
The Experimental Study of Performance Impairment of Big

Data Processing in Dynamic and Opportunistic

Environments

Wei Li and William W. Guo
School of Engineering & Technology, Central Queensland University, Australia

Email: w.li@cqu.edu.au; w.guo@cqu.edu.au

Abstract—In contrast to HPC clusters, when big data is

processing in a distributed, particularly dynamic and

opportunistic environment, the overall performance must be

impaired and even bottlenecked by the dynamics of overlay and

the opportunism of computing nodes. The dynamics and

opportunism are caused by churn and unreliability of a generic

distributed environment, and they cannot be ignored or avoided.

Understanding impact factors, their impact strength and the

relevance between these impacts is the foundation of potential

optimization. This paper derives the research background,

methodology and results by reasoning the necessity of

distributed environments for big data processing, scrutinizing

the dynamics and opportunism of distributed environments,

classifying impact factors, proposing evaluation metrics and

carrying out a series of intensive experiments. The result

analysis of this paper provides important insights to the impact

strength of the factors and the relevance of impact across the

factors. The production of the results aims at paving a way to

future optimization or avoidance of potential bottlenecks for big

data processing in distributed environments.

Index Terms—Big data, performance impairment, dynamic

environment, MapReduce, scalability

I. INTRODUCTION

There are two certainties in modern data processing

and analysis. First, the data itself becomes so called big

data. Big data is produced by business transactions and

social events and accumulated through the operating of

an enterprise. The production of big data can also be

extended to the areas where data is continuously collected

by sensors, cameras or telescopes. Big data is either a

scientific project’s resources to produce the answers to

scientific hypotheses [1] or the pillars of business

intelligence [2] in support of smart decision and

prediction of business trade. Second, although it is

difficult to define how big a big datum should be, it is

certainly too big to be processed by a single commodity

computer in a reasonable amount of time. From the

aforementioned reasons we have derived that a high-

performance cluster is needed to process big data.

However, at the same time we have also proposed a

question: whether a scientific project or an enterprise can

either have or access a dedicated computing center. The

Manuscript received June 19, 2020; revised September 6, 2020.

Corresponding author email: w.li@cqu.edu.au.

doi:10.12720/jcm.15.11.776-789

answer is negative for either of them. Scientific projects

such as ATLAS@Home [3], Asteroids@home [4] and

Einstein@Home [5] by using volunteer computing [6], [7]

are an evidence of shifting big data processing to

distributed and heterogeneous environments. In addition,

not every enterprise, particularly small or medium

enterprises can afford to invest and maintain a dedicated

data center. Consequently, we come to another derivation:

it is necessary to make use of the existing corporate

computers of an enterprise or a community or volunteer

computers on the Internet to construct a distributed and

parallel computing environment for big data processing.

Unfortunately, to make use of such a convenience, we

have to tolerate the heterogeneity, dynamics, opportunism

and unreliability of computing nodes. Heterogeneous

computing nodes could have big difference in compute-

or storage-capacity. Dynamic nodes may join in or leave

from the overlay at any time. Unreliable nodes may crash

on the overlay at any time. Working on dynamic and

opportunistic overlay will bring many uncertainties. For

example, some questions include how churn impairs the

overall performance and whether the impaired

performance can be tolerated; whether continuously

accommodating more computing nodes benefits for the

overall performance; what the key factors are to impair

the overall performance significantly.

In this paper we propose eight impact factors to cover

the aspects including the compute-capacity and

heterogeneity of computing nodes, the communication

cost of working on the overlay, the churn of computing

nodes and the big data application itself. To compare the

intra- and inter-factor impacts and to answer the

aforementioned questions, we need a reference system:

 A clean and ideal computing environment that grows

linear speedup proportionally to the increase of

computing nodes. The ideal environment allows any

single factor’s or combination of factors’ injection to

test impact.

 A spectrum of representative values for each factor

that is able to produce weak, medium and strong

impact on the overall performance and to avoid

extreme situations, either all too weak or all too strong

impact.

 A couple of cross-factor reference points that is able

to vary a single factor but to stabilize all other factors,

776©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

exposing the factor’s impact and making the

evaluation results trustable.

 A number of reference units to record the impact.

This paper proposes an experimental prototype that is

able to integrate the aforementioned impact factors and

the reference system. The prototype platform can be

configured to represent a dynamic overlay that allows

opportunistic and unreliable nodes as an individual but

guarantees the reliability of the overlay as a whole under

the dynamics.

When we place the host platform at the bottom and the

impact factors on the top, we will need an algorithm to

operate big data in the middle. Big data processing is still

an open issue and there is a number of processing

paradigms [8]. Among them, MapReduce [9] was

proposed by Google from IT industries and has been the

most successful model in both industry and academia.

The main reason that we prefer to use MapReduce as the

big data processing paradigm is the key feature of <key,

value> pairs form of data representation. To clarify this

feature of MapReduce, in the first step map, a number of

independent map tasks with the input data in the form of

<key, value> pairs is executed. The original input data of

a map task is a set IM in the form of <key, value> pairs.

There exist <key1, value1>, <key2, value2>IM and

key1=key2. A map task operates IM by using a predefined

computing logic to sort out all the <key, value> pairs in

IM so that for any <key1, value11>, <key2, value21>OM,

key1≠key2, where OM is the output data set of the map

task. On the completion of map step, however, there exist

<key1, value12>OM1, <key2, value22>OM2 and

key1=key2, where OM1 and OM2 are 2 different output

data sets of 2 different map tasks. The second step shuffle

is responsible for breaking every result set of the map

step and redistributing the <key, value> pairs to a number

of reduce tasks so that for any <key1, value13>OM1 and

<key2, value23>OM2 and key1=key2, <key1, value13>

and <key2, value23> must be redistributed to the same

reduce task. The shuffle step involves a lot of data

exchange. The third step reduce is the independent

computing of reduce tasks and still produces data sets in

the form of <key, value> pairs without any intra-or inter-

task pairs having the same key. This feature coheres with

a successful dynamic internet overlay protocol

Distributed Hash Table (DHT) in terms of <key, value>

pair data format. For the high coherence with the data

processing layer, the proposed platform is to be based on

the DHT protocol Chord [10] and to be implemented on

top of Open Chord APIs [11].

The goal of this paper aims at confirming how the

impact factors impair the overall performance of big data

processing in dynamic and opportunistic environments,

sorting out the impact strength of the factors and

identifying the key factor having strong impact.

The methodology of this paper consists of the

following steps.

 Identify and classify impact factors that exist in

dynamic and opportunistic environments and impair

the performance of big data processing.

 Propose a reference system to inject impact factors,

evaluate impact, and measure the impact strength on

the running big data applications.

 Cohere MapReduce big data paradigm with DHT to

unite the computing paradigm and supporting

platform.

 Generalise domain applications of big data and

dynamics of overlay to construct an application-

independent MapReduce case and a random churn

pattern.

 Conduct intensive experiments to produce trustable

results and carry out impact strength and cross-factor

relevance analysis.

The contributions of this paper include:

 A united framework of impact factors, MapReduce

paradigm and supporting platform.

 The realisation of the cross-factor comparability.

 The potential use of the result analysis for balancing

workload and overlay size, computing nodes selection

and avoidance of extremely impaired performance.

