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Abstract—In contrast to HPC clusters, when big data is 

processing in a distributed, particularly dynamic and 

opportunistic environment, the overall performance must be 

impaired and even bottlenecked by the dynamics of overlay and 

the opportunism of computing nodes. The dynamics and 

opportunism are caused by churn and unreliability of a generic 

distributed environment, and they cannot be ignored or avoided. 

Understanding impact factors, their impact strength and the 

relevance between these impacts is the foundation of potential 

optimization. This paper derives the research background, 

methodology and results by reasoning the necessity of 

distributed environments for big data processing, scrutinizing 

the dynamics and opportunism of distributed environments, 

classifying impact factors, proposing evaluation metrics and 

carrying out a series of intensive experiments. The result 

analysis of this paper provides important insights to the impact 

strength of the factors and the relevance of impact across the 

factors. The production of the results aims at paving a way to 

future optimization or avoidance of potential bottlenecks for big 

data processing in distributed environments. 

Index Terms—Big data, performance impairment, dynamic 

environment, MapReduce, scalability 

I. INTRODUCTION

There are two certainties in modern data processing 

and analysis. First, the data itself becomes so called big 

data. Big data is produced by business transactions and 

social events and accumulated through the operating of 

an enterprise. The production of big data can also be 

extended to the areas where data is continuously collected 

by sensors, cameras or telescopes. Big data is either a 

scientific project’s resources to produce the answers to 

scientific hypotheses [1] or the pillars of business 

intelligence [2] in support of smart decision and 

prediction of business trade. Second, although it is 

difficult to define how big a big datum should be, it is 

certainly too big to be processed by a single commodity 

computer in a reasonable amount of time. From the 

aforementioned reasons we have derived that a high-

performance cluster is needed to process big data. 

However, at the same time we have also proposed a 

question: whether a scientific project or an enterprise can 

either have or access a dedicated computing center. The 
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answer is negative for either of them. Scientific projects 

such as ATLAS@Home [3], Asteroids@home [4] and 

Einstein@Home [5] by using volunteer computing [6], [7] 

are an evidence of shifting big data processing to 

distributed and heterogeneous environments. In addition, 

not every enterprise, particularly small or medium 

enterprises can afford to invest and maintain a dedicated 

data center. Consequently, we come to another derivation: 

it is necessary to make use of the existing corporate 

computers of an enterprise or a community or volunteer 

computers on the Internet to construct a distributed and 

parallel computing environment for big data processing. 

Unfortunately, to make use of such a convenience, we 

have to tolerate the heterogeneity, dynamics, opportunism 

and unreliability of computing nodes. Heterogeneous 

computing nodes could have big difference in compute- 

or storage-capacity. Dynamic nodes may join in or leave 

from the overlay at any time. Unreliable nodes may crash 

on the overlay at any time. Working on dynamic and 

opportunistic overlay will bring many uncertainties. For 

example, some questions include how churn impairs the 

overall performance and whether the impaired 

performance can be tolerated; whether continuously 

accommodating more computing nodes benefits for the 

overall performance; what the key factors are to impair 

the overall performance significantly.  

In this paper we propose eight impact factors to cover 

the aspects including the compute-capacity and 

heterogeneity of computing nodes, the communication 

cost of working on the overlay, the churn of computing 

nodes and the big data application itself. To compare the 

intra- and inter-factor impacts and to answer the 

aforementioned questions, we need a reference system: 

 A clean and ideal computing environment that grows

linear speedup proportionally to the increase of

computing nodes. The ideal environment allows any

single factor’s or combination of factors’ injection to

test impact.

 A spectrum of representative values for each factor

that is able to produce weak, medium and strong

impact on the overall performance and to avoid

extreme situations, either all too weak or all too strong

impact.

 A couple of cross-factor reference points that is able

to vary a single factor but to stabilize all other factors,
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exposing the factor’s impact and making the 

evaluation results trustable.  

 A number of reference units to record the impact. 

This paper proposes an experimental prototype that is 

able to integrate the aforementioned impact factors and 

the reference system. The prototype platform can be 

configured to represent a dynamic overlay that allows 

opportunistic and unreliable nodes as an individual but 

guarantees the reliability of the overlay as a whole under 

the dynamics. 

When we place the host platform at the bottom and the 

impact factors on the top, we will need an algorithm to 

operate big data in the middle. Big data processing is still 

an open issue and there is a number of processing 

paradigms [8]. Among them, MapReduce [9] was 

proposed by Google from IT industries and has been the 

most successful model in both industry and academia. 

The main reason that we prefer to use MapReduce as the 

big data processing paradigm is the key feature of <key, 

value> pairs form of data representation. To clarify this 

feature of MapReduce, in the first step map, a number of 

independent map tasks with the input data in the form of 

<key, value> pairs is executed. The original input data of 

a map task is a set IM in the form of <key, value> pairs. 

There exist <key1, value1>, <key2, value2>IM and 

key1=key2. A map task operates IM by using a predefined 

computing logic to sort out all the <key, value> pairs in 

IM so that for any <key1, value11>, <key2, value21>OM, 

key1≠key2, where OM is the output data set of the map 

task. On the completion of map step, however, there exist 

<key1, value12>OM1, <key2, value22>OM2 and 

key1=key2, where OM1 and OM2 are 2 different output 

data sets of 2 different map tasks. The second step shuffle 

is responsible for breaking every result set of the map 

step and redistributing the <key, value> pairs to a number 

of reduce tasks so that for any <key1, value13>OM1 and 

<key2, value23>OM2 and key1=key2, <key1, value13> 

and <key2, value23> must be redistributed to the same 

reduce task. The shuffle step involves a lot of data 

exchange. The third step reduce is the independent 

computing of reduce tasks and still produces data sets in 

the form of <key, value> pairs without any intra-or inter-

task pairs having the same key. This feature coheres with 

a successful dynamic internet overlay protocol 

Distributed Hash Table (DHT) in terms of <key, value> 

pair data format. For the high coherence with the data 

processing layer, the proposed platform is to be based on 

the DHT protocol Chord [10] and to be implemented on 

top of Open Chord APIs [11]. 

