
Lightweight Convolutional Neural Network Based

Intrusion Detection System

Vinh Pham, Eunil Seo, and Tai-Myoung Chung
Sungkyunkwan University, Suwon and 16419, South Korea

Email: vinhpham@g.skku.edu; seoei2@skku.edu; tmchung@skku.edu

Abstract—Identifying threats contained within encrypted

network traffic poses a great challenge to Intrusion Detection

Systems (IDS). Because traditional approaches like deep packet

inspection could not operate on encrypted network traffic,

machine learning-based IDS is a promising solution. However,

machine learning-based IDS requires enormous amounts of

statistical data based on network traffic flow as input data and

also demands high computing power for processing, but is slow

in detecting intrusions. We propose a lightweight IDS that

transforms raw network traffic into representation images. We

begin by inspecting the characteristics of malicious network

traffic of the CSE-CIC-IDS2018 dataset. We then adapt

methods for effectively representing those characteristics into

image data. A Convolutional Neural Network (CNN) based

detection model is used to identify malicious traffic underlying

within image data. To demonstrate the feasibility of the

proposed lightweight IDS, we conduct three simulations on two

datasets that contain encrypted traffic with current network

attack scenarios. The experiment results show that our proposed

IDS is capable of achieving 95% accuracy with a reasonable

detection time while requiring relatively small size training data.

Index Terms—Intrusion detection, machine learning,

convolutional neural network

I. INTRODUCTION

The rapid development of technology not only makes

life more comfortable but also reveals many security

problems. The growing number of various cyber threats

endanger today’s Internet. Hackers are inventing new

techniques daily to bypass security layers and avoid

detection. Therefore, IDS play an indispensable role in

defending against intrusions and malicious activities. IDS

can be classified into Network Intrusion Detection

Systems (NIDS) and Host-based Intrusion Detection

Systems (Host-IDS). NIDS centrally monitors and

analyzes network traffic, while Host-IDS monitor specific

system in the network [1].

The continuous development of new cyber attacks

necessitates the rapid extension of new communication

Manuscript received April 25, 2019 ; revised October 13, 2020.

This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP) grant

funded by the Korea government (MSIT) (No.2020-0-00990 Platform

Development and Proof of High Trust & Low Latency Processing for

Heterogeneous • Atypical • Large Scaled Data in 5G-IoT Environment)

and by Healthcare AI Convergence Research & Development Program

through the National IT Industry Promotion Agency of Korea (NIPA)

funded by the Ministry of Science and ICT (No. S1601-20-1041)

Corresponding author email: tmchung@skku.edu.

doi:10.12720/jcm.15.11.808-817

protocols that not only encrypt user payload data but also

hide the original information in the packet header (e.g.,

dynamic port). Hence, traditional approaches such as

deep packet inspection and signatures could not be

applied to encrypted traffic [2]. To cope with this

challenge, IDS uses the machine learning algorithm to

catch up on the problematic situation.

Machine learning algorithms require a large amount of

training data to detect threats with high accuracy. These

algorithms typically prefer statistical data as their training

and input data. An IDS based on machine learning (e.g.,

[3]-[6]) would require sufficiently powerful hardware to

process such big size statistical data. In practice,

collecting statistic data from network traffic takes some

time and might result in delayed intrusion detection.

These limitations have made previous machine learning-

based IDS impractical and unrealistic for deployment in

real-world situations.

In this paper, we propose a lightweight CNN-based

IDS, which only requires a small amount of data but can

still detect threats with high accuracy. It should also be

noted that related works have had to cope with

imbalanced datasets in building machine learning IDS

(e.g., [6], [7]). The lightweight CNN-based IDS described

here will help us avoid the problem of an imbalanced

dataset as we can easily construct a balanced dataset with

minimal training data obtained. The proposed lightweight

CNN-based IDS uses raw network traffic as the input

data. This feature of our proposal is realistic, as the first

part of an attack that can be observed is its raw traffic.

With this practical feature, the proposed IDS has quicker

detection time, facilitates real-time detection in a feasible

manner, and is easily implemented and deployed in

practice. We employ a method described in [8] for

transforming raw traffic into an image. We also update

this method to an enhanced method that works better on

malicious traffic. In summary, we make the following

contributions:

1) We propose a lightweight CNN-based IDS,

which can be easily implemented and deployed

into both real-time NIDS and Host-IDS, and that

requires a comparatively small dataset while

achieving a reasonable accuracy (e.g., 95%) and

detection time.

2) We evaluate several performance metrics (such

as accuracy, detection time, and training data

size) of the proposed CNN-based IDS, which are

808©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

trained by two CIC-IDS2018 and CIC-VPN2016

datasets in up-to-date network attack scenarios

(e.g., Botnet, BruteForce, DoS, etc.).

3) The performance of the two methods

transforming raw traffic into image are

compared to determine which method is

preferred and will be suggested for

implementation in our proposal.

The paper is organized as follows. Section 2 provides a

detailed introduction of our primary references and a

short survey of the related research works, while Section

3 described the two datasets. The paper will go on to

illustrate our proposed system, components, and

functions in Section 4. Section 5 presents our

experimental simulations and interprets our obtained

results in detail. Finally, Section 6 summarizes the paper

and provides our vision for future work.

II. RELATED WORK

Representation learning [9] is a new machine learning

approach that involves automatically learning features

from raw data without the process of hand-designing

features. Wang et al. [10] proposed combining a machine

learning-based classifier with representation learning to

identify the type of malware by the raw traffic generated.

They transformed the payload of a data packet to image

data, then trained image data on a one-dimension CNN

model; they achieved an average accuracy of 99.41%.