The organization of this paper is as follows: related

work is reviewed in Section II. The impact factors are

proposed and classified, and the churn patterns are

detailed in Section III. Section IV proposes an

application-independent study case of MapReduce

paradigm. In Section V, a reference system, including

computing environment, spectrums of reference values,

cross-factor reference points and reference units, is

detailed. In Section VI, the workflow of MapReduce on

dynamic and opportunistic overlays is explained. Section

VII presents experiments, results and analysis. Section

VIII concludes the study by confirming the impact

strength and the relevance of factors and proposing

optimization potentials.

II. RELATED WORK

The existing work tried to improve MapReduce

performance by three ways or their combinations:

framework modification; communication-aware or CPU

capacity-aware load balancing; optimization of Hadoop

parameter configuration.

Singh et al. [12] stated that the computing

environments could not be always homogenous. They

demonstrated that heterogeneity was a key impact factor

and workload balancing was the critical way to make full

use of resources and maximize the efficiency in

heterogeneous environments. They classified impact

factors as algorithm-specific factors (filtered transactions

and data structure) and cluster-specific factors

(speculative execution, performance of physical nodes

versus virtual nodes, distribution of data blocks, and

parallelism control with input split size). They criticized

that Hadoop [13] load balancing was not optimized for

some situations as data locality might be able to

overwhelm load balancing and slow down the overall

performance. Some optimization strategies they used

included: the filtered transactions as a combiner to

777©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

maximize the intra-node processing before shuffle;

disabling speculative execution to increase efficiency by

sacrificing redundancy or fault tolerance; removing slow

nodes to decrease the number of nodes but to improve the

overall performance. Integration of MapReduce-based

Apriori (a very efficient data analyzer) and Hadoop to

maximize efficiency was their optimization goal but was

still an open issue with their work.

Cheng et al. [14] proposed adaptive task tuning to

target load balancing. The core of the method was a

genetic algorithm, which was able to monitor task

execution in heterogeneous environments. The method

profiled computing nodes, clustered as worker nodes and

assigned tasks based on the profiles. The method was

automated for collecting performance of workers and

adjusting task balancing in the course of computing. They

finely tuned the 109 parameters of Hadoop and

MapReduce at the cluster level, job level and task level.

The method was evaluated on physical clusters (3 nodes)

and virtual clusters (24 virtual machines) on cloud by

using 3 CPU- or I/O-intensive applications: wordcount

[15], grep [16] and Terasort [17] of a dataset of 900GB

with a reducer out of mapper ratio of 0.4% to 3.5%. The

results were compared with default Hadoop and other 2

optimizers Starfish and Rules-of-Thumb. The results

demonstrated a 31%, 20% and 14% improvement on

physical clusters and 23%, 11% and 16% improvement

on virtual clusters. In general, the genetic algorithm of

[14] needs multiple rounds for the optimization, so the

assumption of the method is that MapReduce, particularly

the map step, needs multiple rounds. However, most of

the real-world applications are suitable for one round

MapReduce because of the application properties or the

purpose of minimizing data exchange.

Spivak and Nasonov [18] tried to improve Hadoop

MapReduce performance by using data preloading and

data placement. When CPU was in intensive computing,

but IO was light, preloading data from network

parallelized the preparation of next tasks and the current

computing. By data placement, which was based on the

assumption that faster nodes would be able to process

more data, data were distributed to computing nodes in

ratio to their CPU-capacity. A 5-nodes heterogeneous

cluster was used as a testbed to process 10GB, 15GB and

25GB datasets. By using readData MapReduce task, the

evaluation showed that the preloading strategy

outperformed standard Hadoop MapReduce. By using

three applications: grep, wordcount and readData, the

data placement strategy was shown outperforming the

standard Hadoop MapReduce’s locality strategy. The

method was applicable to heterogeneous network but

inapplicable to dynamic networks, where nodes might

join in, leave from or crash on the network at any time,

making preloading or placement of data invalid.

There are some overlaps between the research goals of

Chen et al. [19] and ours of this paper. Chen et al.

compared two production traces from Facebook and

Yahoo and clarified that both traces contained jobs

performing data aggregation (input>output), data

expansion (input<output), data transformation

(inputoutput) and data summary (input>>output). They

stated that the existing benchmarks captured narrow

slivers of a rich space of workload. They described the

importance of constructing a workload suite. They

proposed a representative workload suite to allow

selecting and combing various characteristics such as job

submission time and arrival pattern, data size & ratio and

presented a framework to generate and execute the

workloads. They demonstrated that the running

workloads helped cluster operators understand the system

configuration and identify systems bottlenecks.

Han and Lu [20] aimed at building a big data

benchmark suite, which was truly representative and

comprehensive instead of application- or system-specific,

to compare performance, energy efficiency and cost

effectiveness. They composed a data generator to produce

synthetic datasets while preserving the 4V (volume,

variety, velocity and veracity) properties of big data.

They composed a test generator to produce benchmarking

tests consisting of operations and workload patterns. The

strength of [20] was the classification of 10 commonly

used big data benchmarks in terms of 4Vs and the

classification of benchmarking techniques of the 10

benchmarks in terms of workload types (online, offline or

real time) and software stacks (Hadoop, NoSQL, DBMS,

real time or offline analytics systems). However, any

quantitative study cases or evaluations of the proposed

benchmark suit were not presented in [20].

Lee et al. [21] stated that 79% of a job was I/O

intensive and reducing HDFS I/O within MapReduce job

was the most effective approach to enhancing

performance. They stated that 26% to 70% of running

time of 188,000 MapReduce jobs of Facebook was the

shuffle phase. Combiners, which performed partial

merging of intermediate data before sending to reducers,

decreased the amount of intermediate results saving

substantial network cost. They utilized an in-memory

NoSQL system: Redis as a cache layer for both input data

and intermediate results to improve I/O performance of

Hadoop DFS [13]. They utilized in-node combiners to

take 2 benefits over in-mapper combiners: minimizing the

total number of emitted results and executing combing

functions in a separate thread. The test environment of

[21] included 4 physical nodes, a 12GB (20 files) dataset

of random Twitter messages, 2 applications: word count

and computing relational status between Twitter users.

By using in-memory cache, they demonstrated that the

completion time of map was decreased 14%; the whole

job completion time was decreased 23%. On word count

application, the use of in-node combiners decreased the

input size of reducers up to 50% and job completion time

was decreased up to 30%. On computing relationship of

Twitter users, combiners decreased 3% map output and 6%

completion time because the number of intermediate pairs

with the same key generated within a map task was

decreased. However, their work was limited on only one

impact factor for I/O performance when there were

778©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

multiple factors interacting with each other in distributed

environments.

Ardagna et al. [22] was to target capacity planning at

the design-time in capturing dynamic resource

assignment in the big data scheduler of Hadoop and

YARN [13]. They stated that when appropriate size of

cluster was important to predict the budget to run Hadoop

for an application in public clouds, the execution time of

a MapReduce job was unknown. They proposed Petri-net

like models QN (Queuing Network) and SWN

(Stochastic Well Formed Net) to provide design-time

performance analysis, aiming at estimating MapReduce

job execution time in Hadoop clusters managed by

YARN. The test environment of [22] included Amazon

EC2 (120 CPUs supporting 240 containers) and an Italian

supercomputing center CINECA (120 cores with a

container). The datasets were 250GB and 1TB and the

number of map and reduce tasks were 4,1560 and 1,1009.