The goal of this paper aims at confirming how the 

impact factors impair the overall performance of big data 

processing in dynamic and opportunistic environments, 

sorting out the impact strength of the factors and 

identifying the key factor having strong impact. 

The methodology of this paper consists of the 

following steps. 

 Identify and classify impact factors that exist in 

dynamic and opportunistic environments and impair 

the performance of big data processing. 

 Propose a reference system to inject impact factors, 

evaluate impact, and measure the impact strength on 

the running big data applications. 

 Cohere MapReduce big data paradigm with DHT to 

unite the computing paradigm and supporting 

platform. 

 Generalise domain applications of big data and 

dynamics of overlay to construct an application-

independent MapReduce case and a random churn 

pattern. 

 Conduct intensive experiments to produce trustable 

results and carry out impact strength and cross-factor 

relevance analysis. 

The contributions of this paper include: 

 A united framework of impact factors, MapReduce 

paradigm and supporting platform. 

 The realisation of the cross-factor comparability.  

 The potential use of the result analysis for balancing 

workload and overlay size, computing nodes selection 

and avoidance of extremely impaired performance. 

The organization of this paper is as follows: related 

work is reviewed in Section II. The impact factors are 

proposed and classified, and the churn patterns are 

detailed in Section III. Section IV proposes an 

application-independent study case of MapReduce 

paradigm. In Section V, a reference system, including 

computing environment, spectrums of reference values, 

cross-factor reference points and reference units, is 

detailed. In Section VI, the workflow of MapReduce on 

dynamic and opportunistic overlays is explained.  Section 

VII presents experiments, results and analysis. Section 

VIII concludes the study by confirming the impact 

strength and the relevance of factors and proposing 

optimization potentials. 

II. RELATED WORK 

The existing work tried to improve MapReduce 

performance by three ways or their combinations: 

framework modification; communication-aware or CPU 

capacity-aware load balancing; optimization of Hadoop 

parameter configuration. 

Singh et al. [12] stated that the computing 

environments could not be always homogenous. They 

demonstrated that heterogeneity was a key impact factor 

and workload balancing was the critical way to make full 

use of resources and maximize the efficiency in 

heterogeneous environments. They classified impact 

factors as algorithm-specific factors (filtered transactions 

and data structure) and cluster-specific factors 

(speculative execution, performance of physical nodes 

versus virtual nodes, distribution of data blocks, and 

parallelism control with input split size). They criticized 

that Hadoop [13] load balancing was not optimized for 

some situations as data locality might be able to 

overwhelm load balancing and slow down the overall 

performance. Some optimization strategies they used 

included: the filtered transactions as a combiner to 
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maximize the intra-node processing before shuffle; 

disabling speculative execution to increase efficiency by 

sacrificing redundancy or fault tolerance; removing slow 

nodes to decrease the number of nodes but to improve the 

overall performance. Integration of MapReduce-based 

Apriori (a very efficient data analyzer) and Hadoop to 

maximize efficiency was their optimization goal but was 

still an open issue with their work. 

Cheng et al. [14] proposed adaptive task tuning to 

target load balancing. The core of the method was a 

genetic algorithm, which was able to monitor task 

execution in heterogeneous environments. The method 

profiled computing nodes, clustered as worker nodes and 

assigned tasks based on the profiles. The method was 

automated for collecting performance of workers and 

adjusting task balancing in the course of computing. They 

finely tuned the 109 parameters of Hadoop and 

MapReduce at the cluster level, job level and task level. 

The method was evaluated on physical clusters (3 nodes) 

and virtual clusters (24 virtual machines) on cloud by 

using 3 CPU- or I/O-intensive applications: wordcount 

[15], grep [16] and Terasort [17] of a dataset of 900GB 

with a reducer out of mapper ratio of 0.4% to 3.5%. The 

results were compared with default Hadoop and other 2 

optimizers Starfish and Rules-of-Thumb. The results 

demonstrated a 31%, 20% and 14% improvement on 

physical clusters and 23%, 11% and 16% improvement 

on virtual clusters. In general, the genetic algorithm of 

[14] needs multiple rounds for the optimization, so the 

assumption of the method is that MapReduce, particularly 

the map step, needs multiple rounds. However, most of 

the real-world applications are suitable for one round 

MapReduce because of the application properties or the 

purpose of minimizing data exchange. 

Spivak and Nasonov [18] tried to improve Hadoop 

MapReduce performance by using data preloading and 

data placement. When CPU was in intensive computing, 

but IO was light, preloading data from network 

parallelized the preparation of next tasks and the current 

computing. By data placement, which was based on the 

assumption that faster nodes would be able to process 

more data, data were distributed to computing nodes in 

ratio to their CPU-capacity. A 5-nodes heterogeneous 

cluster was used as a testbed to process 10GB, 15GB and 

25GB datasets. By using readData MapReduce task, the 

evaluation showed that the preloading strategy 

outperformed standard Hadoop MapReduce. By using 

three applications: grep, wordcount and readData, the 

data placement strategy was shown outperforming the 

standard Hadoop MapReduce’s locality strategy. The 

method was applicable to heterogeneous network but 

inapplicable to dynamic networks, where nodes might 

join in, leave from or crash on the network at any time, 

making preloading or placement of data invalid. 

There are some overlaps between the research goals of 

Chen et al. [19] and ours of this paper. Chen et al. 

compared two production traces from Facebook and 

Yahoo and clarified that both traces contained jobs 

performing data aggregation (input>output), data 

expansion (input<output), data transformation 

(inputoutput) and data summary (input>>output). They 

stated that the existing benchmarks captured narrow 

slivers of a rich space of workload. They described the 

importance of constructing a workload suite. They 

proposed a representative workload suite to allow 

selecting and combing various characteristics such as job 

submission time and arrival pattern, data size & ratio and 

presented a framework to generate and execute the 

workloads. They demonstrated that the running 

workloads helped cluster operators understand the system 

configuration and identify systems bottlenecks. 

Han and Lu [20] aimed at building a big data 

benchmark suite, which was truly representative and 

comprehensive instead of application- or system-specific, 

to compare performance, energy efficiency and cost 

effectiveness. They composed a data generator to produce 

synthetic datasets while preserving the 4V (volume, 

variety, velocity and veracity) properties of big data. 

