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Abstract—Identifying threats contained within encrypted 

network traffic poses a great challenge to Intrusion Detection 

Systems (IDS). Because traditional approaches like deep packet 

inspection could not operate on encrypted network traffic, 

machine learning-based IDS is a promising solution. However, 

machine learning-based IDS requires enormous amounts of 

statistical data based on network traffic flow as input data and 

also demands high computing power for processing, but is slow 

in detecting intrusions. We propose a lightweight IDS that 

transforms raw network traffic into representation images. We 

begin by inspecting the characteristics of malicious network 

traffic of the CSE-CIC-IDS2018 dataset. We then adapt 

methods for effectively representing those characteristics into 

image data. A Convolutional Neural Network (CNN) based 

detection model is used to identify malicious traffic underlying 

within image data. To demonstrate the feasibility of the 

proposed lightweight IDS, we conduct three simulations on two 

datasets that contain encrypted traffic with current network 

attack scenarios. The experiment results show that our proposed 

IDS is capable of achieving 95% accuracy with a reasonable 

detection time while requiring relatively small size training data. 
 
Index Terms—Intrusion detection, machine learning, 

convolutional neural network 

I. INTRODUCTION 

The rapid development of technology not only makes 

life more comfortable but also reveals many security 

problems. The growing number of various cyber threats 

endanger today’s Internet. Hackers are inventing new 

techniques daily to bypass security layers and avoid 

detection. Therefore, IDS play an indispensable role in 

defending against intrusions and malicious activities. IDS 

can be classified into Network Intrusion Detection 

Systems (NIDS) and Host-based Intrusion Detection 

Systems (Host-IDS). NIDS centrally monitors and 

analyzes network traffic, while Host-IDS monitor specific 

system in the network [1]. 

The continuous development of new cyber attacks 

necessitates the rapid extension of new communication 
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protocols that not only encrypt user payload data but also 

hide the original information in the packet header (e.g., 

dynamic port). Hence, traditional approaches such as 

deep packet inspection and signatures could not be 

applied to encrypted traffic [2]. To cope with this 

challenge, IDS uses the machine learning algorithm to 

catch up on the problematic situation. 

Machine learning algorithms require a large amount of 

training data to detect threats with high accuracy. These 

algorithms typically prefer statistical data as their training 

and input data. An IDS based on machine learning (e.g., 

[3]-[6]) would require sufficiently powerful hardware to 

process such big size statistical data. In practice, 

collecting statistic data from network traffic takes some 

time and might result in delayed intrusion detection. 

These limitations have made previous machine learning-

based IDS impractical and unrealistic for deployment in 

real-world situations. 

In this paper, we propose a lightweight CNN-based 

IDS, which only requires a small amount of data but can 

still detect threats with high accuracy. It should also be 

noted that related works have had to cope with 

imbalanced datasets in building machine learning IDS 

(e.g., [6], [7]). The lightweight CNN-based IDS described 

here will help us avoid the problem of an imbalanced 

dataset as we can easily construct a balanced dataset with 

minimal training data obtained. The proposed lightweight 

CNN-based IDS uses raw network traffic as the input 

data. This feature of our proposal is realistic, as the first 

part of an attack that can be observed is its raw traffic. 

With this practical feature, the proposed IDS has quicker 

detection time, facilitates real-time detection in a feasible 

manner, and is easily implemented and deployed in 

practice. We employ a method described in [8] for 

transforming raw traffic into an image. We also update 

this method to an enhanced method that works better on 

malicious traffic. In summary, we make the following 

contributions: 

1) We propose a lightweight CNN-based IDS, 

which can be easily implemented and deployed 

into both real-time NIDS and Host-IDS, and that 

requires a comparatively small dataset while 

achieving a reasonable accuracy (e.g., 95%) and 

detection time. 

2) We evaluate several performance metrics (such 

as accuracy, detection time, and training data 

size) of the proposed CNN-based IDS, which are 
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trained by two CIC-IDS2018 and CIC-VPN2016 

datasets in up-to-date network attack scenarios 

(e.g., Botnet, BruteForce, DoS, etc.). 

3) The performance of the two methods 

transforming raw traffic into image are 

compared to determine which method is 

preferred and will be suggested for 

implementation in our proposal. 

The paper is organized as follows. Section 2 provides a 

detailed introduction of our primary references and a 

short survey of the related research works, while Section 

3 described the two datasets. The paper will go on to 

illustrate our proposed system, components, and 

functions in Section 4. Section 5 presents our 

experimental simulations and interprets our obtained 

results in detail. Finally, Section 6 summarizes the paper 

and provides our vision for future work. 

II. RELATED WORK 

Representation learning [9] is a new machine learning 

approach that involves automatically learning features 

from raw data without the process of hand-designing 

features. Wang et al. [10] proposed combining a machine 

learning-based classifier with representation learning to 

identify the type of malware by the raw traffic generated. 

They transformed the payload of a data packet to image 

data, then trained image data on a one-dimension CNN 

model; they achieved an average accuracy of 99.41%. 

With this success in malware traffic classification, they 

applied the same method in an encrypted application 

traffic classification task [11] and achieved up to 99.9% 

accuracy. Our proposed IDS employs their representation 

learning approach to accept raw network traffic as the 

input data. 

Shapira et al. [8] stated that a packet payload will 

change according to different encryption methods and 

encryption keys; and that packet payload should therefore 

not be employed to represent the characteristic of 

encrypted network traffic, like Wang et al. did in [10], 

[11]. Instead, they proposed the Payload Size Distribution 

(PSD) Histogram that utilizes time-related and size-

related features to represent encrypted raw network traffic 

into the representation form of an image. This work in [8] 

also demonstrated that the PSD Histogram is "immune to 

encryption techniques". This means that the machine 

learning model can effectively classify sets of Internet 

traffic encrypted by different encryption techniques if 

they are transformed into image data through the PSD 

Histogram method. We employ the PSD Histogram 

method and attempt to classify the kinds of attack 

software that generated the malicious traffic that was sent 

to the victim computer in a network. 