The experiments of [22] demonstrated that the accuracy

between the simulation and actual measurement was high

in terms of the relative error of QN being 32% and SWN

being 14%.

Dede et al. [23] studied extensively on the impact

caused by the heterogeneity, unreliability or unstable

computing nodes. They compared their own

implementation: LEMO-MR with the other two existing

implementations of MapReduce: Hadoop and Twister. On

the three testing environments: a heterogeneous cluster, a

homogeneous but load-imbalanced cluster and a cluster

with unreliable nodes, they demonstrated the difference

of these implementations in processing data-intensive,

CPU-intensive and memory-intensive applications.

Among others, they stated that cluster heterogeneity must

be strongly considered. That conclusion matches our

quantitative results in this paper that heterogeneity

strongly impairs performance of big data processing

running on commodity computers.

Both our work of this paper and Zhang et al. [24]

regard the poor performance of big data processing as the

equity task allocation, without considering the

heterogeneity of computing nodes. Zhang et al. [24]

stated that the straggler nodes slowed down the overall

progress of map or reduce steps, particularly for the

reduce step, which could not start until the slowest node

completed the map task and exchanged the data to the

reduce tasks. They optimized the situation by allowing

faster nodes to steal some work from the stragglers. In

addition to the heterogeneity, our work of this paper has

identified and scrutinized other key factors in the

unreliable and opportunistic environments, which are

important for potential optimization.

III. IMPACT FACTORS

The study background of this paper is derived by the

logic that the available application data is too big to be

processed by a single commodity computer in a

reasonable amount of response time. The big data must

be processed in parallel by a distributed computing

environment. The impact factors are derived by the logic

that a distributed computing environment is a dynamic

environment. The performance of such a dynamic

computing environment can be impaired by factors

coming from computing nodes, communication

networking and/or the dynamics of overlay. In addition,

MapReduce applications are different. They may perform

data aggregation, data expansion, data transformation or

data summary [19], having potential impact on the overall

performance as well. To scrutinize performance issues,

the impact factors can be classified into 4 categories.

Computing Nodes: the heterogeneity (H) of computing

nodes refers to the difference of compute-capacity

between computing nodes. When all the computing nodes

are treated equally by task assignment, the slow nodes

will impair the overall performance because they hold the

assigned tasks to make the fast nodes idle.

Networking: cooperation between distributed

computing nodes mainly incurs two types of

communication cost. First, any communication between a

pair of computing nodes needs Round Trip Time (RTT)

for a node to lookup another node and establish

connection for communication and close the connection

on the completion of communication. Second,

downloading a task or uploading a result set is the other

cost of communication. Thus, Download/Upload Speed

(DUS) is recognized as another impact factor.

Applications: the structure of MapReduce applications

brings two factors to apply impact on the overall

performance. Map/Reduce Ratio (MRR) refers to how

much the overall work has been shrunk by the map step.

For example, if an MRR is 20%, the number of reduce

tasks will be shrunk as 20% of the number of map tasks.

MRR will impair the overall performance of MapReduce

in terms of not only the overall computing load but also

the communication cost. For an MMR of 20%, the cost of

uploading map results and downloading reduce tasks will

be shrunk to 20% and the cost of uploading results of

reduce tasks will be shrunk to 4% (20%×20%).

Obviously if MMR changes to 40%, the above cost will

be doubled. Redistribution Factor (RF) refers to how

many reduce tasks that a map result set will be

redistributed into by the shuffle step. For example, if RF

is 100, it means the result set of a map task will be

redistributed into 100 reduce tasks. When the cost of

uploading a result set or downloading a reduce task is

dependent on MRR, RF impairs the overall performance

through RTT. For the same DUS, a bigger RF incurs more

lookups, connections and disconnections, of which each

needs a full RTT.

Dynamics and Opportunism: churn refers to the join,

leave or crash of computing nodes in the course of

computing. Churn represents the opportunistic features in

volunteer computing [7], where a computing node may

join or leave a computing without any responsibility or

dedication. Churn is the most complex factor to impair

779©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

the overall performance. The churn factor is divided into

3 refined factors for a scrutiny.

 Churn Rate (CR) refers to how many nodes behave

dynamically and unreliably. For example, a 30%

churn rate refers to that 30% of the total nodes will

leave or crash randomly during the course of

computing.

 Start Position (SP) refers to how long after it joins the

computing, a churn node would start to commit churn.

 Occurrence Interval (OI) refers to the time period

from the start position in which the churn node could

commit churn randomly.

The first factor CR reflects a churn feature for all

computing nodes; the second and third factor SP and OI

are the position and size of a churn window that is special

for each churn node. The three factors together determine

the dynamic, opportunistic and random features of a

computing node.

To study the impact of churn, we construct a churn

pattern to behave the proposed dynamic and opportunistic

features. The churn pattern will be injected into the map

step once and the reduce step once. The injections make

the whole course of computing be affected by the

dynamics and opportunism of the overlay. The

construction of churn pattern is as follows and the

constructed churn pattern is illustrated in Fig. 1.

 Computing nodes join the overlay sequentially but

randomly.

 When the joined computing nodes reache a certain

number, churn starts happening.

 A node commits churn randomly in its own churn

window that is determined by its own SP and OI.

 A churn node can leave from or crash on the overlay

and the chance of leave or crash is the same for each

churn node.

 When CR is reached, the churn stops and the left

overlay is stable to the end of computing.

IV. A GENERIC STUDY CASE OF MAPREDUCE

We propose a generic study case of MapReduce

application considering the following conditions. The

application scenario complies with MapReduce paradigm

but is independent of any real-world applications. This

generality allows us to test with any computing and

communication intensity that are not restricted by any

specific applications. Based on this rule, the consideration

of determining the number of map tasks (NMT) and the

computing load of each task (CLET) is that the scale of

overall computing load must be big enough as a big data

problem. In this study case, NMT is randomly chosen as

1,400,000 (1.4M) and CLET is randomly chosen as 8,000

(8K) so that the overall computing load for map tasks is

11,200,000,000 (11.2G). The unit of this computing load

can be seconds, minutes or hours etc. The size of each

map task or reduce task (SEMRT) is chosen as 64MB,

which is a common task size of real world applications

such as ATLAS@Home [3], Asteroids@home [4] or

Einstein@Home [5] and it is one of data block size of

Hadoop Distributed File System (HDFS) [13]. The size of

the result set of a map task or a reduce task (SRMRT) is

determined by Map/Reduce Ratio (MRR). Generally, in

real world applications, MRR is much smaller than 1, e.g.

20% and the Redistribution Factor (RF) is not high, e.g.

100. As a result of certain MRR and RF, the

communication cost and the computing load of reduce

tasks can be determined. The calculation of the

communication cost and computing load of the

aforementioned generic study case is as follows as shown

in Table I. The redistribution factor RF is applied to map

step only because there are no any overlapped keys

between different reduce result sets. RF is not to

influence reduce step and each reduce task just uploads a

reduce set as a whole onto the overlay.