They composed a test generator to produce benchmarking 

tests consisting of operations and workload patterns. The 

strength of [20] was the classification of 10 commonly 

used big data benchmarks in terms of 4Vs and the 

classification of benchmarking techniques of the 10 

benchmarks in terms of workload types (online, offline or 

real time) and software stacks (Hadoop, NoSQL, DBMS, 

real time or offline analytics systems). However, any 

quantitative study cases or evaluations of the proposed 

benchmark suit were not presented in [20]. 

Lee et al. [21] stated that 79% of a job was I/O 

intensive and reducing HDFS I/O within MapReduce job 

was the most effective approach to enhancing 

performance. They stated that 26% to 70% of running 

time of 188,000 MapReduce jobs of Facebook was the 

shuffle phase. Combiners, which performed partial 

merging of intermediate data before sending to reducers, 

decreased the amount of intermediate results saving 

substantial network cost. They utilized an in-memory 

NoSQL system: Redis as a cache layer for both input data 

and intermediate results to improve I/O performance of 

Hadoop DFS [13]. They utilized in-node combiners to 

take 2 benefits over in-mapper combiners: minimizing the 

total number of emitted results and executing combing 

functions in a separate thread. The test environment of 

[21] included 4 physical nodes, a 12GB (20 files) dataset 

of random Twitter messages, 2 applications: word count 

and computing relational status between Twitter users. 

By using in-memory cache, they demonstrated that the 

completion time of map was decreased 14%; the whole 

job completion time was decreased 23%. On word count 

application, the use of in-node combiners decreased the 

input size of reducers up to 50% and job completion time 

was decreased up to 30%. On computing relationship of 

Twitter users, combiners decreased 3% map output and 6% 

completion time because the number of intermediate pairs 

with the same key generated within a map task was 

decreased. However, their work was limited on only one 

impact factor for I/O performance when there were 
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multiple factors interacting with each other in distributed 

environments. 

Ardagna et al. [22] was to target capacity planning at 

the design-time in capturing dynamic resource 

assignment in the big data scheduler of Hadoop and 

YARN [13]. They stated that when appropriate size of 

cluster was important to predict the budget to run Hadoop 

for an application in public clouds, the execution time of 

a MapReduce job was unknown. They proposed Petri-net 

like models QN (Queuing Network) and SWN 

(Stochastic Well Formed Net) to provide design-time 

performance analysis, aiming at estimating MapReduce 

job execution time in Hadoop clusters managed by 

YARN. The test environment of [22] included Amazon 

EC2 (120 CPUs supporting 240 containers) and an Italian 

supercomputing center CINECA (120 cores with a 

container). The datasets were 250GB and 1TB and the 

number of map and reduce tasks were 4,1560 and 1,1009. 

The experiments of [22] demonstrated that the accuracy 

between the simulation and actual measurement was high 

in terms of the relative error of QN being 32% and SWN 

being 14%. 

Dede et al. [23] studied extensively on the impact 

caused by the heterogeneity, unreliability or unstable 

computing nodes. They compared their own 

implementation: LEMO-MR with the other two existing 

implementations of MapReduce: Hadoop and Twister. On 

the three testing environments: a heterogeneous cluster, a 

homogeneous but load-imbalanced cluster and a cluster 

with unreliable nodes, they demonstrated the difference 

of these implementations in processing data-intensive, 

CPU-intensive and memory-intensive applications. 

Among others, they stated that cluster heterogeneity must 

be strongly considered. That conclusion matches our 

quantitative results in this paper that heterogeneity 

strongly impairs performance of big data processing 

running on commodity computers. 

Both our work of this paper and Zhang et al. [24] 

regard the poor performance of big data processing as the 

equity task allocation, without considering the 

heterogeneity of computing nodes. Zhang et al. [24] 

stated that the straggler nodes slowed down the overall 

progress of map or reduce steps, particularly for the 

reduce step, which could not start until the slowest node 

completed the map task and exchanged the data to the 

reduce tasks. They optimized the situation by allowing 

faster nodes to steal some work from the stragglers. In 

addition to the heterogeneity, our work of this paper has 

identified and scrutinized other key factors in the 

unreliable and opportunistic environments, which are 

important for potential optimization. 

III. IMPACT FACTORS 

The study background of this paper is derived by the 

logic that the available application data is too big to be 

processed by a single commodity computer in a 

reasonable amount of response time. The big data must 

be processed in parallel by a distributed computing 

environment. The impact factors are derived by the logic 

that a distributed computing environment is a dynamic 

environment. The performance of such a dynamic 

computing environment can be impaired by factors 

coming from computing nodes, communication 

networking and/or the dynamics of overlay. In addition, 

MapReduce applications are different. They may perform 

data aggregation, data expansion, data transformation or 

data summary [19], having potential impact on the overall 

performance as well. To scrutinize performance issues, 

the impact factors can be classified into 4 categories.   

Computing Nodes: the heterogeneity (H) of computing 

nodes refers to the difference of compute-capacity 

between computing nodes. When all the computing nodes 

are treated equally by task assignment, the slow nodes 

will impair the overall performance because they hold the 

assigned tasks to make the fast nodes idle. 

Networking: cooperation between distributed 

computing nodes mainly incurs two types of 

communication cost. First, any communication between a 

pair of computing nodes needs Round Trip Time (RTT) 

for a node to lookup another node and establish 

connection for communication and close the connection 

on the completion of communication. Second, 

downloading a task or uploading a result set is the other 

cost of communication. Thus, Download/Upload Speed 

(DUS) is recognized as another impact factor. 

Applications: the structure of MapReduce applications 

brings two factors to apply impact on the overall 

performance. Map/Reduce Ratio (MRR) refers to how 

much the overall work has been shrunk by the map step. 

For example, if an MRR is 20%, the number of reduce 

tasks will be shrunk as 20% of the number of map tasks. 

MRR will impair the overall performance of MapReduce 

in terms of not only the overall computing load but also 

the communication cost. For an MMR of 20%, the cost of 

uploading map results and downloading reduce tasks will 

be shrunk to 20% and the cost of uploading results of 

reduce tasks will be shrunk to 4% (20%×20%). 

