where 𝑃𝑟𝑜𝑏𝑠𝑤0

 and 𝑃𝑟𝑜𝑏𝑠𝑤0
 are given as, 

 

   𝑃𝑟𝑜𝑏𝑠𝑤0
=

𝑟𝑙1
. 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) + (1 − 𝑟𝑙1

). 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1)                            (9) 

 

 𝑃𝑟𝑜𝑏𝑠𝑤0
= 𝑟𝑙1

. 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) + (1 − 𝑟𝑙1
). 𝑃𝑟𝑜𝑏(𝑠𝑤0,𝑙1) (10) 

 
Fig. [4c-4e] represents the expansion of the reliability 

model of 𝑟𝑚3
𝑟𝑚4

 on 𝑆𝑊0 and 𝑙1. The expansion continues 

until a model is obtained that has no common components 

and after that series-parallel structure is used to calculate 

the reliability of 𝑗5 . This approach is applied to every 

component that constitutes the reliability model of job 𝑗5 

until a model is achieved that has no common component. 

C. Reliability of Safety-Critical System 

The reliability of a safety-critical system depends upon 

the successful execution of all the mission critical jobs 

within  

the system. In order to calculate the reliability, a 

dummy sink vertex is added to the system application 

graph such that all jobs that have no successors are 

connected to this vertex as predecessors. In Fig. III.A.1, a 

sink vertex is added as a successor to jobs 𝑗5 and 𝑗6. Since 

the sink vertex is a dummy node without any impact on 
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the application, it is assumed that the reliability of all the 

TT messages transmitted to the sink vertex is always 

equal to one. Moreover, the overall system reliability is 

equal to the reliability of the sink vertex of the application 

graph. So the reliability of the system given in Fig. 1 is,  

       𝑟𝑡 = 𝑟𝑠𝑖𝑛𝑘 = 𝑟5𝑟6    since    𝑟𝑚8
= 𝑟𝑚9

=

1                   (11) 

 
Fig. 4. Reliability model of 𝑟𝑚3

𝑟𝑚4
 when it is expanded on common network components 

V.    FAULT-TOLERANT LIST SCHEDULER 

We modify the list scheduler presented in [4] so that it 

fulfills the temporal requirements of the mission-critical 

applications while increasing the overall reliability of the 

system. The list scheduler works in two phases [20], 

firstly priorities are assigned to the jobs in the application 

graph and then these jobs are scheduled onto end systems 

based on their priority and precedence constraints. We 

used the critical path method to calculate the priorities of 

the jobs. The details of the priority assignments are given 

in [4]. Once the priorities are assigned, the scheduler adds 

the jobs whose precedence constraints have been fulfilled 

to a ready list. The list is then arranged in descending 

order of the priorities of the jobs. The scheduler then 

selects the jobs from this list and assigns them to an 

eligible end system (J.CanRunOn) one by one. Once an 

end system has been selected, the scheduler finds all 

possible routes between the sender and receiver end 

systems using the multiplication adjacency matrix. Then 

permutation is used to calculate all the possible redundant 

routes between the sender and receiver. For each pair, the 

message reliability is calculated and the pair of forwarding 

routes with the best reliability values are selected. The 

scheduler then finds the earliest injection time of each 

job’s ingress flow. After that it obtains the message’s 

arrival time (aik) based on the transmission delay of the 

message (e2eik). The details of the transmission delay 

calculation are given in [4]. If the chosen time slot does 

not meet the job’s deadline, then another end system is 

selected. Algorithm 1 gives a pseudo-code representation 

of the fault-tolerant list scheduler. 

 

VI. EXPERIMENTS AND EVALUATION 

Our fault-tolerant list scheduler was implemented in 

C++ and the experiments were carried out on a T460 

Linux ThinkPad with 32GB memory and Intel i5 

processor. The system model used for the experiments 

were generated using the SNAP library [21]. We have five 
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separate test cases with different properties that are 

defined in Table I. The characteristics used for these 

experiments are as follows: 

a) System Architecture: For the architecture graph, 

we use the grid network with different number of 

components as defined in Table I. Fig. 5 gives an example 

of an architecture that is used for the use case 1. The use 

case 1 represents the small size network while the use 

case 2 and 3 represent medium size and large scale 

networks respectively. 

b) System Application: Each safety-critical 

application is generated in the form of a Random Forest 

Fire Directed graph using the SNAP library [21]. The 

number of jobs in the safety-critical application varies 

between 8 and 16 as shown in Table I. The period of the 

TT flows is chosen from the set <50,100,150> (ms) and 

the transmission time of a TT frame from one device to 

the neighboring device is taken as 10 μs. To simplify 

things, we make the assumption that all jobs have the 

same worst-case execution time i.e. 80 μs and deadline i.e. 