V. REFERENCE SYSTEM

To study the impact caused by the factors, we first

need an ideal computing environment as a reference in

order to check how far a distributed and dynamic

computing environment goes away from it in terms of

performance. Second, as we deal with multiple factors

and each factor varies values, we need a reference point

to settle all the factors expect the factor we want to study

in a round. Finally, we need a number of reference units

to record the impact strength.

Fig. 1. The churn patterns

TABLE I: THE SETTING OF A GENERIC STUDY CASE OF MAPREDUCE

Scenario Variables Values

The number of map tasks (NMT) 1400000 (1.4M)

The lookup times of map tasks 1400000 (1.4M)

The times of downloading map tasks 1400000 (1.4M)

The size of a map or reduce task or a map or reduce result set 64MB

The Redistribution Factor (RF) 100

The computing load of each map or reduce task 8000 (8K)

The computing load of map tasks 1400000×8000=11200000000 (11.2G)

780©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

The times of uploading map result sets 1400000×100=140000000 (140M)

The upload of results of map tasks 1400000×20%×64MB=17920000MB18TB

The Map/Reduce Ratio (MRR) 20%

The number of reduce tasks (NRT) 1400000×20%=280000 (0.28M)

The lookup times of reduce tasks 280000 (0.28M)

The times of downloading reduce tasks 280000 (0.28M)

The computing load of reduce tasks 280000×8000=2240000000 (2.24G)

The upload of results of reduce tasks 280000x20%×64MB=358400000MB3.58TB

The upload times of reduce result sets 280000×20%=56000

The overall data size to be processed 1400000×64+280000×64=107520000MB108TB

A. Ideal Computing Environment

An ideal computing environment is proposed to

provide the fastest speedup through distributed

computing nodes for the proposed generic MapReduce

application in Section IV. The ideal computing

environment satisfies the following conditions.

 All computing nodes are reliable in the course of

computing. Thus, the tasks can be pre-assigned to

nodes before computing and be located during the

course of computing.

 All computing nodes are homogeneous in compute-

capacity, providing the maximum computing

efficiency without incurring additional cost for

optimization scheduling.

 All computing nodes are connected by high speed

networks. Thus, for a map or reduce task or a result set

of 64MB or 128MB, the download or upload cost is

trivial.

Based on these conditions, the ideal computing

environment is free from the impact of heterogeneity,

communication or churn. The ideal computing

environment is used to produce the highest performance

so that any other environments can be compared, showing

the distances they go away from it in terms of overall

performance.

B. Reference Values

To compare the impact of different factors, each factor

needs a set of representative values. The representative

values of a factor should be able to differentiate degrees

of impact caused by the factor. The setting of

representative values follows the rule that the spectrum of

values of any factor should cover a variety of conditions

but avoid the extreme conditions such as all light impact

or all strong impact. In addition, to compare the impact

between different factors, the representative values of a

factor cannot go extreme to override the impact of

another factor. The change of values, reflecting the

change of conditions, should go evenly in the spectrum.

Based on the considerations, a spectrum of 5 values is set

for each impact factor for the study of this paper. The

representative values of each factor are clarified as

follows.

The heterogeneity (H) of compute-capacity of

computing nodes is generalized as tiers. The base tier is

Tier-1 being the fastest compute-capacity. Thus, a Tier-2

computing node is 2 times slower than a Tier-1 node. The

spectrum of the 5 values of H is set as 2-tiers, 4-tiers, 6-

tiers, 8-tiers and 10-tiers to represent a wide range of

heterogeneous computing nodes. The consideration of 8-

times difference is reasonably sound to represent the

heterogeneity of real-world commodity computers in

terms of compute-capacity.

The download/upload cost depends on network speed

and the data size. The network speed depends on the

internet service standards of a country. For example, the 5

download/upload speed (in Mbps) tiers: 12/1, 25/5, 25/10,

50/20 and 100/40 are provided by Australia National

Broadband Network (NBN). In Monsalve et al. [25] study

of data-intensive project ATLAS@Home [3] or

Einstein@Home [5], 40MB or 100MB were treated as a

large file for input or output of a computing task. The

data block size of big data processing model Hadoop [13]

is either 64MB or 128MB. In the experimental study of

this paper, when the size of a map task is chosen as 64MB,

the download/upload speed (DUS) could be set as 5 tiers:

5/13, 10/26, 20/51, 20/102 and 43/512 corresponding to

the 5 tiers of the NBN speed. The round-trip time (RTT)

can be set as 4, 6, 8, 10 and 12 to represent the

connection and disconnection time before and after the

data exchange between two computing nodes. This RTT

range is to ensure that any slow network is able to finish a

handshake preparing for the data exchange. For the ideal

computing environment, its network speed is the fastest

of 1000Mbps (100MB/s) of a modern LAN. Thus, for a

64MB task or a result set, the download or upload time is

less than 1 second. Because in the setting of experiments,

download or upload time is a non-zero integer, it is set as

1. For transferring a data or result set, the TCP

connection and disconnection together is set as 1 for the

same reason.

The churn rate (CR) can be set as 10%, 20%, 30%, 40%

and 50% to represent how many computing nodes

behave dynamic and opportunistic features on the

overlay. The maximum of 50% is large enough to

represent the opportunism of volunteer nodes in real

world situation. The start position (SP) can be set as

450K, 350K, 250K, 150K and 50K to represent how

long a node stays on the overlay before start to commit

churn. The occurrence interval (OI) can be set as 50, 40,

30, 20 and 10 to represent how wide of the churn

window that a node can randomly commit churn. The

combined SP and OI are able to provide a small churn

window (10), a medium churn window (30) and a big

churn window (50), of which each can be placed in the

front (50K), middle (250K) or on the rear (450K) of the

course of computing for each computing node.

781©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

The Map/Reduce ratio (MRR) can be set as 20%, 40%,

60%, 80% and 100% to represent how much the number

of tasks is shrunk by map step. The best situation is that

the number of reduce tasks is shrunk to 20% of the

number of map tasks, representing data aggregation; the

worst situation is that the number of reduce tasks is not

shrunk at all and is the same as the number of map tasks,

representing data transformation. The redistribution

factor RF can be set as 100, 150, 200, 250 and 300 to

represent data exchange intensity. The best situation of

100 represent most of the cases of real-world MapReduce

applications, while the worst situation of 300 can still

accommodate specific MapReduce cases.

C. Cross-Factor Reference Points

To evaluate the impact of a factor, we need to vary the

factor’s values but keep the values of all other factors as

constant (reference). A Cross-Factor Reference Point

(CFRP) is proposed in the form of (H, DUS, RTT, CR, SP,

OI, MRR, RF) to include a complete cross-factor value.

To make the study result trustable, we choose 2 cross-

factor reference points CFRP1 and CFRP2 as defined as

follows and as shown in Table II, where FV represents

factor value. CFRP1 is at the beginning and CFRP2 is in

the middle of the spectrum of cross-factor values.

CFRP1: (2, 5/13, 4, 10%, 450K, 50, 20%, 100)

CFRP2: (6, 20/51, 8, 30%, 250K, 30, 60%, 200)

The use of a CFRP is to evaluate the impact of a factor,

vary the factor’s values along the row of the factor but

keep all other factors of the CFRP as constant. For

example, if we evaluate the impact of H by CFRP1, we

vary H from 2 to 10 for CFRP1 as:

((2, 4, 6, 8, 10), 5/13, 4, 10%, 450K, 50, 20%, 100)

As another example, to evaluate the impact of CR by

CFRP2, we vary CR from 10% to 50% for CFRP2 as:

(6, 20/51, 8, (10%, 20%, 30%, 40%, 50%), 250K, 30,

60%, 200)

We predict that when visualizing the evaluation results

of all factors in a single diagram, all the results are

expected to diverge from CFRP1 for CFRP1 based

evaluation or go through CFRP2 for CFRP2 based

evaluation.