With this success in malware traffic classification, they

applied the same method in an encrypted application

traffic classification task [11] and achieved up to 99.9%

accuracy. Our proposed IDS employs their representation

learning approach to accept raw network traffic as the

input data.

Shapira et al. [8] stated that a packet payload will

change according to different encryption methods and

encryption keys; and that packet payload should therefore

not be employed to represent the characteristic of

encrypted network traffic, like Wang et al. did in [10],

[11]. Instead, they proposed the Payload Size Distribution

(PSD) Histogram that utilizes time-related and size-

related features to represent encrypted raw network traffic

into the representation form of an image. This work in [8]

also demonstrated that the PSD Histogram is "immune to

encryption techniques". This means that the machine

learning model can effectively classify sets of Internet

traffic encrypted by different encryption techniques if

they are transformed into image data through the PSD

Histogram method. We employ the PSD Histogram

method and attempt to classify the kinds of attack

software that generated the malicious traffic that was sent

to the victim computer in a network.

Helmer et al. [12] proposed a Multi-agent IDS that

combined multiple lightweight agents running on

individual computers to secure a distributed system.

Zhengbing et al. [13] proposed an intelligent lightweight

IDS that employed a data mining and watermark

technique to effectively and efficiently detect intrusions

in real-time. Zaman et al. [14] might be considered one of

the pioneers who applied the features selection concept to

reduce the amount of data needed, thus improving IDS

scalability and extendibility. There have also been

various other essential studies [15], [16] that attempted to

deploy machine learning-based lightweight IDS on IoT

devices with limited resources.

Table I presents the previous machine learning-based

IDS that were tested on the CSE-CIC-IDS2018 dataset to

evaluate their performance.

TABLE I: PREVIOUS MACHINE LEARNING IDS.

Name Accuracy Data size Remark

Kim et al. [17] 99% DoS 1040548 13% Infiltration

Lin et al. [6] 96.2% average 2172045 17.12% Infiltration

Roy et al. [7] 88.5% average 164536 40% Infiltration

Zhou et al. [18] 96% average whole 57% Malicious only

Catillo et al. [5] 99.2% Botnet whole 95.8% BruteForce

Because there are substantial differences in data

interpretation, data preparation and strategies were

applied to the dataset in the research highlighted above,

and we could not acquire consistent numbers of training

data between them. Some studies, such as [5], [18], did

not mention a specific number but referred to using the

entire dataset. However, the common limitation between

these proposed IDS is that the training data size typically

exceeded one million units, but not all the attack

scenarios were detectable; i.e., the accuracies for

Infiltration were below 50% [6], [7], [17].

III. DATASET

In this work, we employed two widely used datasets to

evaluate our proposed IDS: CSE-CIC-IDS2018 (IDS2018)

[19] and ISCX-VPN2016 (VPN2016) [20].

A. CSE-CIC-IDS2018

The IDS2018 was released by the Canadian Institute of

Cybersecurity (CIC) for intrusion detection research in

2018. This dataset includes network traffics captured

from an infrastructure that includes fifty hosts, and the

victim organization has five departments with four

hundred twenty hosts and thirty servers with different

operating systems (e.g., Windows, Ubuntu, and MACOS

X) and network devices (e.g., modems, switches, firewall,

and routers) used. This dataset contains the most popular

and up-to-date network attack scenarios which are Brute-

force, Botnet, DoS, DDoS, Web attacks, and Infiltration,

resulting in a total of 14 types of intrusions (e.g., FTP-

BruteForce, XSS, and DoS-Slowloris).

The IDS2018 is provided in two data formats: The first

data format is the raw record of network traffic (PCAP)

and the event logs of all computers. The second data

format (CSV) is fully labeled and describes the 83

statistical features of the traffic (e.g., flow duration,

number of packets, average size of the data packet,

standard deviation time between two data packets sent in

809©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

the backward direction, etc.). Most related research has

preferred the labeled format because it is widely believed

that statistics based on network flow can provide more

useful information for intrusion detection [21]. Instead,

we employ the raw network traffic (i.e., PCAP) as a

target object for our IDS to detect intrusions in this paper.

B. ISCX-VPN2016

CIC also released the VPN2016 to generate a

representative dataset of real-world traffic that is

sufficiently rich in both diversity and quantity. This

dataset is provided in two formats, like IDS2018, and

contains seven categories of application network traffic

(e.g., Browsing, Email, Chat, Streaming, File Transfer,

VoIP, and P2P). A VPN encryption method was used to

encrypt all traffic at the protocol layer (TLS, IPsec, etc.).

This dataset has been popular in many studies researching

topics related to the classification of application traffic

[8], [11].

Classifying application traffic involves identifying the

type (e.g., Streaming, File Transfer, VoIP, etc.) of a

certain set of network traffic based on their behaviors.

Intrusion detection, which involves analyzing the

characteristic of the generating tool, proceeds under the

same principle as application traffic classification. These

attack tools generate some kinds of malicious encrypted

traffic that will be sent to the network. Each piece of

malicious traffic is expected to carry the characteristic of

the generating tool within it. We assume that if our

proposed lightweight IDS can classify the correct type of

encrypted traffic belonging to the VPN2016 dataset, then

it should also be able to detect encrypted malicious traffic.

IV. DESIGN OF THE PROPOSED LIGHTWEIGHT CNN-

BASED IDS

In this section, we will discuss the architecture of the

lightweight CNN-based IDS. The proposed IDS consists

of two components: a data transformation process and a

CNN-based detection model. We also propose a multiple

classifiers combination method for deployment. A

schematic diagram of the proposed lightweight IDS is

shown in Fig. 1.