1.75 ms. 

 
Fig. 5. Grid network topology used for case 1 

TABLE I: THE CHARACTERISTICS OF THE EXPERIMENTAL USE CASE 

Use Case 1 2 3 4 5 

Number of nodes 71 83 95 47 71 

Number of links 76 89 102 50 76 

Number of jobs 12 14 16 8 12 

Number of messages 30 60 90 20 50 

Link/Device 

reliability distribution 

.99:10% 

.991:10% 

… 

.999:10% 

.99:25% 

.993:25% 

… 

.999:25% 

A. Results 

We have divided our results in two separate scenarios. 

The first scenario comprises of the first three use cases 

given in Table I. It focuses on comparing the average 

system reliability and average network load between the 

schedules generated by the list scheduler given in [4] 

which computes schedule with optimized makespan for 

the fault-free TSN systems and our fault-tolerant list 

scheduler. We compare these factors with respect to 

varying number of messages, devices and links. In the 

second scenario, we study the trend of system reliability 

with varied level of job redundancy and component 

reliability. Use case 4 and 5 in Table 1 give the properties 

of this scenario. For each mentioned use case, we generate 

100 synthetic system models that have different inter-flow 

dependencies and use the grid network topology. 

1) List Scheduler vs. Fault-tolerant list scheduler 

In the first part of the experiments, we study the effect 

of the basic list scheduler and fault-tolerant list scheduler 

on the average system reliability and average network 

load respectively. This part uses the properties of the first 

three use cases given in Table I. We assume that all the 

TT messages are essential for the execution of successor 

jobs and that the reliability of each network component 

remains constant throughout the execution of the 

application. The characteristics of these models, i.e. 

number of system components etc, are given in Table I. 

The reliability of the devices, in each case, varies between 

0.99 and 0.999 by a probability of 10%. 

For the use case 1 given in Table I, Fig. 6a shows the 

average system reliability of 100 synthetic models for the 

basic list scheduler and Fault-Tolerant List Scheduler 

(FTLS). The figure shows that the average system 

reliability is improved by approximately 9% after the 

usage of the fault-tolerant list scheduler. This 

improvement is carried out through message duplication 

and transmission of messages on redundant paths in the 

fault-tolerant list scheduler compared to the single copy of 

each TT message scheduled over only one path in the 

basic list scheduler. This improvement in system 

reliability, however, has few drawbacks. Message 

duplication leads to a higher number of scheduled 

messages by FTLS that increases the overall network load. 

This is proven through the results given in Fig. 6b where 

the network load is approximately 2 % higher in FTLS 

compared to the basic list scheduler. Therefore, FTLS 

increases the system reliability at the expanse of the 

network load. The increased number of messages in FTLS 

also increases the overall makespan of the schedule. Fig. 

6c shows that, for use case 1, the average makespan for 

the schedule obtained through the basic list scheduler is 

0.943 ms whereas it is 1.055 ms in case of FTLS. So, the 

basic list scheduler provides a more optimal solution than 

FTLS but at the expanse of lower system reliability. 

For use case 2, our fault-tolerant scheduler improves 

the system reliability approximately by 7% at the expanse 

of a 2% increase in the network load as shown in Fig. 6a, 

6b. The average makespan for FTLS is 1.498 ms 

compared to 1.325 ms obtained through the basic list 

scheduler as shown in Fig. 6c. Similarly, for use case 3, 

FTLS improves the system reliability by approximately 4% 

at an increased network load of 2% (see Fig. 6a, 6b). The 

average makespan for basic list scheduler is 1.630 ms 

compared to the increased makespan of 1.851 ms in FTLS. 