D. Reference Unit

We propose to use Speedup as the reference unit to

measure the overall performance of a distributed

computing environment or overlay.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑏𝑦 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑖𝑒𝑟1 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑏𝑦 𝑎 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

Along with speedup as a reference unit, we propose

other two reference units to compare the impact of

different factors or the different degrees of impact by the

factor values of a single factor. We propose to use the

Speedup Distance away from the ideal environment to

measure the impact of a factor and to compare impact

strength between different factors.

Speedup Distance =the speedup of the deal computing environment
-the speedup of a computing environment

We propose to use the Speedup Growth Rate to

compare the change rate of speedup upon the value

changes of a factor.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒

=
𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒 2 − 𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒 1

𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒 1
× 100%

VI. THE EXPERIMENTAL MODEL

An experimental model is needed for the impact

evaluation of the factors. The experimental model is

proposed to be able to create the dynamics and

opportunism for distributed computing environments as

stated in Section III. The MapReduce study case as

proposed in Section IV can be executed on the model.

The model can enable the reference systems as proposed

in Section V fully record the factor impact by using the

reference units. The experimental model is proposed to be

built on the following conditions.

 The base model is the ideal computing environment.

An impact factor can be injected individually or any

combination of impact factors can be injected as a

group.

 When churn is injected, a MapReduce application on

the dynamic overlay will incur lookup cost of O(logn)

and stabilisation cost of O(log
2n), where n is the

number of current computing nodes on the overlay.

Based on the above conditions, the workflow of a

MapReduce application on the ideal environment or on a

dynamic environment is shown in Fig. 2 and clarified as

follows:

Fig. 2. The MapReduce workflow of the ideal environment and dynamic

environments

In the ideal environment, each computing node

performs 3 steps for a map task or a reduce task. A task is

pre-located on the network. A task is downloaded from

the network and computed by a computing node and then

the result set of the task is uploaded. Each computing

node behaves reliably during the 3 steps and a task can

always be completed in one assignment. Each computing

node repeats these 3 steps until all the tasks are

completed, i.e. the whole MapReduce application is

completed.

782©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

TABLE II: THE FACTOR VALUES AND CROSS-FACTOR REFERENCE POINT

Impact Factor

Factor Values

FV1

(CFRP1)

FV2 FV3

(CFRP2)

FV4 FV5

Heterogeneity (H) 2-tiers 4-tiers 6-tiers 8-tiers 10-tiers

Communication

Cost

Download/Upload Speed

(DUS) for 64MB
5/13 10/26 20/51 20/102 43/512

Round Trip Time (RTT) 4 6 8 10 12

Churn

Churn Rate (CR) 10% 20% 30% 40% 50%

Start Position (SP) 450K 350K 250K 150K 50K

Occurrence Interval (OI) 50 40 30 20 10

Application
Map/Reduce Ratio (MRR) 20% 40% 60% 80% 100%

Redistribution Factor (RF) 100 150 200 250 300

In the dynamic and opportunistic environment, a task

cannot be pre-located because of churn. The only

guarantee is that the task is always on the overlay. A

computing node on such an overlay must look up a task

before downloading it. The lookup starts when a

computing node joins the overlay or when a computing

node has completed the current task and asks for another

task. This turnover procedure is termed as rejoin of a

computing node. A computing node can leave from or

crash on any of the 4 steps: looking up a task,

downloading the task, computing the task or uploading

the result set of the task. The difference between leave

and crash is that the uncompleted task of a leaving node

is checkpointed and will be picked up by another

computing node, but the uncompleted task of a crashed

node will be totally restarted from the beginning by

another computing node.

The model has been designed on the theoretical model

of Chord [10]. The model is able to simulate the

opportunistic features of computing nodes on a dynamic

overlay. The model has been implemented on the open

source API of Open Chord [11]. The model offers the

ability to test the impact of an individual factor or any

combination of factors.

The MapReduce model has been implemented as an

application-neutral structure. A map or reduce task is

self-contained object consisting of code and data

container. The data container of a map task is prefilled

before the start of computing, while the data container of

a reduce task is filled by the results of map tasks by the

shuffle step of MapReduce in the course of computing. A

map task is ready to start at the beginning of the course of

computing, while a reduce task is ready to start on the

completion of all map tasks. The whole computing is

finished when all reduce tasks are completed.

VII. THE EVALUATION RESULTS AND ANALYSIS

By using the cross-factor reference points CFRP1 and

CFRP2, the basic evaluation has been conducted for 80

round tests to expose the impact of every factor value for

each impact factor. The analysis of the fundamental

results is presented in Section VII-A and VII-B. Based on

the analysis, extended evaluations have been conducted

to further scrutinize some impact factors in Section VII-C

to VII-E.

A. The Impact on Map Step

When the impact measured in speedup distance of all 8

factors are compared in a single line graph as shown in

Fig. 3 for CFRP1 and in Fig. 4 for CFRP2, it is

demonstrated that the impact of 4 factors (defined as

Group A consisting of H, RF, RTT and CR) varies much

severe than the other 5 factors (defined as Group B,

consisting of DUS, SP, OI and MRR). The results by

CFRP1 and CFRP2 are consistent because Group A or

Group B classified by both CFRP1 and CFRP2 includes

the same impact factors. Another observation is that

Group A factors impair the overall performance

propositionally to their factor values, while Group B

factors impair the overall performance to similar extents

by both small factor values and big factor values. The

other observation is that within Group A factors, the

impact strength goes up by CR, RTT, RF and H and it is

consistent for both CFRP1 and CFRP2. To further

scrutinize Group B factors, they are separated and scaled

into another line graph as shown in Fig. 5 for CFRP1 and

in Fig. 6 for CFRP2.

Fig. 3. Map step: The impact in speedup distance classified by CFRP1

Fig. 4. Map step: The impact in speedup distance classified by CFRP2

783©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

784©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

Fig. 5. Map step: The impact in speedup distance of Group B factors

classified by CFRP1

Fig. 6. Map step: The impact in speedup distance of Group B factors

classified by CFRP2

The impact measured in speedup distance of each

factor in Group B is constantly high for both small and

big values of that factor. The impact strength of Group B

factors is closer in terms of at most 21 times in difference

classified by CFRP1 and at most 91 times in difference

classified by CFRP2 between these factors. For the 4

factors in Group B, the impact strength goes up by MRR,

OI, DUS and SP and is consistent for both CFRP1 and

CFRP2.