Fig. 1. Lightweight CNN-based IDS.

A. Data Transformation

The primary function of the data transformation is to

represent the raw network traffic’s characteristics as an

image that can be analyzed by a CNN model to determine

whether it represents normal traffic or malicious traffic

generated by attack tools.

According to [14], a lightweight IDS is a small,

flexible, and highly capable system that accomplishes

essential tasks using minimal data, and that is

dynamically updatable and upgradable. We refer to a

portion of monitored network traffic within a given time

window as a block. This block is the data unit that will be

analyzed by the detection model and that will also be

used for training data. If we employ statistical data based

on network traffic as the input data for IDS, it would

require some data preparation (e.g., feature selection,

cleaning the data, outlier removal, etc.) steps. These extra

workloads would take time, thus resulting in a delay in

making observations in the network traffic (which

involves constructing a block in our case) that would be

analyzed thereafter, hence interfering with the real-time

detection of IDS. By contrast, by transforming raw

network traffic into small image data, we can minimize

the workload of both constructing the training data and

quickly making blocks.

Fig. 2. Data transformation illustration.

A simple example might be the best way to explain the

data transformation process. Let us say we have

monitored ten packets that were sent to our computer.

There was one 1-byte packet that arrived at the 1st second,

two 2-byte packets at the 2nd second, three 3-byte

packets at the 3rd second, and finally four 4-byte packets

at the 4th second. We can then initialize a two-dimension

array data structure that represents a 2D image, where the

Y-axis stands for the packet length and the X-axis stands

for the arrival time of the packet.

The value of a cell that has its index represents the

length, and the arrival time of the packet will be set equal

to the number of the respective packet. To clarify, the [0,

0] cell will be 1, the [1, 1] cell will be 2, and so on. Then,

that array data structure can be saved into a 2D image

(e.g., PNG format) with the value of each cell

representing the brightness of the respective pixel. One

image is one block. That means the brighter the pixel, the

more packets of equivalent length and arrival time there

are within that block. Fig. 2 shows a simple illustration of

this process. This explanation is the principle of the PSD

Histogram method, which was introduced in [8] for the

application traffic classification task.

By inspecting the IDS2018 dataset, we realize that in

most attack scenarios, the malicious traffic contains TCP

control packets (i.e., a packet with flags such as SYN,

ACK, PSH, etc.) which have small length values that are

always below 100 bytes. In addition, there is a notable

aspect of malicious traffic generated by attack tools,

which we call a sequence pattern of packet length. For

810©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

example, in the malicious raw network traffic of the

Botnet attack scenario, two [ACK] 54-byte packets and

one [SYN, ACK] 66-byte packet always came after one

[PSH, ACK] 71-byte packet, resulting in a 71-54-54-66

sequence pattern that was repeated many times. This

behavior might be worth exploiting to identify malicious

traffic.

Therefore, we modify the original PSD method to

exploit this new finding by replacing the Y-axis of the

representation image with a new metric that we term

Sequence Pattern (SP). This new metric is calculated as

follows:

 First, multiply the packet length by its normalized

arrival time. This multiplication helps us discriminate

between two packets that have the same length but

different arrival times, then distribute them into

different portions of the representation image.

 Secondly, modulo the result of the above step to the

predefined size of the representation image. The

purpose of this second step is to calculate a valid

value for the SP metric because it must be smaller

than the size of the image.

The pseudocode for calculating the index of a specific

cell belonging to the two-dimension array data structure

that represents its respective pixels is shown in Algorithm

1. Whenever the IDS observes an incoming packet within

a time window, it will calculate the index of the

representative cell for that packet length and arrival time,

then increase that cell by one. When the time window is

exceeded, the two-dimension array is ready to be saved as

image data, then reset for the next time window.

Algorithm 1: Cell index calculation for PSD & SP.

Result: xPSD, yPSD, xSP, ySP

t: arrival time of the packet;

l: length of the packet;

PNGSIZE: Image size;

INTERVAL: Time window;

MAXLEN: Maximum length of the packet;

base: first packet appears within a time window;

i: i-th packet after the first one;

xPSD = (t[i]-t[base]) * PNGSIZE / INTERVAL;

yPSD = l[i] * PNGSIZE / MAXLEN;

xSP = xPSD;

ySP = modulo(l[i]*xSP, PNGSIZE);

Fig. 3. Pattern visual comparison of PSD & SP image data

Fig. 3 shows the pattern visual comparison between

two image data generated from Botnet malicious traffic

by PSD and our new proposed SP method. By replacing

the packet length with the SP metric for the Y-axis, the

SP image data seems to be disordered. However, the

disorder is distinct between different kinds of malicious

network traffic, which may imply latent patterns that can

be identified by the detection model, resulting in higher

accuracy detection. By contrast, PSD image data share a

common regular pattern consisting of horizontal dashed

or dotted lines, so they are easily confused by the

detection model, resulting in lower accuracy detection.

B. CNN-based Detection Model

Because we applied the representation learning

approach by transforming raw traffic into image data, the

intrusion detection problem is changed to an image

classification problem. Classifying small-sized images

will require less computing and data processing power,

while the training time and time needed to classify new

representation images will still be relatively short.

Returning to our intrusion detection problem, if we

employ a simple but effective machine learning model for

image classification, then the training time and detection

time will be substantially enhanced compared to

employing a complex machine learning model for

statistical data.

CNN [22] has been proven effective and highly

accurate in image classification tasks. We use CNN as the

core detection model for the proposed IDS. Moreover, the

openness in the CNN architecture design unlocks many

fine-tuning possibilities aiming for different targets, such

as classifying time, accuracy, and acceleration.