Obviously if MMR changes to 40%, the above cost will 

be doubled. Redistribution Factor (RF) refers to how 

many reduce tasks that a map result set will be 

redistributed into by the shuffle step. For example, if RF 

is 100, it means the result set of a map task will be 

redistributed into 100 reduce tasks. When the cost of 

uploading a result set or downloading a reduce task is 

dependent on MRR, RF impairs the overall performance 

through RTT. For the same DUS, a bigger RF incurs more 

lookups, connections and disconnections, of which each 

needs a full RTT. 

Dynamics and Opportunism: churn refers to the join, 

leave or crash of computing nodes in the course of 

computing. Churn represents the opportunistic features in 

volunteer computing [7], where a computing node may 

join or leave a computing without any responsibility or 

dedication. Churn is the most complex factor to impair 
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the overall performance. The churn factor is divided into 

3 refined factors for a scrutiny.  

 Churn Rate (CR) refers to how many nodes behave 

dynamically and unreliably. For example, a 30% 

churn rate refers to that 30% of the total nodes will 

leave or crash randomly during the course of 

computing.  

 Start Position (SP) refers to how long after it joins the 

computing, a churn node would start to commit churn.  

 Occurrence Interval (OI) refers to the time period 

from the start position in which the churn node could 

commit churn randomly. 

The first factor CR reflects a churn feature for all 

computing nodes; the second and third factor SP and OI 

are the position and size of a churn window that is special 

for each churn node. The three factors together determine 

the dynamic, opportunistic and random features of a 

computing node.   

To study the impact of churn, we construct a churn 

pattern to behave the proposed dynamic and opportunistic 

features. The churn pattern will be injected into the map 

step once and the reduce step once. The injections make 

the whole course of computing be affected by the 

dynamics and opportunism of the overlay. The 

construction of churn pattern is as follows and the 

constructed churn pattern is illustrated in Fig. 1. 

 Computing nodes join the overlay sequentially but 

randomly. 

 When the joined computing nodes reache a certain 

number, churn starts happening. 

 A node commits churn randomly in its own churn 

window that is determined by its own SP and OI. 

 A churn node can leave from or crash on the overlay 

and the chance of leave or crash is the same for each 

churn node. 

 When CR is reached, the churn stops and the left 

overlay is stable to the end of computing. 

IV. A GENERIC STUDY CASE OF MAPREDUCE 

We propose a generic study case of MapReduce 

application considering the following conditions. The 

application scenario complies with MapReduce paradigm 

but is independent of any real-world applications. This 

generality allows us to test with any computing and 

communication intensity that are not restricted by any 

specific applications. Based on this rule, the consideration 

of determining the number of map tasks (NMT) and the 

computing load of each task (CLET) is that the scale of 

overall computing load must be big enough as a big data 

problem. In this study case, NMT is randomly chosen as 

1,400,000 (1.4M) and CLET is randomly chosen as 8,000 

(8K) so that the overall computing load for map tasks is 

11,200,000,000 (11.2G). The unit of this computing load 

can be seconds, minutes or hours etc. The size of each 

map task or reduce task (SEMRT) is chosen as 64MB, 

which is a common task size of real world applications 

such as ATLAS@Home [3], Asteroids@home [4] or 

Einstein@Home [5] and it is one of data block size of 

Hadoop Distributed File System (HDFS) [13]. The size of 

the result set of a map task or a reduce task (SRMRT) is 

determined by Map/Reduce Ratio (MRR). Generally, in 

real world applications, MRR is much smaller than 1, e.g. 

20% and the Redistribution Factor (RF) is not high, e.g. 

100. As a result of certain MRR and RF, the 

communication cost and the computing load of reduce 

tasks can be determined. The calculation of the 

communication cost and computing load of the 

aforementioned generic study case is as follows as shown 

in Table I. The redistribution factor RF is applied to map 

step only because there are no any overlapped keys 

between different reduce result sets. RF is not to 

influence reduce step and each reduce task just uploads a 

reduce set as a whole onto the overlay. 

V. REFERENCE SYSTEM 

To study the impact caused by the factors, we first 

need an ideal computing environment as a reference in 

order to check how far a distributed and dynamic 

computing environment goes away from it in terms of 

performance. Second, as we deal with multiple factors 

and each factor varies values, we need a reference point 

to settle all the factors expect the factor we want to study 

in a round. Finally, we need a number of reference units 

to record the impact strength. 

 
Fig. 1. The churn patterns 

TABLE I: THE SETTING OF A GENERIC STUDY CASE OF MAPREDUCE 

Scenario Variables Values 

The number of map tasks (NMT) 1400000 (1.4M) 

The lookup times of map tasks 1400000 (1.4M) 

The times of downloading map tasks 1400000 (1.4M) 

The size of a map or reduce task or a map or reduce result set 64MB 

The Redistribution Factor (RF) 100 

The computing load of each map or reduce task 8000 (8K) 

The computing load of map tasks 1400000×8000=11200000000 (11.2G) 
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The times of uploading map result sets 1400000×100=140000000 (140M) 

The upload of results of map tasks 1400000×20%×64MB=17920000MB18TB 

The Map/Reduce Ratio (MRR) 20% 

The number of reduce tasks (NRT) 1400000×20%=280000 (0.28M) 

The lookup times of reduce tasks  280000 (0.28M)  

The times of downloading reduce tasks 280000 (0.28M) 

The computing load of reduce tasks 280000×8000=2240000000 (2.24G) 

The upload of results of reduce tasks 280000x20%×64MB=358400000MB3.58TB 

The upload times of reduce result sets  280000×20%=56000 

The overall data size to be processed 1400000×64+280000×64=107520000MB108TB 

 

A. Ideal Computing Environment 

An ideal computing environment is proposed to 

provide the fastest speedup through distributed 

computing nodes for the proposed generic MapReduce 

application in Section IV. The ideal computing 

environment satisfies the following conditions. 

 All computing nodes are reliable in the course of 

computing. Thus, the tasks can be pre-assigned to 

nodes before computing and be located during the 

course of computing.  

 All computing nodes are homogeneous in compute-

capacity, providing the maximum computing 

efficiency without incurring additional cost for 

optimization scheduling.  