B. The Impact on Reduce Step

The redistribution factor RF is always 1 for the reduce

step because there is no any shuffle requirement for

reduce results by MapReduce paradigm. Thus, the impact

measured in speedup distance of all other 7 factors are

compared in a single line graph as shown in Fig. 7 for

CFRP1 and in Fig. 8 for CFRP2. It is demonstrated that

the impact of 4 factors (defined as Group A consisting of

H, RTT, CR and MRR) varies much severe than the other

3 factors (defined as Group B consisting of SP, DUS and

OI). The results by CFRP1 and CFRP2 are consistent

because Group A or Group B classified by both CFRP1

and CFRP2 includes the same impact factors. Another

observation is that Group A factors impairs the overall

performance propositionally to their factor values, while

Group B factors impair the overall performance to similar

extents by both small factor values and big factor values.

The other observation is that within Group A factors, the

impact strength goes up by CR, RTT and H and it is

consistent for both CFRP1 and CFRP2. However, it is

different from map step in Fig. 3 and Fig. 4, MRR is an

exception of Group A factors for reduce step; its impact

strength goes down with the increase of factor values. To

further scrutinize this exception, an extended study has

been conducted in Section VII-C. To further scrutinize

Group B factors, they are separated and scaled into

another line graph as shown in Fig. 9 for CFRP1 and in

Fig. 10 for CFRP2.

The impact measured in speedup distance of each

factor in Group B is constantly high for both small and

big values of that factor. The impact of Group B factors is

closer in terms of at most 137 times in difference

classified by CFRP1 and at most 195 times in difference

classified by CFR.P2 between these factors. For the 3

factor values, the impact strength goes up by OI, DUS

and SP and it is consistent for both CFRP1 and CFRP2.

Fig. 7. Reduce step: The impact in speedup distance classified by

CFRP1

Fig. 8. Reduce step: The impact in speedup distance classified by

CFRP2

Fig. 9. Reduce step: the impact in speedup distance of Group B factors

classified by CFRP1

C. The Exception Caused by MRR

The impact and their strength of Group A and Group B

factors are consistent for both map and reduce steps

785©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

except the inconsistence caused by MRR between map

and reduce steps. In map step, MRR as a Group B factor

has continuous impact but slightly increased the impact

strength with the increase of factor values (Fig. 5 and Fig.

6). However, it is observed for reduce step that the impact

strength has been decreased with the increase of MRR

from 20% going up to 100% (Fig. 7 and Fig. 8). In fact,

when MRR increases, the number of lookups, the number

of downloads and uploads, and the overall computing

load are all increased for reduce step. Based on the fact, it

seems there is no reason to see the decrease of impact

strength with the increase of MRR. To further check this

issue, we have conducted an enhanced experiment: single

factor response to MRR, which is based on the ideal

conditions (Section V-A) to inject just one impact factor

each time to check its responses to MRR changes. That is,

individual test is conducted for Ideal+H(6 tiers),

Ideal+RTT(8), Ideal+DUS(20/51) and Ideal+Churn(30%

of CR, 250K of SP, 30 of OI). The 3 churn factors are

treated and injected as a single factor because they cannot

exist independently as explained in Section III. The

selection of the factor values is based on CFRP2 and the

measurement of these tests is speedup and speedup

growth rate against MRR.

When all the individual injections are compared in a

single line graph as shown in Fig. 11, the factors are

classified by their impact into 2 groups: Group A and

Group B. The Group B factors behave no responding to

MRR or responding to MRR negatively and slightly with

the maximum difference of 342 times as shown in Fig. 12.

Group A consists of Heterogeneity and Churn, both of

which respond positively to MRR and that response is

what we are aiming to find. To explain the positive

responding to MRR by heterogeneity, we confirm that

slow computing nodes impair the overall performance

more effectively for smaller MRR. For example, assume

that by a smaller MRR, there are 2 reduce tasks. Assume

that there are 2 computing nodes: Node A and Node B,

and Node B is 4 time slower than Node A. If each of the 2

reduce tasks has the same computing load cl, the overall

speedup will be 2cl/t, where t is the time that Node B

completes its task. If there are 5 reduce tasks by another

bigger MRR for the 2 nodes, the overall speedup will be

5cl/t. Consequently, heterogeneity impairs the overall

performance more effectively for a small MRR.

The situation of positive response by churn is more

complex and needs a scrutiny. Qualitatively, churn brings

a dynamic overlay while all other factors build certain

networks in terms of number of computing nodes and the

overall compute-capacity of the overlay. In addition, on

dynamic overlay, the cost of lookup of a task is O(logn)

depending on the number of computing nodes on the

overlay when the lookup happens. To further explain why

the exception shows the overlay of size of 40,000 nodes

with 30% random churn performs well for a relatively

larger workload caused by a larger MRR, we predict: a

dynamic overlay varying size in a range performs well for

a range of workload correspondingly. To confirm this

prediction, we have conducted another enhanced

experiment by expending the previous MRR experiment

to 2 directions: one is to keep the number of computing

nodes staying on 40,000 for 30% churn but increase MRR

from 100% to 200%, representing data expansion

applications [19]. The other is to keep MRR staying at 20%

but decrease the number of computing nodes from 40,000

to 5,000 for 30% churn. The experimental results are

shown in Fig. 13 for speedup and in Fig. 14 for speedup

growth rate.

Fig. 10. Reduce step: the impact in speedup distance of Group B factors

classified by CFRP2

Fig. 11. Impact of single factor injection

Fig. 12. Impact of single factor injection of Group B factors

It is evident that for the workload caused by a 20%

MRR, small overlay from 5,000 to 20,000 computing

nodes speeds up the overall performance from 1430 to

4146 times as shown in Fig. 13 but the speedup grow rate

keeps dropping from 92% down to 1% correspondingly

as shown in Fig. 14. The overall speedup keeps flat for

the overlays from 20,000 to 40,000 computing nodes as

shown in Fig. 13 and the speedup growth rate fluctuates

between -1% and 1% correspondingly as shown in Fig.

786©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

14. We conclude that for such a workload caused by a 20%

MRR, the cost (maintenance of reliable overlay on

unreliable computing nodes, lookup and download of

tasks and upload of results) to work on a dynamic overlay

of such a size from 20,000 to 40,000 nodes

offsets/counteracts the increase of compute-capacity.

Furthermore, the speedup of 40,000 nodes overlay

increases again from 4187 to 8685 times in responding to

MRR change from 20% to 100%. This resilience of

speedup shows that for these sizes of workload, the

compute-capacity of 40,000 overlay overwhelms the

working cost on the overlay of such a size. This is the

reason of the exceptions in Fig. 7 and Fig. 8 of Section

VII-B. However, we can see the resilience of speedup

growth rate 44% keeps dropping to 6%, responding to the

increase of workload as shown in Fig. 14. Although there

is still speedup increase from 8685 to 9847 times in

responding to MRR change from 120% to 200%, but the

speedup growth rate is very small from 5% to 1%

correspondingly. The reason is that the compute-capacity

of such size overlay (40,000) becomes weaker for such

workload. Thus, to confirm our prediction, balancing

between cost and compute-capacity, overlay of 20,000

nodes, is more suitable for the MRR of 20% and overlay

of 40,000 nodes is more suitable for the MRR of 100% in

the settings of this experiment.