C. Multiple Classifiers Combination

Hackers continually try to invent new attack methods

to bypass the latest security solutions. Alongside

malicious traffic, there are also many kinds of normal

application traffic. The number of classification classes

must increase to adapt to the increasing number of new

attack methods as well as applications. As a result, the

architecture of a detection model must be evolved and

more complex to cope with newly appearing classes. The

more complex the architecture, the longer the training and

detection times. There is no single perfect solution for all

problems; in other words, there is no perfect classifier for

all classes.

In this section, we propose a deployment concept that

combines two classifiers, which are:

 One PSD classifier (e.g., [8]) that classifies the raw

network traffic first. If that traffic belongs to the well-

known category of application (e.g., Chrome web

browsing, Facebook video streaming, etc.), they will

pass through the network.

 By contrast, if one piece of traffic is classified as

unknown, it is considered potentially malicious traffic.

This unknown traffic should be redirected to the

proposed lightweight IDS, which is an SP classifier.

The SP classifier will then detect whether this

unknown traffic belongs to an attack tool or not.

An illustration of the deployment concept is shown in

Fig. 4. Finally, the update scenario of our CNN-based

IDS should be carefully considered. Suppose we deploy

one NIDS at the server and other Host-IDS at particular

811©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

computers to secure our network. The training process of

a CNN model might require some processing capability

for long-term usage when the data volume increases

while operating day by day. Then, it might not be a good

choice for each Host-IDS to train its CNN-based

detection model to update itself to cope with newly-

appearing malicious traffic.

The main NIDS should be responsible for training the

CNN model because the server may be the most powerful

computer in the network. Then, the updated CNN model

will be distributed to other Host-IDS. This update

scenario should save time and improve the overall

performance of all IDS within the network while keeping

up with new attack methods.

Fig. 4. Multiple classifiers combination.

V. EXPERIMENT & RESULT

The whole process of our simulation can be

summarized as follows:

1) We filtered all TCP packets that were sent to the

victim computer that we selected for the

deployment of the IDS. We employed the

WireShark application to read the PCAP files

provided by the dataset, filter only two features

of each packet (arrival time and packet length),

and store the whole list in CSV format files.

2) We group all the packets within a pre-defined

time window based on the arrival time of each

packet, as a group of packets belongs to one

block. Then, we generate two image data, one by

the PSD method and the other by the SP method.

Both of the image data represent the

corresponding block.

3) Finally, we use the generated image data for

training and testing a CNN model to obtain the

results.

We employed the Python version of the Pillow (PIL)

library to generate the image data. We built and ran the

CNN model with Keras API [23] on top of the machine

learning platform TensorFlow [24]. The training was

done by optimizing the categorical cross entropy [25]

cost function. The Adam [26] optimizer was used for the

optimization process. In all simulations, the CNN model

reached convergence after around 30 epochs.

A. Experimental Setup

As stated in [27], the IDS2018 dataset is heavily

imbalanced; the traffic of the DDoS+PortScan attack

scenario dominated the traffic from other attack scenarios.

There was also a huge gap to each of the other classes in

terms of size. If we employ a completely intact dataset, it

will significantly decrease the performance, as the CNN-

based detection model tends to classify many samples

into the dominance class.

To minimize the size of the training data set and

maintain balance between the classification classes, we

try generating the image data for all attack scenarios of

the IDS2018 dataset. Then, we select only image data

belonging to classes that are not much different in size. In

the end, we include image data from five out of the six

attack scenarios, which are Bruteforce (FTP and SSH),

DoS (GoldenEye and Slowloris), Web attack (Bruteforce-

Web and Bruteforce-XSS), Botnet, and Infiltration. The

image dataset consists of eight classes from the IDS2018

dataset.

With the VPN2016 dataset, we select the traffic of four

types of applications that are Chat (Facebook, Hangout),

File transfer (FTPS, SFTP), Video streaming (Netflix,

YouTube), and VoIP (Hangout, Skype). We employ these

criteria for selection in an attempt to reproduce the work

demonstrated in [8], to which we will compare our result.

The image dataset also consists of eight classes from the

VPN2016 dataset.

The name of each class and its number of blocks are

displayed in Tables II and III for the two image datasets.

By the analysis of the IDS2018 dataset, we set up the

time window of ten seconds, and the size of the image

data was 30x30 pixels for the simulation on the IDS2018

dataset. These two parameters were decided based on the

average number of packets and their packet length within

a time window. If there are more packets with variety in

the packet length within a time window, then we need to

employ a larger size of the image to represent the

characteristics of the traffic. However, large-sized image

data requires more processing power and may stop the

system from being lightweight. If the time window is too

short, then there are too few packets to be able to

represent the traffic’s characteristics. However, a long

time window but a small size image is useless, as there

are few pixels to capture the characteristics of the traffic.

The optimal parameters depend on the concrete situation

and the hardware on which we deploy the IDS.

: LABELS AND NUMBER BLOCKS OF EACH CLASS IN IDS2018.

Attack name Label Number

FTP-BruteForce 0 565

Infiltration 1 341

Botnet 2 490

SSH-Bruteforce 3 535

DoS-GoldenEye 4 92

DoS-Slowloris 5 237

BruteForce-Web
6 385

BruteForce-XSS 7 404

Total 8 classes 3049 blocks

812©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

TABLE II

TABLE III: LABELS AND NUMBER BLOCKS OF EACH CLASS IN VPN2016.