 All computing nodes are connected by high speed 

networks. Thus, for a map or reduce task or a result set 

of 64MB or 128MB, the download or upload cost is 

trivial.  

Based on these conditions, the ideal computing 

environment is free from the impact of heterogeneity, 

communication or churn. The ideal computing 

environment is used to produce the highest performance 

so that any other environments can be compared, showing 

the distances they go away from it in terms of overall 

performance. 

B. Reference Values 

To compare the impact of different factors, each factor 

needs a set of representative values. The representative 

values of a factor should be able to differentiate degrees 

of impact caused by the factor. The setting of 

representative values follows the rule that the spectrum of 

values of any factor should cover a variety of conditions 

but avoid the extreme conditions such as all light impact 

or all strong impact. In addition, to compare the impact 

between different factors, the representative values of a 

factor cannot go extreme to override the impact of 

another factor. The change of values, reflecting the 

change of conditions, should go evenly in the spectrum. 

Based on the considerations, a spectrum of 5 values is set 

for each impact factor for the study of this paper. The 

representative values of each factor are clarified as 

follows.  

The heterogeneity (H) of compute-capacity of 

computing nodes is generalized as tiers. The base tier is 

Tier-1 being the fastest compute-capacity. Thus, a Tier-2 

computing node is 2 times slower than a Tier-1 node. The 

spectrum of the 5 values of H is set as 2-tiers, 4-tiers, 6-

tiers, 8-tiers and 10-tiers to represent a wide range of 

heterogeneous computing nodes. The consideration of 8-

times difference is reasonably sound to represent the 

heterogeneity of real-world commodity computers in 

terms of compute-capacity.  

The download/upload cost depends on network speed 

and the data size. The network speed depends on the 

internet service standards of a country. For example, the 5 

download/upload speed (in Mbps) tiers: 12/1, 25/5, 25/10, 

50/20 and 100/40 are provided by Australia National 

Broadband Network (NBN). In Monsalve et al. [25] study 

of data-intensive project ATLAS@Home [3] or 

Einstein@Home [5], 40MB or 100MB were treated as a 

large file for input or output of a computing task. The 

data block size of big data processing model Hadoop [13] 

is either 64MB or 128MB. In the experimental study of 

this paper, when the size of a map task is chosen as 64MB, 

the download/upload speed (DUS) could be set as 5 tiers: 

5/13, 10/26, 20/51, 20/102 and 43/512 corresponding to 

the 5 tiers of the NBN speed. The round-trip time (RTT) 

can be set as 4, 6, 8, 10 and 12 to represent the 

connection and disconnection time before and after the 

data exchange between two computing nodes. This RTT 

range is to ensure that any slow network is able to finish a 

handshake preparing for the data exchange. For the ideal 

computing environment, its network speed is the fastest 

of 1000Mbps (100MB/s) of a modern LAN. Thus, for a 

64MB task or a result set, the download or upload time is 

less than 1 second. Because in the setting of experiments, 

download or upload time is a non-zero integer, it is set as 

1. For transferring a data or result set, the TCP 

connection and disconnection together is set as 1 for the 

same reason. 

The churn rate (CR) can be set as 10%, 20%, 30%, 40% 

and 50% to represent how many computing nodes 

behave dynamic and opportunistic features on the 

overlay. The maximum of 50% is large enough to 

represent the opportunism of volunteer nodes in real 

world situation. The start position (SP) can be set as 

450K, 350K, 250K, 150K and 50K to represent how 

long a node stays on the overlay before start to commit 

churn. The occurrence interval (OI) can be set as 50, 40, 

30, 20 and 10 to represent how wide of the churn 

window that a node can randomly commit churn. The 

combined SP and OI are able to provide a small churn 

window (10), a medium churn window (30) and a big 

churn window (50), of which each can be placed in the 

front (50K), middle (250K) or on the rear (450K) of the 

course of computing for each computing node. 

781©2020 Journal of Communications

Journal of Communications Vol. 15, No. 11, November 2020



The Map/Reduce ratio (MRR) can be set as 20%, 40%, 

60%, 80% and 100% to represent how much the number 

of tasks is shrunk by map step. The best situation is that 

the number of reduce tasks is shrunk to 20% of the 

number of map tasks, representing data aggregation; the 

worst situation is that the number of reduce tasks is not 

shrunk at all and is the same as the number of map tasks, 

representing data transformation. The redistribution 

factor RF can be set as 100, 150, 200, 250 and 300 to 

represent data exchange intensity. The best situation of 

100 represent most of the cases of real-world MapReduce 

applications, while the worst situation of 300 can still 

accommodate specific MapReduce cases. 

C. Cross-Factor Reference Points 

To evaluate the impact of a factor, we need to vary the 

factor’s values but keep the values of all other factors as 

constant (reference). A Cross-Factor Reference Point 

(CFRP) is proposed in the form of (H, DUS, RTT, CR, SP, 

OI, MRR, RF) to include a complete cross-factor value.  

To make the study result trustable, we choose 2 cross-

factor reference points CFRP1 and CFRP2 as defined as 

follows and as shown in Table II, where FV represents 

factor value. CFRP1 is at the beginning and CFRP2 is in 

the middle of the spectrum of cross-factor values.  

CFRP1: (2, 5/13, 4, 10%, 450K, 50, 20%, 100) 

CFRP2: (6, 20/51, 8, 30%, 250K, 30, 60%, 200) 

The use of a CFRP is to evaluate the impact of a factor, 

vary the factor’s values along the row of the factor but 

keep all other factors of the CFRP as constant. For 

example, if we evaluate the impact of H by CFRP1, we 

vary H from 2 to 10 for CFRP1 as: 

((2, 4, 6, 8, 10), 5/13, 4, 10%, 450K, 50, 20%, 100) 

As another example, to evaluate the impact of CR by 

CFRP2, we vary CR from 10% to 50% for CFRP2 as: 

(6, 20/51, 8, (10%, 20%, 30%, 40%, 50%), 250K, 30, 

60%, 200) 

We predict that when visualizing the evaluation results 

of all factors in a single diagram, all the results are 

expected to diverge from CFRP1 for CFRP1 based 

evaluation or go through CFRP2 for CFRP2 based 

evaluation. 