Fig. 13. Speedup responding to varying number of computing nodes or

workload caused by MRR

Fig. 14. Speedup growth rate responding to varying number of

computing nodes or workload caused by MRR

D. Map Separation and Reduce Union Overlay

An enhanced experiment has been conducted to further

confirm that the cost of working on growing overlay will

be growing correspondingly and will finally impair the

overall performance of the overlay. To evaluate that

prediction, we set a full-size map task and a reduce task

of 20%, i.e. MRR is 20%. The other factor values are of

CFRP2 as defined in Table II of Section V-C. The overlay

is growing by 5,000 more computing nodes for each test

and the overall performance is measured by speedup and

speedup growth rate. On the basis of the confirmation,

we propose to use Map Separation and Reduce Union

Overlay to improve the situation of working cost on

growing overlay.

Fig.

15.

The

speedup

in

response

to

overlay

growing

It

is

evident

that

after

a

certain

size,

continuously

growing

overlay

by

increasing

the

number

of

computing

nodes

will

bring

little

benefit

for

the

overall

performance

as

shown

in

Fig.

15

and

Fig.

16.

To

clarify

the

results,

for

map

step,

the

speedup

growth

rate

will

be

less

than

5%

for

the

overlay

of

60,000

nodes

or

more.

For

reduce

step,

the

speedup

growth

rate

is

flat

for

the

overlay

of

25,000

nodes

or

more.

This

concludes

that

a

growing

overlay

cannot

keep

bringing

more

benefit

for

the

overall

performance.

Fig.

16.

The

speedup

growth

rate

in

response

to

overlay

growing

We

have

observed

two

facts

of

MapReduce

paradigm.

First,

map

tasks

are

independent

with

each

other,

thus

the

size

of

an

overlay

matters

for

the

storage

of

map

tasks

in

terms

of

fault

tolerance

but

is

not

a

matter

for

computing.

Second,

if

the

whole

computing

of

a

MapReduce

application

must

be

completed

in

a

single

map/reduce

round,

the

shuffle

step

requires

all

the

reduce

nodes

(reducers)

to

be

on

a

single

overlay.

Based

on

the

two

facts,

the

Map

Separation

and

Reduce

Union

Overlay

is

proposed

as

follows:

Each

computing

node

is

on

2

overlays,

one

is

a

small

size

Map

Overlay

and

the

other

is

the

unique

Reduce

Overlay.

787©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

 Each computing node keeps computing the map tasks

on its own overlay and upload the results through the

shuffle step to the reduce overlay

 Once the map step finishes, the reduce overlay can

shrink to an optimal size based on MRR as analysed in

Section VII-C.

 Each computing node on the reduce overlay keeps

computing the reduce tasks till the completion of the

whole computing.

To confirm the optimization features of the

aforementioned separation and union overlay, an

enhanced experiment has been conducted to halve both

the overlay size and workload each time for the

computing of map tasks. The separation continues by

following the conditions:

 The original overlay is a single overlay.

 Each time the number of computing nodes of an

overlay is halved to form two overlays and

accordingly the original workload is halved as well

for each separated overlay.

 Each separated overlay remains the same features as

defined by the 8 factors, e.g. the computing capacity,

the churn pattern etc as defined in Section III and

Section V-B.

 The size of each separated overlay cannot be too

small. Otherwise it may affect the fault tolerance

features for the storage of tasks.

Based on the aforementioned conditions, we assume

that the map step of each separated overlay finishes at the

same time t. Thus, the equivalent speedup will be

calculated as: the whole workload/t. The experimental

results are shown in Fig. 17 for equivalent speedup and in

Fig. 18 for equivalent speedup growth rate.

Fig. 17. The equivalent speedup in response to the number of map

overlays

Fig. 18. The equivalent speedup growth rate in response to the

separation of map overlays

In this evaluation as shown in Fig. 17, the original

overlay of 40,000 or 80,000 nodes will finally be

separated into 256 map overlays with each overlay

having 156 nodes or 312 nodes for the 1/256 of the

original workload. The computing time of each

separation keeps decreasing, and the equivalent speedup

keeps increasing for the overlay clusters separated from

the original of 40,000 or 80,000 nodes. The equivalent

speedup of the overlay of 80,000 nodes is higher than that

of 40,000 nodes overlay simply because the overall

compute-capacity of the former is higher than that of the

latter. The equivalent speedup growth rate keeps

drooping as shown in Fig. 18, suggesting that the

separation is more efficient for a larger overlay with a

higher workload but inefficient for a smaller overlay with

a lighter workload.

E. Heterogeneity Reduction

The previously presented experimental results in

Section VII-A and Section V-B have showed that

heterogeneity of compute-capacity is a key impact factor

responsible for severe performance impairment. We

predict that growing overlay size will bring little benefit

if the growing brings more heterogeneous nodes at the

same time. To confirm this prediction, we conduct

another enhanced experiment by setting the heterogeneity

of compute-capacity to be proportional to the number of

computing nodes. To evaluate the relationship between

heterogeneity and overlay size, we inject the

experimental settings of heterogeneity on top of the ideal

computing environment as defined in Section V-A,

aiming at removing the interference of dynamics of the

overlay.

 The initial overlay size is 6666 computing nodes of

Tier-1 compute-capacity. The workload of 1,400,000

map tasks of each having 8,000 computing-load are

used as the reference point.

 Increasing or decreasing the number of computing

nodes will increase or decreasing the tiers of compute-

capacity proportionally. The rule is that

growing/decreasing the number of computing nodes

by 1/6 will increase/decrease the heterogeneity of

compute-capacity for 1 tier.

The 15 experimental pairs of the number of computing

nodes vs the tiers of compute-capacity are listed as

follows in the format: Pi(tier, number of nodes), where i

is the sequence number of a pair.

P1(1, 6666), P2(2, 13333), P3(3, 20000), P4(4, 26666),

P5(5,33333), P6(6, 40000), P7(7, 46666), P8(8, 53333),

P9(9, 60000), P10(10, 66666), P11(11, 73333), P12(12,

80000), P13(13, 86666), P14(14, 93333), P15(15, 100000)

The change of pairs are listed as follows in the format

Ci(PjPk), which means that the ith change is from pair

Pj to Pk, where i, j{1, 2, …, 14}k{2, 3, …, 15}.

C1(P1P2), C2(P2P3), C3(P3P4), C4(P4P5),

C5(P5P6), C6(P6P7), C7(P7P8), C8(P8P9),

788©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

C9(P9P10), C10(P10P11), C11(P11P12), C12(P12P13),

C13(P13P14), C14(P14P15)

Fig. 19. The speedup in response to the proportional number of

computing nodes and tiers of compute-capacity

The evaluation results have been reported in Fig. 19

for speedup vs pairs of tier and compute-capacity and in

Fig. 20 for speedup growth rate vs change of pairs. The

evaluation results have confirmed that from the number

of computing nodes of 40,000 and compute-capacity of 6-

tiers (P6 and C6 in the above list) forward, the speedup

growth rate is less than 6% and going flat when

increasing the number of computing nodes and tiers of

compute-capacity proportionally from that point. This

result has demonstrated that even in a non-dynamic

environment, computing nodes with compute-capacity

lower than a certain level will not speed up but even slow

the overall performance. The reason is that the slow

nodes still hold the assigned tasks when fast nodes are

available.