Helmer et al. [12] proposed a Multi-agent IDS that 

combined multiple lightweight agents running on 

individual computers to secure a distributed system. 

Zhengbing et al. [13] proposed an intelligent lightweight 

IDS that employed a data mining and watermark 

technique to effectively and efficiently detect intrusions 

in real-time. Zaman et al. [14] might be considered one of 

the pioneers who applied the features selection concept to 

reduce the amount of data needed, thus improving IDS 

scalability and extendibility. There have also been 

various other essential studies [15], [16] that attempted to 

deploy machine learning-based lightweight IDS on IoT 

devices with limited resources. 

Table I presents the previous machine learning-based 

IDS that were tested on the CSE-CIC-IDS2018 dataset to 

evaluate their performance. 

TABLE I: PREVIOUS MACHINE LEARNING IDS. 

Name Accuracy Data size Remark 

Kim et al. [17] 99% DoS 1040548 13% Infiltration 

Lin et al. [6] 96.2% average 2172045 17.12% Infiltration 

Roy et al. [7] 88.5% average 164536 40% Infiltration 

Zhou et al. [18] 96% average whole 57% Malicious only 

Catillo et al. [5] 99.2% Botnet whole 95.8% BruteForce 

 

Because there are substantial differences in data 

interpretation, data preparation and strategies were 

applied to the dataset in the research highlighted above, 

and we could not acquire consistent numbers of training 

data between them. Some studies, such as [5], [18], did 

not mention a specific number but referred to using the 

entire dataset. However, the common limitation between 

these proposed IDS is that the training data size typically 

exceeded one million units, but not all the attack 

scenarios were detectable; i.e., the accuracies for 

Infiltration were below 50% [6], [7], [17]. 

III. DATASET 

In this work, we employed two widely used datasets to 

evaluate our proposed IDS: CSE-CIC-IDS2018 (IDS2018) 

[19] and ISCX-VPN2016 (VPN2016) [20]. 

A. CSE-CIC-IDS2018 

The IDS2018 was released by the Canadian Institute of 

Cybersecurity (CIC) for intrusion detection research in 

2018. This dataset includes network traffics captured 

from an infrastructure that includes fifty hosts, and the 

victim organization has five departments with four 

hundred twenty hosts and thirty servers with different 

operating systems (e.g., Windows, Ubuntu, and MACOS 

X) and network devices (e.g., modems, switches, firewall, 

and routers) used. This dataset contains the most popular 

and up-to-date network attack scenarios which are Brute-

force, Botnet, DoS, DDoS, Web attacks, and Infiltration, 

resulting in a total of 14 types of intrusions (e.g., FTP-

BruteForce, XSS, and DoS-Slowloris). 

The IDS2018 is provided in two data formats: The first 

data format is the raw record of network traffic (PCAP) 

and the event logs of all computers. The second data 

format (CSV) is fully labeled and describes the 83 

statistical features of the traffic (e.g., flow duration, 

number of packets, average size of the data packet, 

standard deviation time between two data packets sent in 
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the backward direction, etc.). Most related research has 

preferred the labeled format because it is widely believed 

that statistics based on network flow can provide more 

useful information for intrusion detection [21]. Instead, 

we employ the raw network traffic (i.e., PCAP) as a 

target object for our IDS to detect intrusions in this paper. 

B. ISCX-VPN2016 

CIC also released the VPN2016 to generate a 

representative dataset of real-world traffic that is 

sufficiently rich in both diversity and quantity. This 

dataset is provided in two formats, like IDS2018, and 

contains seven categories of application network traffic 

(e.g., Browsing, Email, Chat, Streaming, File Transfer, 

VoIP, and P2P). A VPN encryption method was used to 

encrypt all traffic at the protocol layer (TLS, IPsec, etc.). 

This dataset has been popular in many studies researching 

topics related to the classification of application traffic 

[8], [11]. 

Classifying application traffic involves identifying the 

type (e.g., Streaming, File Transfer, VoIP, etc.) of a 

certain set of network traffic based on their behaviors. 

Intrusion detection, which involves analyzing the 

characteristic of the generating tool, proceeds under the 

same principle as application traffic classification. These 

attack tools generate some kinds of malicious encrypted 

traffic that will be sent to the network. Each piece of 

malicious traffic is expected to carry the characteristic of 

the generating tool within it. We assume that if our 

proposed lightweight IDS can classify the correct type of 

encrypted traffic belonging to the VPN2016 dataset, then 

it should also be able to detect encrypted malicious traffic. 

IV. DESIGN OF THE PROPOSED LIGHTWEIGHT CNN-

BASED IDS 

In this section, we will discuss the architecture of the 

lightweight CNN-based IDS. The proposed IDS consists 

of two components: a data transformation process and a 

CNN-based detection model. We also propose a multiple 

classifiers combination method for deployment. A 

schematic diagram of the proposed lightweight IDS is 

shown in Fig. 1. 

 

 
Fig. 1. Lightweight CNN-based IDS. 

A. Data Transformation 

The primary function of the data transformation is to 

represent the raw network traffic’s characteristics as an 

image that can be analyzed by a CNN model to determine 

whether it represents normal traffic or malicious traffic 

generated by attack tools. 

According to [14], a lightweight IDS is a small, 

flexible, and highly capable system that accomplishes 

essential tasks using minimal data, and that is 

dynamically updatable and upgradable. We refer to a 

portion of monitored network traffic within a given time 

window as a block. This block is the data unit that will be 

analyzed by the detection model and that will also be 

used for training data. If we employ statistical data based 

on network traffic as the input data for IDS, it would 

require some data preparation (e.g., feature selection, 

cleaning the data, outlier removal, etc.) steps. These extra 

workloads would take time, thus resulting in a delay in 

making observations in the network traffic (which 

involves constructing a block in our case) that would be 

analyzed thereafter, hence interfering with the real-time 

detection of IDS. By contrast, by transforming raw 

network traffic into small image data, we can minimize 

the workload of both constructing the training data and 

quickly making blocks. 