D. Reference Unit 

We propose to use Speedup as the reference unit to 

measure the overall performance of a distributed 

computing environment or overlay. 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 
𝑏𝑦 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑖𝑒𝑟1 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 
𝑏𝑦 𝑎 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

 

Along with speedup as a reference unit, we propose 

other two reference units to compare the impact of 

different factors or the different degrees of impact by the 

factor values of a single factor. We propose to use the 

Speedup Distance away from the ideal environment to 

measure the impact of a factor and to compare impact 

strength between different factors.  

Speedup Distance =the speedup of the deal computing environment 
-the speedup of a computing environment 

We propose to use the Speedup Growth Rate to 

compare the change rate of speedup upon the value 

changes of a factor. 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒

=
𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒 2 − 𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒 1

𝑇ℎ𝑒 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒 1
× 100% 

VI. THE EXPERIMENTAL MODEL 

An experimental model is needed for the impact 

evaluation of the factors. The experimental model is 

proposed to be able to create the dynamics and 

opportunism for distributed computing environments as 

stated in Section III. The MapReduce study case as 

proposed in Section IV can be executed on the model. 

The model can enable the reference systems as proposed 

in Section V fully record the factor impact by using the 

reference units. The experimental model is proposed to be 

built on the following conditions. 

 The base model is the ideal computing environment. 

An impact factor can be injected individually or any 

combination of impact factors can be injected as a 

group. 

 When churn is injected, a MapReduce application on 

the dynamic overlay will incur lookup cost of O(logn) 

and stabilisation cost of O(log
2n), where n is the 

number of current computing nodes on the overlay. 

Based on the above conditions, the workflow of a 

MapReduce application on the ideal environment or on a 

dynamic environment is shown in Fig. 2 and clarified as 

follows: 

 
Fig. 2. The MapReduce workflow of the ideal environment and dynamic 

environments 

In the ideal environment, each computing node 

performs 3 steps for a map task or a reduce task. A task is 

pre-located on the network. A task is downloaded from 

the network and computed by a computing node and then 

the result set of the task is uploaded. Each computing 

node behaves reliably during the 3 steps and a task can 

always be completed in one assignment. Each computing 

node repeats these 3 steps until all the tasks are 

completed, i.e. the whole MapReduce application is 

completed. 
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TABLE II: THE FACTOR VALUES AND CROSS-FACTOR REFERENCE POINT 

Impact Factor 

Factor Values 

FV1 

(CFRP1) 

FV2 FV3 

(CFRP2) 

FV4 FV5 

Heterogeneity (H) 2-tiers 4-tiers 6-tiers 8-tiers 10-tiers 

Communication 

Cost 

Download/Upload Speed 

(DUS) for 64MB 
5/13 10/26 20/51 20/102 43/512 

Round Trip Time (RTT) 4 6 8 10 12 

Churn 

Churn Rate (CR) 10% 20% 30% 40% 50% 

Start Position (SP) 450K 350K 250K 150K 50K 

Occurrence Interval (OI) 50 40 30 20 10 

Application 
Map/Reduce Ratio (MRR) 20% 40% 60% 80% 100% 

Redistribution Factor (RF) 100 150 200 250 300 

 

In the dynamic and opportunistic environment, a task 

cannot be pre-located because of churn. The only 

guarantee is that the task is always on the overlay. A 

computing node on such an overlay must look up a task 

before downloading it. The lookup starts when a 

computing node joins the overlay or when a computing 

node has completed the current task and asks for another 

task. This turnover procedure is termed as rejoin of a 

computing node. A computing node can leave from or 

crash on any of the 4 steps: looking up a task, 

downloading the task, computing the task or uploading 

the result set of the task. The difference between leave 

and crash is that the uncompleted task of a leaving node 

is checkpointed and will be picked up by another 

computing node, but the uncompleted task of a crashed 

node will be totally restarted from the beginning by 

another computing node. 

The model has been designed on the theoretical model 

of Chord [10]. The model is able to simulate the 

opportunistic features of computing nodes on a dynamic 

overlay. The model has been implemented on the open 

source API of Open Chord [11]. The model offers the 

ability to test the impact of an individual factor or any 

combination of factors.  

The MapReduce model has been implemented as an 

application-neutral structure. A map or reduce task is 

self-contained object consisting of code and data 

container. The data container of a map task is prefilled 

before the start of computing, while the data container of 

a reduce task is filled by the results of map tasks by the 

shuffle step of MapReduce in the course of computing. A 

map task is ready to start at the beginning of the course of 

computing, while a reduce task is ready to start on the 

completion of all map tasks. The whole computing is 

finished when all reduce tasks are completed. 

VII. THE EVALUATION RESULTS AND ANALYSIS 

By using the cross-factor reference points CFRP1 and 

CFRP2, the basic evaluation has been conducted for 80 

round tests to expose the impact of every factor value for 

each impact factor. The analysis of the fundamental 

results is presented in Section VII-A and VII-B. Based on 

the analysis, extended evaluations have been conducted 

to further scrutinize some impact factors in Section VII-C 

to VII-E. 

A. The Impact on Map Step 

When the impact measured in speedup distance of all 8 

factors are compared in a single line graph as shown in 

Fig. 3 for CFRP1 and in Fig. 4 for CFRP2, it is 

demonstrated that the impact of 4 factors (defined as 

Group A consisting of H, RF, RTT and CR) varies much 

severe than the other 5 factors (defined as Group B, 

consisting of DUS, SP, OI and MRR). The results by 

CFRP1 and CFRP2 are consistent because Group A or 

Group B classified by both CFRP1 and CFRP2 includes 

the same impact factors. Another observation is that 

Group A factors impair the overall performance 

propositionally to their factor values, while Group B 

factors impair the overall performance to similar extents 

by both small factor values and big factor values. The 

other observation is that within Group A factors, the 

impact strength goes up by CR, RTT, RF and H and it is 

consistent for both CFRP1 and CFRP2. To further 

scrutinize Group B factors, they are separated and scaled 

into another line graph as shown in Fig. 5 for CFRP1 and 

in Fig. 6 for CFRP2. 