Fig. 20. The speedup growth rate in response to the proportional change

of the number of computing nodes and the tiers of compute-capacity

VIII. CONCLUSIONS AND FUTURE WORK

A series of experiments has been conducted to

compare the impact strength of the 8 factors:

heterogeneity, download/upload speed, round trip time,

churn rate, start position, occurrence interval, map/reduce

ratio and redistribution factor to cover the impact from

compute-capacity, communication, dynamics of network

and applications themselves. To make these factors

comparable, a spectrum of 5 representative values has

been chosen for each factor. To make the results trustable,

2 reference points at the beginning of the spectrum and in

the middle of the spectrum have been chosen to inspect

consistence between the results.

The evaluation results have demonstrated that for map

step the factors can be classified into 2 groups: Group A

in ascending impact strength of churn rate, round trip

time, redistribution factor and heterogeneity, and Group

B in ascending impact strength of map/reduce ratio,

occurrence interval, download/upload speed and start

position. Any factors in Group A vary their impact much

more severe than any factors in Group B. For reduce step

with an exception, the factors can still be classified into

Group A and Group B having the same intra- and inter-

group impact strength as those of map step. The

exception is map/reduce ratio, which incurs further

evaluation results that a certain size of overlay produces

optimal efficiency for a certain level of workload. A

possible optimization that has been confirmed for

balancing the working cost on an overlay and the

compute-capacity of the overlay is to separate the overlay

to multiple overlays for map step but retain a single

overlay for reduce step. The final conclusive result is that

heterogeneity is the strongest factor among the 8 impact

factors for both map and reduce steps. Given a certain

workload, increasing the number of computing nodes

with more heterogeneous compute-capacities will not be

useful for the overall performance.

Based on the confirmation of the impact strength of the

factors and the relationship between the impact strength,

our future work is to explore the optimization of overlay

construction to answer the question: given a workload in

terms of number of map and reduce tasks, data size and

computing load of each task, what overlay in terms of

heterogeneity, communication cost and churn will be

optimized for the overall performance requirements.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Wei Li conducted the research and experiments and

wrote the paper. William Guo reviewed the paper with

revision comments. All authors had approved the final

version.

REFERENCES

[1] E. J. Korpela, “SETI@home, BOINC, and volunteer

distributed computing,” Annual Review of Earth and

Planetary Sciences, vol. 40, pp. 69-87, 2012.

[2] Oracle 2016. An Enterprise Architect’s Guide to Big Data -

Reference Architecture Overview, Oracle Enterprise

Architecture White Paper. [Online]. Available:

http://www.oracle.com/technetwork/topics/entarch/articles/

oea-big-data-guide-1522052.pdf

[3] ATLAS@Home 2020. [Online]. Available:

http://lhcathome.web.cern.ch/projects/atlas

789©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020

[4] Asteroids@home 2020. [Online]. Available:

http://asteroidsathome.net/

[5] Einstein@Home 2020. [Online]. Available:

https://einsteinathome.org/

[6] D. P. Anderson, “BOINC: A system for public-resource

computing and storage,” in Proc. 5th IEEE/ACM

International Conference on Grid Computing, 2004, pp. 4-

10.

[7] L. Sarmenta, “Volunteer computing,” PhD thesis,

Massachusetts Institute of Technology, 2001.

[8] R. Casado. (2013). The Three Generations of Big Data

Processing. [Online]. Available:

https://www.slideshare.net/Datadopter/the-three-

generations-of-big-data-processing

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” Communications of the ACM,

vol. 51, no. 1, pp. 107-113, 2008.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A

scalable peer-to-peer lookup protocol for internet

applications,” IEEE/ACM Transactions on Networking, vol.

11, no. 1, pp. 17-32, 2003.

[11] S. Kaffille and K. Loesing. (2007). Open Chord (1.0.4)

User's Manual, The University of Bamberg, Germany.

[Online]. Available: https://sourceforge.net/projects/open-

chord/

[12] S. Singh, R. Garg, and P. K. Mishra, “Observations on

factors affecting performance of mapreduce based apriori

on hadoop cluster,” in Proc. International Conference on

Computing, Communication and Automation, 2016, pp. 87-

94.

[13] Hadoop Project. 2020. [Online]. Available:

https://cwiki.apache.org/confluence/display/HADOOP2/Pr

ojectDescription

[14] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou,

“Improving performance of heterogeneous mapreduce

clusters with adaptive task tuning,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 3, pp. 774-

786, 2017.

[15] Apache Software Foundation 2020a, Wordcount Example.

[Online]. Available:

https://cwiki.apache.org/confluence/display/HADOOP2/W

ordCount

[16] Apache Software Foundation. (2020). Grep Example,

[Online]. Available:

https://cwiki.apache.org/confluence/display/HADOOP2/Gr

ep

[17] Apache Software Foundation. (2020). Terasort Example,

[Online]. Available:

http://hadoop.apache.org/docs/current/api/org/apache/hado

op/examples/terasort/package-summary.html

[18] A. Spivak, and D. Nasonov, “Data preloading and data

placement for MapReduce performance improving,”

Procedia Computer Science, vol. 101, pp. 379-387, 2016.

[19] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case

for evaluating MapReduce performance using workload

suites,” in Proc. 19th Annual International Symposium on

Modelling, Analysis, and Simulation of Computer and

Telecommunication Systems, 2011, pp. 390-399.

[20] R. Han and X. Lu, “On big data benchmarking,” Lecture

Notes in Computer Science, vol. 8807, pp. 3-18, 2014.

[21] W. H. Lee, H. G. Jun, and H. J. Kim, “Hadoop mapreduce

performance enhancement using in-node combiners,”

International Journal of Computer Science & Information

Technology, vol. 7, no. 5, pp. 1-17, 2015.

[22] D. Ardagna, S. Bernardi, E. Gianniti, S. Aliabadi, D.

Perez-Palacin, and J. Requeno, “Modeling performance of

hadoop applications: A journey from queueing networks to

stochastic well formed nets,” in Proc. International

Conference on Algorithms and Architectures for Parallel

Processing, 2016, pp. 599-613.

[23] E. Dede, Z. Fadika, M. Govindaraju, and L. Ramakrishnan,

“Benchmarking mapreduce implementations under

different application scenarios,” Future Generation

Computer Systems, vol. 36, pp. 389-399, 2014.

[24] X. Zhang, Y. Wu, and C. Zhao, “MrHeter: Improving

MapReduce performance in heterogeneous environments,”

Cluster Computing, vol. 19, no. 4, pp. 1691-1701, 2016.

[25] S. Monsalve, F. Carballeira, and A. Calderón, “A new

volunteer computing model for data ‐ intensive

applications,” Concurrency and Computation Practice and

Experience, vol. 29, no. 24, 2017.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Dr Wei Li holds a PhD degree in computer science from the

Institute of Computing Technology of Chinese Academy of

Sciences China. He currently works for the School of

Engineering & Technology, Central Queensland University

Australia. His research interests include dynamic software

architecture, P2P volunteer computing and multi-agent systems.

Dr Wei Li has been a peer reviewer of a number of international

journals, including IEEE Transactions on Software Engineering,

ELSEVIER Journal of Systems and Software and John Wiley &

Sons Journal of Software Maintenance and Evolution: Research

and Practice, and a program committee member of more than 30

international conferences.

Dr William Guo is currently a professor in applied

mathematics and computation at Central Queensland University

Australia. His research interests include applied mathematics

and computational intelligence, simulation and modelling, data

mining, and STEM education.

https://creativecommons.org/licenses/by-nc-nd/4.0/