Application Label Number

Chat-Facebook 0 244

Chat-Hangout 1 270

File-FTPS 2 87

File-SFTP 3 78

Video-Netflix 4 260

Video-Youtube 5 234

VoIP-Hangout 6 250

VoIP-Skype 7 250

Total 8 classes 1673 blocks

For VPN2016, normal applications tend to generate

traffic containing packets with various lengths. For

example, video streaming applications typically generate

packets over 1000 bytes in size, while the packet length

of a chat application is variable depending on the content

of the message. The number of packets within a time

window is also relatively large, so we have to define the

time window as six seconds and the image size as

300x300 pixels to effectively capture the characteristics

of the traffic of these applications.

As mentioned above, there are many types of fine-

tuning we can apply on the CNN architecture for different

purposes (e.g., maximizing accuracy, minimizing the

detection time or the required processing power, etc.). In

these simulations, we only use a sparse CNN architecture,

as shown in Table IV, so we can evaluate the

performance in the most general situation.

In some studies testing the IDS on the IDS2018 dataset,

including [6], [7], [17], they usually include normal

(benign) traffic as one classification class. In the multiple

classifier combination concept, we have included the

PSD application traffic classifier to filter out normal

traffic. Those pieces of traffic that would be re-directed to

IDS are considered potential highly malicious traffic.

Therefore, we did not include normal traffic as a

classification class in our simulation.

TABLE IV: THE ARCHITECTURE OF THE CNN DETECTION MODEL

Layer (type) Output Shape Param #

Conv2D (None, 30, 30, 64) 640

MaxPooling2D (None, 15, 15, 64) 0

Conv2D (None, 13, 13, 128) 73856

MaxPooling2D (None, 6, 6, 128) 0

Conv2D (None, 4, 4, 256) 295168

MaxPooling2D (None, 2, 2, 256) 0

Conv2D (None, 1, 1, 256) 262400

Flatten (None, 256) 0

Dense (None, 256) 65792

Dense (None, 7) 1799

Total params: 699655

B. Evaluation Metrics

To evaluate the proposed model, we employ three

metrics: precision, recall, and f1-score. The f1-score is

the weighted average of precision and recall, so the f1-

score is preferable when we need to balance between

precision and recall. In this paper, we will refer to the f1-

score for accuracy rather than the original accuracy

metric.

Although we did not apply the k-Fold Cross-Validation

for the testing process, we obtain the testing result with a

similar workflow. After generating the image data, we

randomly split them up into a training set, validation set,

and test set with a respective ratio of 60%/20%/20%. We

repeat this workflow five times. In addition, because the

training process may be affected by random seeds which

are automatically set up by the TensorFlow platform, in

each repeated time we train and test the CNN model five

times. This setting might be equivalent to a 5-fold Cross-

Validation procedure for the best results.

The average result of testing times is typically used to

evaluate the performance of the proposed IDS. However,

we employ only a minimal training data to train the

detection model. Over time, our IDS performance will be

improved because it will be trained with updated training

data. We choose to use the best result between testing

times for the evaluation because it is more suitable for

evaluating the potential of our proposed IDS.

C. IDS Overall Performance (IDS2018)

We generated the representation image data using both

the PSD and SP methods, trained and tested according to

the pre-described workflow, then compared the results

between the two methods. The best results (precision,

recall, and f1-score) of each class for each method and

their summaries are listed in Table V. The Support

column indicates how many blocks of each class were

reserved for testing (20% of the total generated blocks).

The f1-scores of both the PSD and SP methods are

around 90% and up to 95%. In our opinion, 90% may be

a reasonable threshold for an IDS. With a minimal dataset

(1831 blocks for training and 609 blocks for validation),

we were able to meet this threshold. With more data, we

may be able to improve the detection accuracy further.

The results suggest that the combination of representation

learning and machine learning is a potential approach for

building future IDS.

TABLE V: IDS2018 SIMULATION RESULT

Label precision recall f1-score Support

 PSD SP PSD SP PSD SP

0 1.00 0.99 1.00 1.00 1.00 1.00 113

1 0.93 0.88 0.56 0.75 0.70 0.81 68

2 0.95 0.88 0.90 0.92 0.92 0.90 98

3 1.00 1.00 1.00 1.00 1.00 1.00 107

4 1.00 0.90 0.94 1.00 0.97 0.95 18

5 0.98 0.96 1.00 0.91 0.99 0.93 47

6 0.78 0.91 0.74 0.96 0.76 0.94 77

7 0.62 0.99 0.90 1.00 0.74 0.99 81

accuracy

0.89 0.95 609

macro avg 0.91 0.94 0.88 0.94 0.88 0.94 609

weighted avg 0.90 0.95 0.89 0.95 0.89 0.95 609

813©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

We can also observe that the three classes that the

lower accuracy of PSD can be most attributed to are

classes 1, 6, and 7 (with respective f1-scores of 70%,

76%, and 74%). Compared to the SP method’s accuracy

(81%, 94%, and 99%, respectively), we can see that the

SP method achieved some improvements over the PSD

method of around 5% in terms of overall f1-score.

Class 0 1 2 3 4 5 6 7

0 113 0 0 0 0 0 0 0

1 0 38 5 0 0 0 2 23

2 0 0 88 0 0 0 8 2

3 0 0 0 107 0 0 0 0

4 0 0 0 0 17 1 0 0

5 0 0 0 0 0 47 0 0

6 0 1 0 0 0 0 57 19

7 0 2 0 0 0 0 6 73

Fig. 5. PSD confusion matrix.

Examining the Confusion Matrix (Fig. 5), we can

observe that 23 blocks from class 1 and 19 blocks from

class 6 were misclassified as class 7. This is why the f1-

score of the PSD method for these three classes is lower

than that of the SP method. Because the image data

generated by the PSD method belonging to these three

classes are quite similar to each other, they are easily

misclassified, resulting in lower overall accuracy of the

PSD method.