 
Fig. 2. Data transformation illustration. 

A simple example might be the best way to explain the 

data transformation process. Let us say we have 

monitored ten packets that were sent to our computer. 

There was one 1-byte packet that arrived at the 1st second, 

two 2-byte packets at the 2nd second, three 3-byte 

packets at the 3rd second, and finally four 4-byte packets 

at the 4th second. We can then initialize a two-dimension 

array data structure that represents a 2D image, where the 

Y-axis stands for the packet length and the X-axis stands 

for the arrival time of the packet. 

The value of a cell that has its index represents the 

length, and the arrival time of the packet will be set equal 

to the number of the respective packet. To clarify, the [0, 

0] cell will be 1, the [1, 1] cell will be 2, and so on. Then, 

that array data structure can be saved into a 2D image 

(e.g., PNG format) with the value of each cell 

representing the brightness of the respective pixel. One 

image is one block. That means the brighter the pixel, the 

more packets of equivalent length and arrival time there 

are within that block. Fig. 2 shows a simple illustration of 

this process. This explanation is the principle of the PSD 

Histogram method, which was introduced in [8] for the 

application traffic classification task. 

By inspecting the IDS2018 dataset, we realize that in 

most attack scenarios, the malicious traffic contains TCP 

control packets (i.e., a packet with flags such as SYN, 

ACK, PSH, etc.) which have small length values that are 

always below 100 bytes. In addition, there is a notable 

aspect of malicious traffic generated by attack tools, 

which we call a sequence pattern of packet length. For 
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example, in the malicious raw network traffic of the 

Botnet attack scenario, two [ACK] 54-byte packets and 

one [SYN, ACK] 66-byte packet always came after one 

[PSH, ACK] 71-byte packet, resulting in a 71-54-54-66 

sequence pattern that was repeated many times. This 

behavior might be worth exploiting to identify malicious 

traffic. 

Therefore, we modify the original PSD method to 

exploit this new finding by replacing the Y-axis of the 

representation image with a new metric that we term 

Sequence Pattern (SP). This new metric is calculated as 

follows: 

 First, multiply the packet length by its normalized 

arrival time. This multiplication helps us discriminate 

between two packets that have the same length but 

different arrival times, then distribute them into 

different portions of the representation image. 

 Secondly, modulo the result of the above step to the 

predefined size of the representation image. The 

purpose of this second step is to calculate a valid 

value for the SP metric because it must be smaller 

than the size of the image. 

The pseudocode for calculating the index of a specific 

cell belonging to the two-dimension array data structure 

that represents its respective pixels is shown in Algorithm 

1. Whenever the IDS observes an incoming packet within 

a time window, it will calculate the index of the 

representative cell for that packet length and arrival time, 

then increase that cell by one. When the time window is 

exceeded, the two-dimension array is ready to be saved as 

image data, then reset for the next time window. 
 

Algorithm 1: Cell index calculation for PSD & SP. 

Result: xPSD, yPSD, xSP, ySP 

t: arrival time of the packet; 

l: length of the packet;  

PNGSIZE: Image size;  

INTERVAL: Time window; 

MAXLEN: Maximum length of the packet; 

base:  first  packet  appears  within a  time  window; 

i: i-th packet after the first one; 

xPSD = (t[i]-t[base]) * PNGSIZE / INTERVAL; 

yPSD = l[i] * PNGSIZE / MAXLEN; 

xSP = xPSD; 

ySP = modulo(l[i]*xSP, PNGSIZE); 
 

 
Fig. 3. Pattern visual comparison of PSD & SP image data 

Fig. 3 shows the pattern visual comparison between 

two image data generated from Botnet malicious traffic 

by PSD and our new proposed SP method. By replacing 

the packet length with the SP metric for the Y-axis, the 

SP image data seems to be disordered. However, the 

disorder is distinct between different kinds of malicious 

network traffic, which may imply latent patterns that can 

be identified by the detection model, resulting in higher 

accuracy detection. By contrast, PSD image data share a 

common regular pattern consisting of horizontal dashed 

or dotted lines, so they are easily confused by the 

detection model, resulting in lower accuracy detection. 

B. CNN-based Detection Model 

Because we applied the representation learning 

approach by transforming raw traffic into image data, the 

intrusion detection problem is changed to an image 

classification problem. Classifying small-sized images 

will require less computing and data processing power, 

while the training time and time needed to classify new 

representation images will still be relatively short. 

Returning to our intrusion detection problem, if we 

employ a simple but effective machine learning model for 

image classification, then the training time and detection 

time will be substantially enhanced compared to 

employing a complex machine learning model for 

statistical data. 

CNN [22] has been proven effective and highly 

accurate in image classification tasks. We use CNN as the 

core detection model for the proposed IDS. Moreover, the 

openness in the CNN architecture design unlocks many 

fine-tuning possibilities aiming for different targets, such 

as classifying time, accuracy, and acceleration. 

C. Multiple Classifiers Combination 

Hackers continually try to invent new attack methods 

to bypass the latest security solutions. Alongside 

malicious traffic, there are also many kinds of normal 

application traffic. The number of classification classes 

must increase to adapt to the increasing number of new 

attack methods as well as applications. As a result, the 

architecture of a detection model must be evolved and 

more complex to cope with newly appearing classes. The 

more complex the architecture, the longer the training and 

detection times. There is no single perfect solution for all 

problems; in other words, there is no perfect classifier for 

all classes. 