TABLE II: AVERAGE EXECUTION TIME OF LS AND FTLS FOR USE CASE 

1-3 

Scheduler        use case 1      use case 2      use case 3 

                    (s)                  (s)                (s) 

     LS                   7                     20.2             58.7 

     FTLS               8                     35                625.5 

 

The last factor to consider in all three cases is the 

schedulability ratio that, theoretically, should decrease in 
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FTLS because of the message duplication compared to the 

basic list scheduler. However, in use case 1 the 

schedulability ratio remains same for both schedulers 

mainly because the total number of messages is low 

compared to the number of devices and links. So the 

duplication of messages does not affect the chances of 

obtaining an optimal schedule. This is shown in Fig. 6d. 

When the number of messages are increased to 60 in use 

case 2 without a considerable increase in the number of 

devices and links, the schedulability ratio decreases by 4% 

as shown in Fig. 6d. Use case 3, however, shows a 

significant drop in the schedulability ratio from 92 in the 

basic list scheduler to 24 in FTLS. Since the number of 

messages, in this case, is thrice more than in use case 1 so 

the total number of message duplication is also increased 

approximately three times but there is not enough increase 

in the number of devices and links to cater this change. 

Therefore, there is a lower chance of getting an optimal 

schedule in this case.  

 
Fig. 6. Experimental results derived from the schedules generated by FTLS and basic LS for different number of nodes, links, and TT messages 

Table II shows the average execution time of FTLS 

compared to the basic list scheduler. It shows that the 

execution time of FTLS dramatically increases with each 

use case. It is mainly because FTLS needs to explore a 

bigger search space to find valid fault-tolerant schedules 

compared to the basic list scheduler. 

2) System Reliability vs. Varied level of job redundancy 

In the second part of the experiments, we study the 

impact of a varying degree of redundancy for different 

jobs of the application graph on the system reliability. The 

characteristics for this set of experiments is given in use 

case 4 of Table I. In the first scenario of the use case, we 

assume that the jobs in the application graph require all 

the TT messages from their predecessors to start their 

execution. In the second scenario, the condition of the 

control transfer values alternates between two feasible 

conditions, i.e. essential and substitutable, with a 

probability of 0.5. In both scenarios, it is assumed that the 

reliability of the network devices (i.e. end systems and 

switches) varies from 0.993 to 0.999 while the links are 

fault-free. Fig. 7 shows the results of these experiments. It 

is visible from the results that the system reliability is 

greatly improved in scenarios where only half of the TT 

streams are essential. A higher level of redundancy 

between different jobs of the system application results in 

a more reliable TT communication schedule. 

 
Fig. 7. Average of system reliability of schedules computed by FTLS 

for varying level of job redundancy 

3) System Reliability vs. Varied component reliability 

In the last part of the experiments, we study the 

sensitivity of overall system reliability with respect to 

different network components. Use case 5 in Table I 

represents the characteristics for these set of experiments. 

For this purpose, in the first scenario, we assume that the 
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link is fault free (i.e. rl =1) whereas reliability of end 

systems and switches varies from 0.993 to 0.999. In the 

second scenario reliability of the links varies from 0.993 

to 0.999 and res=rsw=1. The results for these experiments 

are shown in Fig. 8. From the figure, it is visible that the 

average system reliability is increased by 7 % in case of a 

greater link reliability compared to other TSN-aware 

devices. This implies that more reliable physical links lead 

to a more fault-tolerant schedule. 

 
Fig. 8. Average of system reliability of schedules computed by FTLS 

for varying component reliability 

VII. CONCLUSION 

This paper presents a fault-tolerant list scheduler that 

schedules safety-critical applications while maximizing 

system reliability. The process supports the TSN 

redundancy management of message duplication and the 

elimination of message replicas. Our reliability model 

calculates system reliability by considering the reliability 

of each TSN-aware device and physical link that form the 

message forwarding paths. Our approach differs from 

other state-of-the-art fault-tolerant schedulers that only 

focus on either the device or the link failures. We also 

consider the conditional control transfer between different 

jobs, which raises the reliability of the overall system. The 

results illustrate that the fault-tolerant list scheduler 

enhances system reliability considerably compared to the 

basic list scheduler at the expense of an increase in the 

network load. Our results show that overall system 

reliability is highly improved by increasing job 

redundancy and enhancing the reliability of the physical 

links in the system. Our fault-tolerant scheduler improves 

the overall system reliability significantly compared to the 

basic list scheduler, but it requires a longer time to 

coverage to a feasible solution. In future work, we will 

look into new optimization algorithms that diminish this 

issue. 
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