We examine misclassified blocks belonging to three

classes above that achieved low accuracy in IDS2018

simulation (Infiltration, BruteForceWeb, and BruteForce-

XSS) generated by the PSD method versus their

corresponding blocks generated by the SP method (Fig.

6). Visually, we can observe that the PSD blocks are

identical to each other. On the other hand, in SP blocks,

bright pixels are distributed in different portions of the

image. The similarity of PSD blocks might cause trouble

for the CNN model in classification, resulting in

underperformance compared to the SP blocks.

Fig. 6. PSD & SP Visual Comparison (For illustration purposes, white pixels represent any value between 1 and 255, in real image data these pixels

are visually different in brightness).

D. IDS Performance on Encrypted Traffic (VPN2016)

In this simulation, we aim to obtain the performance of

the proposed IDS, specifically on encrypted network

traffic. There are two reasons for us to conduct the

simulation on the VPN2016 dataset:

First, we want to check whether or not our simulation

workflow is correct and robust by trying to reproduce the

results of [8] that claimed that the PSD method could

achieve accuracy up to 99% in encrypted traffic

classification on the same dataset. If we can reproduce

the equivalent result, this would guarantee the correctness

of our simulation, and our obtained results (on both

IDS2018 and VPN2016) could be considered trustworthy

for evaluation purposes. Second, as in the previous

simulation, we also want to determine which method

(PSD versus SP) is better for filtering normal application

traffic.

TABLE VI: VPN2016 BI-DIRECTION SIMULATION RESULT

Label precision recall f1-score Support

 PSD SP PSD SP PSD SP

0 0.89 0.74 0.96 0.82 0.92 0.78 49

1 0.88 0.72 0.93 0.61 0.90 0.66 54

2 0.58 0.32 0.65 0.41 0.61 0.36 17

3 0.86 0.36 0.38 0.25 0.52 0.30 16

4 0.94 0.80 0.94 0.92 0.94 0.86 52

5 0.79 0.81 0.79 0.72 0.79 0.76 47

6 1.00 0.98 1.00 1.00 1.00 0.99 50

7 1.00 1.00 1.00 0.98 1.00 0.99 50

accuracy 0.90 0.79 335

macro avg 0.87 0.72 0.83 0.71 0.84 0.71 335

weighted avg 0.90 0.79 0.90 0.79 0.89 0.79 335

In the first simulation in this section, we filter both

TCP packets that were sent to and sent from the deployed

IDS computer. This approach was employed in the

814©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

experiment in [8] for their obtained result. We named this

simulation as the bi-direction simulation because it

contains packets coming from both the in and out

directions of the computer. The result of the first

simulation is presented in Table VI. With the PSD

method, we can achieve accuracy of around 90%

compared to the claimed result of the original work [8],

which is 99%.

The 10% difference might come from the difference in

the dataset, as [8] stated that they also captured their own

traffic dataset and merged it into VPN2016 to produce a

combined dataset in an attempt to obtain the best result.

Moreover, they monitored the traffic with a longer time

window and generated image data with a bigger size,

which are 60 seconds and 1500x1500 pixels, respectively,

while in our case they are 6 seconds and 300x300 pixels,

respectively. Because of this, we consider the 10%

difference to be acceptable and can therefore guarantee

that our simulation is correct and robust.

In addition, we observe that the SP method achieves

only 79% accuracy in terms of f1-score. The PSD method

is more suitable for the application traffic classification

than the SP method. The PSD method should be

employed to filter normal traffic out of malicious traffic,

as suggested in the multiple classifier combination

concept. However, is the PSD method more suitable for

detecting encrypted malicious traffic than the SP method?

This is the question explored in the second simulation in

this section.

TABLE VII: VPN2016 UNI-DIRECTION SIMULATION RESULT

Label precision recall f1-score Support

 PSD SP PSD SP PSD SP

0 0.00 0.65 0.00 0.79 0.00 0.71 47

1 0.00 0.69 0.00 0.66 0.00 0.67 53

2 0.50 0.50 0.50 0.14 0.50 0.22 14

3 0.50 0.44 0.20 0.47 0.29 0.45 15

4 1.00 0.74 0.98 0.96 0.99 0.84 51

5 0.91 0.91 0.81 0.57 0.86 0.70 37

6 0.24 1.00 1.00 1.00 0.39 1.00 50

7 0.00 1.00 0.00 1.00 0.00 1.00 50

accuracy 0.44 0.79 317

macro avg 0.39 0.74 0.44 0.70 0.38 0.70 317

weighted avg 0.35 0.80 0.44 0.79 0.36 0.78 317

In contrast to the first simulation, in the second

simulation, we filter only TCP packets that were sent to

the deployed IDS computer. This approach supposes that

the IDS should be able to detect the malicious traffic of

an attack quickly enough when that traffic enters the IDS

computer without needing to wait for the reply traffic

from the victim computer. This approach is the same with

the simulation on IDS2018. Because of the data

transformation implementation, there is a small change in

the numbers of generated image data between the first

(335 blocks for test set) and second (317 blocks for test

set) simulations. However, this difference in the number

of blocks is not significant, so it will not affect the result.

We named the second simulation as the uni-direction

simulation.

The result of the second simulation is presented in

Table VII. It can clearly be seen that in the extreme

condition which requires quick detection of only

incoming traffic, the PSD method accuracy was dropped

to 44%. By contrast, the SP method could still maintain

its result from the first simulation, with 79% accuracy. A

potential reason for this behavior of the PSD method is

the shortage of packets that lead to the ineffective

representation of the traffic’s characteristics that can be

discriminated between classes. The second simulation

result draws a conclusion indicating that the SP method is

more suitable for representing encrypted attack traffic as

image data. Thus, SP should be applied for the data

transformation in proposed IDS.