In this section, we propose a deployment concept that 

combines two classifiers, which are: 

 One PSD classifier (e.g., [8]) that classifies the raw 

network traffic first. If that traffic belongs to the well-

known category of application (e.g., Chrome web 

browsing, Facebook video streaming, etc.), they will 

pass through the network. 

 By contrast, if one piece of traffic is classified as 

unknown, it is considered potentially malicious traffic. 

This unknown traffic should be redirected to the 

proposed lightweight IDS, which is an SP classifier. 

The SP classifier will then detect whether this 

unknown traffic belongs to an attack tool or not. 

An illustration of the deployment concept is shown in 

Fig. 4. Finally, the update scenario of our CNN-based 

IDS should be carefully considered. Suppose we deploy 

one NIDS at the server and other Host-IDS at particular 
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computers to secure our network. The training process of 

a CNN model might require some processing capability 

for long-term usage when the data volume increases 

while operating day by day. Then, it might not be a good 

choice for each Host-IDS to train its CNN-based 

detection model to update itself to cope with newly-

appearing malicious traffic. 

The main NIDS should be responsible for training the 

CNN model because the server may be the most powerful 

computer in the network. Then, the updated CNN model 

will be distributed to other Host-IDS. This update 

scenario should save time and improve the overall 

performance of all IDS within the network while keeping 

up with new attack methods. 

 
Fig. 4. Multiple classifiers combination. 

V. EXPERIMENT & RESULT 

The whole process of our simulation can be 

summarized as follows: 

1) We filtered all TCP packets that were sent to the 

victim computer that we selected for the 

deployment of the IDS. We employed the 

WireShark application to read the PCAP files 

provided by the dataset, filter only two features 

of each packet (arrival time and packet length), 

and store the whole list in CSV format files. 

2) We group all the packets within a pre-defined 

time window based on the arrival time of each 

packet, as a group of packets belongs to one 

block. Then, we generate two image data, one by 

the PSD method and the other by the SP method. 

Both of the image data represent the 

corresponding block. 

3) Finally, we use the generated image data for 

training and testing a CNN model to obtain the 

results. 

We employed the Python version of the Pillow (PIL) 

library to generate the image data. We built and ran the 

CNN model with Keras API [23] on top of the machine 

learning platform TensorFlow [24]. The training was 

done by optimizing the categorical cross entropy [25] 

cost function. The Adam [26] optimizer was used for the 

optimization process. In all simulations, the CNN model 

reached convergence after around 30 epochs. 

A. Experimental Setup 

As stated in [27], the IDS2018 dataset is heavily 

imbalanced; the traffic of the DDoS+PortScan attack 

scenario dominated the traffic from other attack scenarios. 

There was also a huge gap to each of the other classes in 

terms of size. If we employ a completely intact dataset, it 

will significantly decrease the performance, as the CNN-

based detection model tends to classify many samples 

into the dominance class. 

To minimize the size of the training data set and 

maintain balance between the classification classes, we 

try generating the image data for all attack scenarios of 

the IDS2018 dataset. Then, we select only image data 

belonging to classes that are not much different in size. In 

the end, we include image data from five out of the six 

attack scenarios, which are Bruteforce (FTP and SSH), 

DoS (GoldenEye and Slowloris), Web attack (Bruteforce-

Web and Bruteforce-XSS), Botnet, and Infiltration. The 

image dataset consists of eight classes from the IDS2018 

dataset. 

With the VPN2016 dataset, we select the traffic of four 

types of applications that are Chat (Facebook, Hangout), 

File transfer (FTPS, SFTP), Video streaming (Netflix, 

YouTube), and VoIP (Hangout, Skype). We employ these 

criteria for selection in an attempt to reproduce the work 

demonstrated in [8], to which we will compare our result. 

The image dataset also consists of eight classes from the 

VPN2016 dataset. 

The name of each class and its number of blocks are 

displayed in Tables II and III for the two image datasets. 

By the analysis of the IDS2018 dataset, we set up the 

time window of ten seconds, and the size of the image 

data was 30x30 pixels for the simulation on the IDS2018 

dataset. These two parameters were decided based on the 

average number of packets and their packet length within 

a time window. If there are more packets with variety in 

the packet length within a time window, then we need to 

employ a larger size of the image to represent the 

characteristics of the traffic. However, large-sized image 

data requires more processing power and may stop the 

system from being lightweight. If the time window is too 

short, then there are too few packets to be able to 

represent the traffic’s characteristics. However, a long 

time window but a small size image is useless, as there 

are few pixels to capture the characteristics of the traffic. 

The optimal parameters depend on the concrete situation 

and the hardware on which we deploy the IDS. 

: LABELS AND NUMBER BLOCKS OF EACH CLASS IN IDS2018. 

Attack name Label Number 

FTP-BruteForce 0 565 

Infiltration 1 341 

Botnet 2 490 

SSH-Bruteforce 3 535 

DoS-GoldenEye 4 92 

DoS-Slowloris 5 237 

BruteForce-Web 
6 385 

BruteForce-XSS 7 404 

Total 8 classes 3049 blocks 
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TABLE III: LABELS AND NUMBER BLOCKS OF EACH CLASS IN VPN2016. 

Application Label Number 

Chat-Facebook 0 244 

Chat-Hangout 1 270 

File-FTPS 2 87 

File-SFTP 3 78 

Video-Netflix 4 260 

Video-Youtube 5 234 

VoIP-Hangout 6 250 

VoIP-Skype 7 250 

Total 8 classes 1673 blocks 

 

For VPN2016, normal applications tend to generate 

traffic containing packets with various lengths. For 

example, video streaming applications typically generate 

packets over 1000 bytes in size, while the packet length 

of a chat application is variable depending on the content 

of the message. The number of packets within a time 

window is also relatively large, so we have to define the 

time window as six seconds and the image size as 

300x300 pixels to effectively capture the characteristics 

of the traffic of these applications. 