 
Fig. 3. Map step: The impact in speedup distance classified by CFRP1 

 
Fig. 4. Map step: The impact in speedup distance classified by CFRP2  
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Fig. 5. Map step: The impact in speedup distance of Group B factors 

classified by CFRP1 

 
Fig. 6. Map step: The impact in speedup distance of Group B factors 

classified by CFRP2 

The impact measured in speedup distance of each 

factor in Group B is constantly high for both small and 

big values of that factor. The impact strength of Group B 

factors is closer in terms of at most 21 times in difference 

classified by CFRP1 and at most 91 times in difference 

classified by CFRP2 between these factors. For the 4 

factors in Group B, the impact strength goes up by MRR, 

OI, DUS and SP and is consistent for both CFRP1 and 

CFRP2. 

B. The Impact on Reduce Step 

The redistribution factor RF is always 1 for the reduce 

step because there is no any shuffle requirement for 

reduce results by MapReduce paradigm. Thus, the impact 

measured in speedup distance of all other 7 factors are 

compared in a single line graph as shown in Fig. 7 for 

CFRP1 and in Fig. 8 for CFRP2. It is demonstrated that 

the impact of 4 factors (defined as Group A consisting of 

H, RTT, CR and MRR) varies much severe than the other 

3 factors (defined as Group B consisting of SP, DUS and 

OI). The results by CFRP1 and CFRP2 are consistent 

because Group A or Group B classified by both CFRP1 

and CFRP2 includes the same impact factors. Another 

observation is that Group A factors impairs the overall 

performance propositionally to their factor values, while 

Group B factors impair the overall performance to similar 

extents by both small factor values and big factor values. 

The other observation is that within Group A factors, the 

impact strength goes up by CR, RTT and H and it is 

consistent for both CFRP1 and CFRP2. However, it is 

different from map step in Fig. 3 and Fig. 4, MRR is an 

exception of Group A factors for reduce step; its impact 

strength goes down with the increase of factor values. To 

further scrutinize this exception, an extended study has 

been conducted in Section VII-C. To further scrutinize 

Group B factors, they are separated and scaled into 

another line graph as shown in Fig. 9 for CFRP1 and in 

Fig. 10 for CFRP2. 

The impact measured in speedup distance of each 

factor in Group B is constantly high for both small and 

big values of that factor. The impact of Group B factors is 

closer in terms of at most 137 times in difference 

classified by CFRP1 and at most 195 times in difference 

classified by CFR.P2 between these factors. For the 3 

factor values, the impact strength goes up by OI, DUS 

and SP and it is consistent for both CFRP1 and CFRP2. 

 
Fig. 7. Reduce step: The impact in speedup distance classified by 

CFRP1  

 
Fig. 8. Reduce step: The impact in speedup distance classified by 

CFRP2 

 
Fig. 9. Reduce step: the impact in speedup distance of Group B factors 

classified by CFRP1 

C. The Exception Caused by MRR 

The impact and their strength of Group A and Group B 

factors are consistent for both map and reduce steps 
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except the inconsistence caused by MRR between map 

and reduce steps. In map step, MRR as a Group B factor 

has continuous impact but slightly increased the impact 

strength with the increase of factor values (Fig. 5 and Fig. 

6). However, it is observed for reduce step that the impact 

strength has been decreased with the increase of MRR 

from 20% going up to 100% (Fig. 7 and Fig. 8). In fact, 

when MRR increases, the number of lookups, the number 

of downloads and uploads, and the overall computing 

load are all increased for reduce step. Based on the fact, it 

seems there is no reason to see the decrease of impact 

strength with the increase of MRR. To further check this 

issue, we have conducted an enhanced experiment: single 

factor response to MRR, which is based on the ideal 

conditions (Section V-A) to inject just one impact factor 

each time to check its responses to MRR changes. That is, 

individual test is conducted for Ideal+H(6 tiers), 

Ideal+RTT(8), Ideal+DUS(20/51) and Ideal+Churn(30% 

of CR, 250K of SP, 30 of OI). The 3 churn factors are 

treated and injected as a single factor because they cannot 

exist independently as explained in Section III. The 

selection of the factor values is based on CFRP2 and the 

measurement of these tests is speedup and speedup 

growth rate against MRR. 

When all the individual injections are compared in a 

single line graph as shown in Fig. 11, the factors are 

classified by their impact into 2 groups: Group A and 

Group B. The Group B factors behave no responding to 

MRR or responding to MRR negatively and slightly with 

the maximum difference of 342 times as shown in Fig. 12. 

Group A consists of Heterogeneity and Churn, both of 

which respond positively to MRR and that response is 

what we are aiming to find. To explain the positive 

responding to MRR by heterogeneity, we confirm that 

slow computing nodes impair the overall performance 

more effectively for smaller MRR. For example, assume 

that by a smaller MRR, there are 2 reduce tasks. Assume 

that there are 2 computing nodes: Node A and Node B, 

and Node B is 4 time slower than Node A. If each of the 2 

reduce tasks has the same computing load cl, the overall 

speedup will be 2cl/t, where t is the time that Node B 

completes its task. If there are 5 reduce tasks by another 

bigger MRR for the 2 nodes, the overall speedup will be 

5cl/t. Consequently, heterogeneity impairs the overall 

performance more effectively for a small MRR.  

The situation of positive response by churn is more 

complex and needs a scrutiny. Qualitatively, churn brings 

a dynamic overlay while all other factors build certain 

networks in terms of number of computing nodes and the 

overall compute-capacity of the overlay. In addition, on 

dynamic overlay, the cost of lookup of a task is O(logn) 

depending on the number of computing nodes on the 

overlay when the lookup happens. To further explain why 

the exception shows the overlay of size of 40,000 nodes 

with 30% random churn performs well for a relatively 

larger workload caused by a larger MRR, we predict: a 

dynamic overlay varying size in a range performs well for 

a range of workload correspondingly. To confirm this 

prediction, we have conducted another enhanced 

experiment by expending the previous MRR experiment 

to 2 directions: one is to keep the number of computing 

nodes staying on 40,000 for 30% churn but increase MRR 

from 100% to 200%, representing data expansion 

applications [19]. The other is to keep MRR staying at 20% 

but decrease the number of computing nodes from 40,000 

to 5,000 for 30% churn. The experimental results are 

shown in Fig. 13 for speedup and in Fig. 14 for speedup 

growth rate. 