E. Detection Time

We can estimate the required time to detect an attack

based on the sum of the data transformation time and the

time needed to classify the image data. The data

transformation time might depend on many aspects of the

concrete implementation. While conducting simulations,

we also measure the needed time for completing the

testing on test sets (Fig. 7) to estimate the time for

classifying one image data (Fig. 8).

Simply speaking, the image size is the factor that most

affects the classification time. It costs around 3.42

seconds to complete classification of 317 300x300 image

data, but only 1.97 seconds to complete classification of

609 30x30 image data. Based on this result, we can

estimate that the needed time to classify a block will be

around 3.23 microseconds (30x30) or 10.78

microseconds (300x300). This indicates that the detection

time was minimized to the micro-second level, so our

remaining challenge is implementing data transformation

in such a way that minimizes the needed time to

transform the raw traffic into image data.

0 sec 1 sec 2 sec 3 sec 4 sec

Fig. 7. Testing time.

0ms 2ms 4ms 6ms 8ms 10ms 12ms

Fig. 8. Classification time on one block.

As a reference, one study [16] proposed a lightweight

IDS implementation for a Raspberry Pi 3 (a single-board

computer) that could classify 47693 instances in 8.75

seconds. This means it takes around 0.18 microseconds to

classify one instance. However, this research employed a

3.23ms

 Size: 300x300

Size: 30x30

 VPN2016 - 317 blocks

IDS2018 - 609 blocks

815©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

machine learning algorithm which requires statistical data

as input data, so there might have been other factors that

needed to be considered, e.g., required time for collecting

statistical data, data preparation, running feature selection

algorithm, etc.

Moreover, that study [16] aimed to deploy IDS on IoT

devices with limited resources, so they integrated some

optimizations, e.g., sophisticated lightweight machine

learning models and algorithms for feature selection. By

contrast, our proposed IDS is aimed toward computer-

based devices, and we implement our simulations in

general ways and using general tools. Hence, in our

opinion, our lightweight IDS detection time is relatively

acceptable.

F. Training Data Size

As mentioned previously, a lightweight IDS should be

able to accomplish its essential tasks with minimal

amounts of data. Compared to Table I, our proposed IDS

was trained with only 2440 images, partitioned into 1831

images in the training set and 609 images in the

validation set, but it was able to achieve an acceptable

accuracy (95%), and all attack scenarios were detectable

(i.e., f1-scores over 90%) except for Infiltration (f1-score

of 81%). Further, we employed only some portions of the

IDS2018 dataset. We believe that the performance of our

lightweight IDS will be improved over time as there will

be more training data available.

VI. CONCLUSION

In this paper, we show how to implement a lightweight

machine learning IDS with representation learning and

how to leverage the CNN model to classify image data.

Furthermore, the proposed CNN-based IDS shows highly

accurate threat detection from the encrypted malicious

raw network traffic. We propose methods that transform

raw network traffic into representation images using only

two features of raw traffic: packet length and arrival time.

A CNN model was employed in constructing the IDS

detection model to minimize the required training data

and detection time. Three simulations were conducted on

two popular datasets for evaluation. The experimental

results demonstrate that the classification is capable of

achieving accuracies of 95% in identifying malicious

network traffic and of 79% in classifying encrypted

traffic. We specifically note that the achieved accuracy

(95%) only required a small amount of training data

(2440 images), and the detection time was minimized to

3.23 microseconds, which is competitive relative to those

of previously reported machine learning-based IDS. In

future work, we plan to implement our proposed IDS and

evaluate it with new attack scenarios in a real-world

environment.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Vinh Pham conducted this research including

formulating idea, performance evaluation to the final

manuscript under the guidance of Eunil Seo. Tai

Myoung-Chung is the corresponding author. All authors

had approved the final version.

REFERENCES

[1] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca,

“Intrusion detection with comparative analysis of

supervised learning techniques and fisher score feature

selection algorithm,” in Proc. International Symposium on

Computer and Information Sciences, 2018, pp. 141–149.

[2] B. Anderson and D. McGrew, “Identifying encrypted

malware traffic with contextual flow data,” in Proc. ACM

Workshop on Artificial Intelligence and Security, pp. 35–

46, 2016.

[3] D. Pérez, S. Alonso, A. Morán, M. A. Prada, J. J. Fuertes,

and M. Domínguez, “Comparison of network intrusion

detection performance using feature representation,” in

Proc. International Conference on Engineering

Applications of Neural Networks, 2019, pp. 463–475.

[4] O. Faker and E. Dogdu, “Intrusion detection using big data

and deep learning techniques,” in Proc. ACM Southeast

Conference, 2019, pp. 86–93.

[5] M. Catillo, M. Rak, and U. Villano, “2l-zed-ids: A two-

level anomaly detector for multiple attack classes,” in Proc.

Workshops of the International Conference on Advanced

Information Networking and Applications, 2020, pp. 687–

696.

[6] P. Lin, K. Ye, and C. Z. Xu, “Dynamic network anomaly

detection system by using deep learning techniques,” in

Proc. International Conference on Cloud Computing, 2019,

pp. 161–176.

[7] D. D. Roy and D. Shin, “Network intrusion detection in

smart grids for imbalanced attack types using machine

learning models,” in Proc. International Conference on

Information and Communication Technology Convergence

(ICTC), 2019.