As mentioned above, there are many types of fine-

tuning we can apply on the CNN architecture for different 

purposes (e.g., maximizing accuracy, minimizing the 

detection time or the required processing power, etc.). In 

these simulations, we only use a sparse CNN architecture, 

as shown in Table IV, so we can evaluate the 

performance in the most general situation. 

In some studies testing the IDS on the IDS2018 dataset, 

including [6], [7], [17], they usually include normal 

(benign) traffic as one classification class. In the multiple 

classifier combination concept, we have included the 

PSD application traffic classifier to filter out normal 

traffic. Those pieces of traffic that would be re-directed to 

IDS are considered potential highly malicious traffic. 

Therefore, we did not include normal traffic as a 

classification class in our simulation. 

TABLE IV: THE ARCHITECTURE OF THE CNN DETECTION MODEL 

Layer (type) Output Shape Param # 

Conv2D (None, 30, 30, 64) 640 

MaxPooling2D (None, 15, 15, 64) 0 

Conv2D (None, 13, 13, 128) 73856 

MaxPooling2D (None, 6, 6, 128) 0 

Conv2D (None, 4, 4, 256) 295168 

MaxPooling2D  (None, 2, 2, 256) 0 

Conv2D (None, 1, 1, 256) 262400 

Flatten (None, 256) 0 

Dense (None, 256) 65792 

Dense (None, 7) 1799 

Total params:  699655 

B. Evaluation Metrics 

To evaluate the proposed model, we employ three 

metrics: precision, recall, and f1-score. The f1-score is 

the weighted average of precision and recall, so the f1-

score is preferable when we need to balance between 

precision and recall. In this paper, we will refer to the f1-

score for accuracy rather than the original accuracy 

metric. 

Although we did not apply the k-Fold Cross-Validation 

for the testing process, we obtain the testing result with a 

similar workflow. After generating the image data, we 

randomly split them up into a training set, validation set, 

and test set with a respective ratio of 60%/20%/20%. We 

repeat this workflow five times. In addition, because the 

training process may be affected by random seeds which 

are automatically set up by the TensorFlow platform, in 

each repeated time we train and test the CNN model five 

times. This setting might be equivalent to a 5-fold Cross-

Validation procedure for the best results. 

The average result of testing times is typically used to 

evaluate the performance of the proposed IDS. However, 

we employ only a minimal training data to train the 

detection model. Over time, our IDS performance will be 

improved because it will be trained with updated training 

data. We choose to use the best result between testing 

times for the evaluation because it is more suitable for 

evaluating the potential of our proposed IDS. 

C. IDS Overall Performance (IDS2018) 

We generated the representation image data using both 

the PSD and SP methods, trained and tested according to 

the pre-described workflow, then compared the results 

between the two methods. The best results (precision, 

recall, and f1-score) of each class for each method and 

their summaries are listed in Table V. The Support 

column indicates how many blocks of each class were 

reserved for testing (20% of the total generated blocks). 

The f1-scores of both the PSD and SP methods are 

around 90% and up to 95%. In our opinion, 90% may be 

a reasonable threshold for an IDS. With a minimal dataset 

(1831 blocks for training and 609 blocks for validation), 

we were able to meet this threshold. With more data, we 

may be able to improve the detection accuracy further. 

The results suggest that the combination of representation 

learning and machine learning is a potential approach for 

building future IDS. 

TABLE V: IDS2018 SIMULATION RESULT 

Label precision recall f1-score Support 

 PSD SP PSD SP PSD SP  

0 1.00 0.99 1.00 1.00 1.00 1.00 113 

1 0.93 0.88 0.56 0.75 0.70 0.81 68 

2 0.95 0.88 0.90 0.92 0.92 0.90 98 

3 1.00 1.00 1.00 1.00 1.00 1.00 107 

4 1.00 0.90 0.94 1.00 0.97 0.95 18 

5 0.98 0.96 1.00 0.91 0.99 0.93 47 

6 0.78 0.91 0.74 0.96 0.76 0.94 77 

7 0.62 0.99 0.90 1.00 0.74 0.99 81 

accuracy 
    

0.89 0.95 609 

macro avg 0.91 0.94 0.88 0.94 0.88 0.94 609 

weighted avg 0.90 0.95 0.89 0.95 0.89 0.95 609 
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We can also observe that the three classes that the 

lower accuracy of PSD can be most attributed to are 

classes 1, 6, and 7 (with respective f1-scores of 70%, 

76%, and 74%). Compared to the SP method’s accuracy 

(81%, 94%, and 99%, respectively), we can see that the 

SP method achieved some improvements over the PSD 

method of around 5% in terms of overall f1-score. 

 
Class 0 1 2 3 4 5 6 7 

0 113 0 0 0 0 0 0 0 

1 0 38 5 0 0 0 2 23 

2 0 0 88 0 0 0 8 2 

3 0 0 0 107 0 0 0 0 

4 0 0 0 0 17 1 0 0 

5 0 0 0 0 0 47 0 0 

6 0 1 0 0 0 0 57 19 

7 0 2 0 0 0 0 6 73 

Fig. 5. PSD confusion matrix. 

Examining the Confusion Matrix (Fig. 5), we can 

observe that 23 blocks from class 1 and 19 blocks from 

class 6 were misclassified as class 7. This is why the f1-

score of the PSD method for these three classes is lower 

than that of the SP method. Because the image data 

generated by the PSD method belonging to these three 

classes are quite similar to each other, they are easily 

misclassified, resulting in lower overall accuracy of the 

PSD method. 

We examine misclassified blocks belonging to three 

classes above that achieved low accuracy in IDS2018 

simulation (Infiltration, BruteForceWeb, and BruteForce-

XSS) generated by the PSD method versus their 

corresponding blocks generated by the SP method (Fig. 

6). Visually, we can observe that the PSD blocks are 

identical to each other. On the other hand, in SP blocks, 

bright pixels are distributed in different portions of the 

image. The similarity of PSD blocks might cause trouble 

for the CNN model in classification, resulting in 

underperformance compared to the SP blocks. 

 
Fig. 6. PSD & SP Visual Comparison (For illustration purposes, white pixels represent any value between 1 and 255, in real image data these pixels 

are visually different in brightness). 

D. IDS Performance on Encrypted Traffic (VPN2016) 

In this simulation, we aim to obtain the performance of 

the proposed IDS, specifically on encrypted network 

traffic. There are two reasons for us to conduct the 

simulation on the VPN2016 dataset: 

First, we want to check whether or not our simulation 

workflow is correct and robust by trying to reproduce the 

results of [8] that claimed that the PSD method could 

achieve accuracy up to 99% in encrypted traffic 

classification on the same dataset. If we can reproduce 

the equivalent result, this would guarantee the correctness 

of our simulation, and our obtained results (on both 

IDS2018 and VPN2016) could be considered trustworthy 

for evaluation purposes. Second, as in the previous 

simulation, we also want to determine which method 

(PSD versus SP) is better for filtering normal application 

traffic. 

TABLE VI: VPN2016 BI-DIRECTION SIMULATION RESULT 

Label precision recall f1-score Support 

 PSD SP PSD SP PSD SP  

0 0.89 0.74 0.96 0.82 0.92 0.78 49 

1 0.88 0.72 0.93 0.61 0.90 0.66 54 

2 0.58 0.32 0.65 0.41 0.61 0.36 17 

3 0.86 0.36 0.38 0.25 0.52 0.30 16 

4 0.94 0.80 0.94 0.92 0.94 0.86 52 

5 0.79 0.81 0.79 0.72 0.79 0.76 47 

6 1.00 0.98 1.00 1.00 1.00 0.99 50 

7 1.00 1.00 1.00 0.98 1.00 0.99 50 

accuracy     0.90 0.79 335 

macro avg 0.87 0.72 0.83 0.71 0.84 0.71 335 

weighted avg 0.90 0.79 0.90 0.79 0.89 0.79 335 

 

In the first simulation in this section, we filter both 

TCP packets that were sent to and sent from the deployed 

IDS computer. This approach was employed in the 
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experiment in [8] for their obtained result. We named this 

simulation as the bi-direction simulation because it 

contains packets coming from both the in and out 

directions of the computer. The result of the first 

simulation is presented in Table VI. With the PSD 

method, we can achieve accuracy of around 90% 

compared to the claimed result of the original work [8], 

which is 99%. 

The 10% difference might come from the difference in 

the dataset, as [8] stated that they also captured their own 

traffic dataset and merged it into VPN2016 to produce a 

combined dataset in an attempt to obtain the best result. 

Moreover, they monitored the traffic with a longer time 

window and generated image data with a bigger size, 

which are 60 seconds and 1500x1500 pixels, respectively, 

while in our case they are 6 seconds and 300x300 pixels, 

respectively. Because of this, we consider the 10% 

difference to be acceptable and can therefore guarantee 

that our simulation is correct and robust. 

In addition, we observe that the SP method achieves 

only 79% accuracy in terms of f1-score. The PSD method 

is more suitable for the application traffic classification 

than the SP method. The PSD method should be 

employed to filter normal traffic out of malicious traffic, 

as suggested in the multiple classifier combination 

concept. However, is the PSD method more suitable for 

detecting encrypted malicious traffic than the SP method? 

This is the question explored in the second simulation in 

this section. 

TABLE VII: VPN2016 UNI-DIRECTION SIMULATION RESULT 

Label precision recall f1-score Support 

 PSD SP PSD SP PSD SP  

0 0.00 0.65 0.00 0.79 0.00 0.71 47 

1 0.00 0.69 0.00 0.66 0.00 0.67 53 

2 0.50 0.50 0.50 0.14 0.50 0.22 14 

3 0.50 0.44 0.20 0.47 0.29 0.45 15 

4 1.00 0.74 0.98 0.96 0.99 0.84 51 

5 0.91 0.91 0.81 0.57 0.86 0.70 37 

6 0.24 1.00 1.00 1.00 0.39 1.00 50 

7 0.00 1.00 0.00 1.00 0.00 1.00 50 

accuracy     0.44 0.79 317 

macro avg 0.39 0.74 0.44 0.70 0.38 0.70 317 

weighted avg 0.35 0.80 0.44 0.79 0.36 0.78 317 

 

In contrast to the first simulation, in the second 

simulation, we filter only TCP packets that were sent to 

the deployed IDS computer. This approach supposes that 

the IDS should be able to detect the malicious traffic of 

an attack quickly enough when that traffic enters the IDS 

computer without needing to wait for the reply traffic 

from the victim computer. This approach is the same with 

the simulation on IDS2018. Because of the data 

transformation implementation, there is a small change in 

the numbers of generated image data between the first 

(335 blocks for test set) and second (317 blocks for test 

set) simulations. However, this difference in the number 

of blocks is not significant, so it will not affect the result. 

We named the second simulation as the uni-direction 

simulation.  

The result of the second simulation is presented in 

Table VII. It can clearly be seen that in the extreme 

condition which requires quick detection of only 

incoming traffic, the PSD method accuracy was dropped 

to 44%. By contrast, the SP method could still maintain 

its result from the first simulation, with 79% accuracy. A 

potential reason for this behavior of the PSD method is 

the shortage of packets that lead to the ineffective 

representation of the traffic’s characteristics that can be 

discriminated between classes. The second simulation 

result draws a conclusion indicating that the SP method is 

more suitable for representing encrypted attack traffic as 

image data. Thus, SP should be applied for the data 

transformation in proposed IDS. 