[8] T. Shapira and Y. Shavitt, “Flowpic: Encrypted internet

traffic classification is as easy as image recognition,” in

Proc. IEEE INFOCOM 2019-IEEE Conference on

Computer Communications Workshops (INFOCOM

WKSHPS), 2019, pp. 680–687.

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation

learning: A review and new perspectives,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 8, pp. 1798–1828, 2013.

[10] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng,

“Malware traffic classification using convolutional neural

network for representation learning,” in Proc. International

Conference on Information Networking (ICOIN), 2017, pp.

712–717.

[11] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-

to-end encrypted traffic classification with one-

dimensional convolution neural networks,” in Proc. IEEE

816©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

International Conference on Intelligence and Security

Informatics (ISI), 2017, pp. 43–48.

[12] G. Helmer, J. S. Wong, V. Honavar, L. Miller, and Y.

Wang, “Lightweight agents for intrusion detection,”

Journal of Systems and Software, vol. 67, no. 2, pp. 109–

122, 2003.

[13] H. Zhengbing, S. Jun, and V. Shirochin, “An intelligent

lightweight intrusion detection system with forensics

technique,” in Proc. 4th IEEE Workshop on Intelligent

Data Acquisition and Advanced Computing Systems:

Technology and Applications, 2007, pp. 647–651.

[14] S. Zaman and F. Karray, “Lightweight ids based on

features selection and ids classification scheme,” in Proc.

International Conference on Computational Science and

Engineering, 2009, vol. 3, pp. 365–370.

[15] N. U. Sheikh, H. Rahman, S. Vikram, and H. AlQahtani,

“A lightweight signaturebased ids for iot environment,”

arXiv preprint arXiv:1811.04582, 2018.

[16] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K.

Sakurai, “Implementing lightweight iot-ids on raspberry pi

using correlation-based feature selection and its

performance evaluation,” in Proc. International

Conference on Advanced Information Networking and

Applications, 2019, pp. 458–469.

[17] J. Kim, Y. Shin, E. Choi, et al., “An intrusion detection

model based on a convolutional neural network,” Journal

of Multimedia Information System, vol. 6, no. 4, pp. 165–

172, 2019.

[18] Q. Zhou and D. Pezaros, “Evaluation of machine learning

classifiers for zeroday intrusion detection–an analysis on

cic-aws-2018 dataset,” arXiv preprint arXiv:1905.03685,

2019.

[19] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani,

“Toward generating a new intrusion detection dataset and

intrusion traffic characterization,” in ICISSP, pp. 108–116,

2018.

[20] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A.

Ghorbani, “Characterization of encrypted and vpn traffic

using time-related,” in Proc. 2nd International Conference

on Information Systems Security and Privacy (ICISSP),

2016, pp. 407–414.

[21] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J.

Ucles, “Hide: a hierarchical network intrusion detection

system using statistical preprocessing and neural network

classification,” in Proc. IEEE Workshop on Information

Assurance and Security, 2001, pp. 85–90.

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel, “Backpropagation

applied to handwritten zip code recognition,” Neural

computation, vol. 1, no. 4, pp. 541–551, 1989.

[23] F. C. et al., “Keras,” 2015.

[24] M. A. et al., “Tensorflow,” 2015.

[25] R. A. Dunne and N. A. Campbell, “On the pairing of the

softmax activation and cross-entropy penalty functions and

the derivation of the softmax activation function,” in Proc.

8th Aust. Conf. on the Neural Networks, Melbourne, 1997,

vol. 181, p. 185.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “Smote: synthetic minority over-sampling

technique,” Journal of artificial intelligence research, vol.

16, pp. 321–357, 2002.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Vinh Pham received the B.S. degree in

Computer Science from the Ho Chi Minh

City University of Technology - VNU-

HCM (HCMUT), Vietnam in 2018. He is

currently pursuing the M.S. degree with

the Department of Computer Science and

Engineering, Sungkyunkwan University,

Korea. His research interests include

network security, data mining and machine learning.

Dr. Eunil Seo received a B.S. degree

from the Sungkyunkwan University,

Korea, in 1997, and an M.S. degree from

the University of Southern California

(USC), Los Angeles, USA 2002. Over 16

years, he carried out the 17 patents,

drafts, and technical specifications

regarding the connectivity of devices for

Samsung Advanced Institute of Technology (SAIT) and

International Thermonuclear Experimental Reactor (ITER). He

received a Ph.D. degree in Computer Engineering from

Sungkyunkwan University, Korea, in 2019. He is currently a

post-doctoral researcher at the computing science of Umea

University, Sweden. His research interests are data connectivity

using machine learning, Traffic Engineering (T.E.), LISP-based

SDWN, and SDN&NFV-based Mobility Management (MM).

Dr. Tai-Myoung Chung received his

first B.S. degree in Electrical

Engineering from Yonsei University,

Korea in 1981 and his second B.S.

degree in Computer Science from

University of Illinois, Chicago, USA in

1984. He received his M.S. degree in

Computer Engineering from the

University of Illinois in 1987 and his Ph.D. degree in Computer

Engineering from Purdue University, W. Lafayette, USA in

1995. He is currently a professor of Information and

Communications Engineering at Sungkyunkwan University,

Korea. He is now a vice-chair of the Working Party on IS &

Privacy, OECD, and a senior member of IEEE. He also serves

as a Presidential committee member of the Korean e-

government, the chair of the information resource management

committee of the e-government. He is an expert member of

Presidential Advisory Committee on Science & Technology of

Korea, and is chair of the Consortium of Computer Emergency

Response Teams (CERTs). His research interests are in

information security, network, information management, and

protocols on the next-generation networks such as active

networks, grid networks, and mobile networks.

817©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