E. Detection Time 

We can estimate the required time to detect an attack 

based on the sum of the data transformation time and the 

time needed to classify the image data. The data 

transformation time might depend on many aspects of the 

concrete implementation. While conducting simulations, 

we also measure the needed time for completing the 

testing on test sets (Fig. 7) to estimate the time for 

classifying one image data (Fig. 8). 

Simply speaking, the image size is the factor that most 

affects the classification time. It costs around 3.42 

seconds to complete classification of 317 300x300 image 

data, but only 1.97 seconds to complete classification of 

609 30x30 image data. Based on this result, we can 

estimate that the needed time to classify a block will be 

around 3.23 microseconds (30x30) or 10.78 

microseconds (300x300). This indicates that the detection 

time was minimized to the micro-second level, so our 

remaining challenge is implementing data transformation 

in such a way that minimizes the needed time to 

transform the raw traffic into image data. 

 
0 sec 1 sec 2 sec 3 sec 4 sec 

Fig. 7. Testing time. 

0ms 2ms 4ms 6ms 8ms 10ms 12ms 

Fig. 8. Classification time on one block. 

As a reference, one study [16] proposed a lightweight 

IDS implementation for a Raspberry Pi 3 (a single-board 

computer) that could classify 47693 instances in 8.75 

seconds. This means it takes around 0.18 microseconds to 

classify one instance. However, this research employed a 

3.23ms 

 Size: 300x300 

Size: 30x30 

 

 VPN2016 - 317 blocks 

IDS2018 - 609 blocks 
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machine learning algorithm which requires statistical data 

as input data, so there might have been other factors that 

needed to be considered, e.g., required time for collecting 

statistical data, data preparation, running feature selection 

algorithm, etc. 

Moreover, that study [16] aimed to deploy IDS on IoT 

devices with limited resources, so they integrated some 

optimizations, e.g., sophisticated lightweight machine 

learning models and algorithms for feature selection. By 

contrast, our proposed IDS is aimed toward computer-

based devices, and we implement our simulations in 

general ways and using general tools. Hence, in our 

opinion, our lightweight IDS detection time is relatively 

acceptable. 

F. Training Data Size 

As mentioned previously, a lightweight IDS should be 

able to accomplish its essential tasks with minimal 

amounts of data. Compared to Table I, our proposed IDS 

was trained with only 2440 images, partitioned into 1831 

images in the training set and 609 images in the 

validation set, but it was able to achieve an acceptable 

accuracy (95%), and all attack scenarios were detectable 

(i.e., f1-scores over 90%) except for Infiltration (f1-score 

of 81%). Further, we employed only some portions of the 

IDS2018 dataset. We believe that the performance of our 

lightweight IDS will be improved over time as there will 

be more training data available. 

VI. CONCLUSION 

In this paper, we show how to implement a lightweight 

machine learning IDS with representation learning and 

how to leverage the CNN model to classify image data. 

Furthermore, the proposed CNN-based IDS shows highly 

accurate threat detection from the encrypted malicious 

raw network traffic. We propose methods that transform 

raw network traffic into representation images using only 

two features of raw traffic: packet length and arrival time. 

A CNN model was employed in constructing the IDS 

detection model to minimize the required training data 

and detection time. Three simulations were conducted on 

two popular datasets for evaluation. The experimental 

results demonstrate that the classification is capable of 

achieving accuracies of 95% in identifying malicious 

network traffic and of 79% in classifying encrypted 

traffic. We specifically note that the achieved accuracy 

(95%) only required a small amount of training data 

(2440 images), and the detection time was minimized to 

3.23 microseconds, which is competitive relative to those 

of previously reported machine learning-based IDS. In 

future work, we plan to implement our proposed IDS and 

evaluate it with new attack scenarios in a real-world 

environment. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Vinh Pham conducted this research including 

formulating idea, performance evaluation to the final 

manuscript under the guidance of Eunil Seo. Tai 

Myoung-Chung is the corresponding author. All authors 

had approved the final version. 

REFERENCES 

[1] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca, 

“Intrusion detection with comparative analysis of 

supervised learning techniques and fisher score feature 

selection algorithm,” in Proc. International Symposium on 

Computer and Information Sciences, 2018, pp. 141–149. 

[2] B. Anderson and D. McGrew, “Identifying encrypted 

malware traffic with contextual flow data,” in Proc. ACM 

Workshop on Artificial Intelligence and Security, pp. 35–

46, 2016. 

[3] D. Pérez, S. Alonso, A. Morán, M. A. Prada, J. J. Fuertes, 

and M. Domínguez, “Comparison of network intrusion 

detection performance using feature representation,” in 

Proc. International Conference on Engineering 

Applications of Neural Networks, 2019, pp. 463–475. 

[4] O. Faker and E. Dogdu, “Intrusion detection using big data 

and deep learning techniques,” in Proc. ACM Southeast 

Conference, 2019, pp. 86–93. 

[5] M. Catillo, M. Rak, and U. Villano, “2l-zed-ids: A two-

level anomaly detector for multiple attack classes,” in Proc. 

Workshops of the International Conference on Advanced 

Information Networking and Applications, 2020, pp. 687–

696. 

[6] P. Lin, K. Ye, and C. Z. Xu, “Dynamic network anomaly 

detection system by using deep learning techniques,” in 

Proc. International Conference on Cloud Computing, 2019, 

pp. 161–176. 

[7] D. D. Roy and D. Shin, “Network intrusion detection in 

smart grids for imbalanced attack types using machine 

learning models,” in Proc. International Conference on 

Information and Communication Technology Convergence 

(ICTC), 2019. 

[8] T. Shapira and Y. Shavitt, “Flowpic: Encrypted internet 

traffic classification is as easy as image recognition,” in 

Proc. IEEE INFOCOM 2019-IEEE Conference on 

Computer Communications Workshops (INFOCOM 

WKSHPS), 2019, pp. 680–687. 

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation 

learning: A review and new perspectives,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

vol. 35, no. 8, pp. 1798–1828, 2013. 

[10] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, 

“Malware traffic classification using convolutional neural 

network for representation learning,” in Proc. International 

Conference on Information Networking (ICOIN), 2017, pp. 

712–717. 

[11] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-

to-end encrypted traffic classification with one-

dimensional convolution neural networks,” in Proc. IEEE 

816©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020



International Conference on Intelligence and Security 

Informatics (ISI), 2017, pp. 43–48. 

[12] G. Helmer, J. S. Wong, V. Honavar, L. Miller, and Y. 

Wang, “Lightweight agents for intrusion detection,” 

Journal of Systems and Software, vol. 67, no. 2, pp. 109–

122, 2003. 

[13] H. Zhengbing, S. Jun, and V. Shirochin, “An intelligent 

lightweight intrusion detection system with forensics 

technique,” in Proc. 4th IEEE Workshop on Intelligent 

Data Acquisition and Advanced Computing Systems: 

Technology and Applications, 2007, pp. 647–651. 

[14] S. Zaman and F. Karray, “Lightweight ids based on 

features selection and ids classification scheme,” in Proc. 

International Conference on Computational Science and 

Engineering, 2009, vol. 3, pp. 365–370. 

[15] N. U. Sheikh, H. Rahman, S. Vikram, and H. AlQahtani, 

“A lightweight signaturebased ids for iot environment,” 

arXiv preprint arXiv:1811.04582, 2018. 

[16] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. 

Sakurai, “Implementing lightweight iot-ids on raspberry pi 

using correlation-based feature selection and its 

performance evaluation,” in Proc. International 

Conference on Advanced Information Networking and 

Applications, 2019, pp. 458–469. 

[17] J. Kim, Y. Shin, E. Choi, et al., “An intrusion detection 

model based on a convolutional neural network,” Journal 

of Multimedia Information System, vol. 6, no. 4, pp. 165–

172, 2019. 

[18] Q. Zhou and D. Pezaros, “Evaluation of machine learning 

classifiers for zeroday intrusion detection–an analysis on 

cic-aws-2018 dataset,” arXiv preprint arXiv:1905.03685, 

2019. 

[19] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, 

“Toward generating a new intrusion detection dataset and 

intrusion traffic characterization,” in ICISSP, pp. 108–116, 

2018. 

[20] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. 

Ghorbani, “Characterization of encrypted and vpn traffic 

using time-related,” in Proc. 2nd International Conference 

on Information Systems Security and Privacy (ICISSP), 

2016, pp. 407–414. 

[21] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. 

Ucles, “Hide: a hierarchical network intrusion detection 

system using statistical preprocessing and neural network 

classification,” in Proc. IEEE Workshop on Information 

Assurance and Security, 2001, pp. 85–90. 

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. 

Howard, W. Hubbard, and L. D. Jackel, “Backpropagation 

applied to handwritten zip code recognition,” Neural 

computation, vol. 1, no. 4, pp. 541–551, 1989. 

[23] F. C. et al., “Keras,” 2015. 

[24] M. A. et al., “Tensorflow,” 2015. 

[25] R. A. Dunne and N. A. Campbell, “On the pairing of the 

softmax activation and cross-entropy penalty functions and 

the derivation of the softmax activation function,” in Proc. 

8th Aust. Conf. on the Neural Networks, Melbourne, 1997, 

vol. 181, p. 185. 

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic 

optimization,” arXiv preprint arXiv:1412.6980, 2014. 

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. 

Kegelmeyer, “Smote: synthetic minority over-sampling 

technique,” Journal of artificial intelligence research, vol. 

16, pp. 321–357, 2002. 
 

Copyright © 2020 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 
 

Vinh Pham received the B.S. degree in 

Computer Science from the Ho Chi Minh 

City University of Technology - VNU-

HCM (HCMUT), Vietnam in 2018. He is 

currently pursuing the M.S. degree with 

the Department of Computer Science and 

Engineering, Sungkyunkwan University, 

Korea. His research interests include 

network security, data mining and machine learning. 
 

Dr. Eunil Seo received a B.S. degree 

from the Sungkyunkwan University, 

Korea, in 1997, and an M.S. degree from 

the University of Southern California 

(USC), Los Angeles, USA 2002. Over 16 

years, he carried out the 17 patents, 

drafts, and technical specifications 

regarding the connectivity of devices for 

Samsung Advanced Institute of Technology (SAIT) and 

International Thermonuclear Experimental Reactor (ITER). He 

received a Ph.D. degree in Computer Engineering from 

Sungkyunkwan University, Korea, in 2019. He is currently a 

post-doctoral researcher at the computing science of Umea 

University, Sweden. His research interests are data connectivity 

using machine learning, Traffic Engineering (T.E.), LISP-based 

SDWN, and SDN&NFV-based Mobility Management (MM). 
 

Dr. Tai-Myoung Chung received his 

first B.S. degree in Electrical 

Engineering from Yonsei University, 

Korea in 1981 and his second B.S. 

degree in Computer Science from 

University of Illinois, Chicago, USA in 

1984. He received his M.S. degree in 

Computer Engineering from the 

University of Illinois in 1987 and his Ph.D. degree in Computer 

Engineering from Purdue University, W. Lafayette, USA in 

1995. He is currently a professor of Information and 

Communications Engineering at Sungkyunkwan University, 

Korea. He is now a vice-chair of the Working Party on IS & 

Privacy, OECD, and a senior member of IEEE. He also serves 

as a Presidential committee member of the Korean e-

government, the chair of the information resource management 

committee of the e-government. He is an expert member of 

Presidential Advisory Committee on Science & Technology of 

Korea, and is chair of the Consortium of Computer Emergency 

Response Teams (CERTs). His research interests are in 

information security, network, information management, and 

protocols on the next-generation networks such as active 

networks, grid networks, and mobile networks. 

817©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