 
Fig. 10. Reduce step: the impact in speedup distance of Group B factors 

classified by CFRP2 

 
Fig. 11. Impact of single factor injection  

 
Fig. 12.  Impact of single factor injection of Group B factors 

It is evident that for the workload caused by a 20% 

MRR, small overlay from 5,000 to 20,000 computing 

nodes speeds up the overall performance from 1430 to 

4146 times as shown in Fig. 13 but the speedup grow rate 

keeps dropping from 92% down to 1% correspondingly 

as shown in Fig. 14. The overall speedup keeps flat for 

the overlays from 20,000 to 40,000 computing nodes as 

shown in Fig. 13 and the speedup growth rate fluctuates 

between -1% and 1% correspondingly as shown in Fig. 
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14. We conclude that for such a workload caused by a 20% 

MRR, the cost (maintenance of reliable overlay on 

unreliable computing nodes, lookup and download of 

tasks and upload of results) to work on a dynamic overlay 

of such a size from 20,000 to 40,000 nodes 

offsets/counteracts the increase of compute-capacity. 

Furthermore, the speedup of 40,000 nodes overlay 

increases again from 4187 to 8685 times in responding to 

MRR change from 20% to 100%. This resilience of 

speedup shows that for these sizes of workload, the 

compute-capacity of 40,000 overlay overwhelms the 

working cost on the overlay of such a size. This is the 

reason of the exceptions in Fig. 7 and Fig. 8 of Section 

VII-B. However, we can see the resilience of speedup 

growth rate 44% keeps dropping to 6%, responding to the 

increase of workload as shown in Fig. 14. Although there 

is still speedup increase from 8685 to 9847 times in 

responding to MRR change from 120% to 200%, but the 

speedup growth rate is very small from 5% to 1% 

correspondingly. The reason is that the compute-capacity 

of such size overlay (40,000) becomes weaker for such 

workload. Thus, to confirm our prediction, balancing 

between cost and compute-capacity, overlay of 20,000 

nodes, is more suitable for the MRR of 20% and overlay 

of 40,000 nodes is more suitable for the MRR of 100% in 

the settings of this experiment. 

 
Fig. 13. Speedup responding to varying number of computing nodes or 

workload caused by MRR 

 
Fig. 14. Speedup growth rate responding to varying number of 

computing nodes or workload caused by MRR 

D. Map Separation and Reduce Union Overlay 

An enhanced experiment has been conducted to further 

confirm that the cost of working on growing overlay will 

be growing correspondingly and will finally impair the 

overall performance of the overlay. To evaluate that 

prediction, we set a full-size map task and a reduce task 

of 20%, i.e. MRR is 20%. The other factor values are of 

CFRP2 as defined in Table II of Section V-C. The overlay 

is growing by 5,000 more computing nodes for each test 

and the overall performance is measured by speedup and 

speedup growth rate. On the basis of the confirmation, 

we propose to use Map Separation and Reduce Union 

Overlay to improve the situation of working cost on 

growing overlay. 
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 Each computing node keeps computing the map tasks 

on its own overlay and upload the results through the 

shuffle step to the reduce overlay 

 Once the map step finishes, the reduce overlay can 

shrink to an optimal size based on MRR as analysed in 

Section VII-C. 

 Each computing node on the reduce overlay keeps 

computing the reduce tasks till the completion of the 

whole computing. 

To confirm the optimization features of the 

aforementioned separation and union overlay, an 

enhanced experiment has been conducted to halve both 

the overlay size and workload each time for the 

computing of map tasks. The separation continues by 

following the conditions: 

 The original overlay is a single overlay. 

 Each time the number of computing nodes of an 

overlay is halved to form two overlays and 

accordingly the original workload is halved as well 

for each separated overlay. 

 Each separated overlay remains the same features as 

defined by the 8 factors, e.g. the computing capacity, 

the churn pattern etc as defined in Section III and 

Section V-B. 

 The size of each separated overlay cannot be too 

small. Otherwise it may affect the fault tolerance 

features for the storage of tasks. 

Based on the aforementioned conditions, we assume 

that the map step of each separated overlay finishes at the 

same time t. Thus, the equivalent speedup will be 

calculated as: the whole workload/t. The experimental 

results are shown in Fig. 17 for equivalent speedup and in 

Fig. 18 for equivalent speedup growth rate. 

 
Fig. 17. The equivalent speedup in response to the number of map 

overlays 

 
Fig. 18. The equivalent speedup growth rate in response to the 

separation of map overlays  

In this evaluation as shown in Fig. 17, the original 

overlay of 40,000 or 80,000 nodes will finally be 

separated into 256 map overlays with each overlay 

having 156 nodes or 312 nodes for the 1/256 of the 

original workload. The computing time of each 

separation keeps decreasing, and the equivalent speedup 

keeps increasing for the overlay clusters separated from 

the original of 40,000 or 80,000 nodes. The equivalent 

speedup of the overlay of 80,000 nodes is higher than that 

of 40,000 nodes overlay simply because the overall 

compute-capacity of the former is higher than that of the 

latter. The equivalent speedup growth rate keeps 

drooping as shown in Fig. 18, suggesting that the 

separation is more efficient for a larger overlay with a 

higher workload but inefficient for a smaller overlay with 

a lighter workload. 

E. Heterogeneity Reduction 

The previously presented experimental results in 

Section VII-A and Section V-B have showed that 

heterogeneity of compute-capacity is a key impact factor 

responsible for severe performance impairment. We 

predict that growing overlay size will bring little benefit 

if the growing brings more heterogeneous nodes at the 

same time. To confirm this prediction, we conduct 

another enhanced experiment by setting the heterogeneity 

of compute-capacity to be proportional to the number of 

computing nodes. To evaluate the relationship between 

heterogeneity and overlay size, we inject the 

experimental settings of heterogeneity on top of the ideal 

computing environment as defined in Section V-A, 

aiming at removing the interference of dynamics of the 

overlay. 

 The initial overlay size is 6666 computing nodes of 

Tier-1 compute-capacity. The workload of 1,400,000 

map tasks of each having 8,000 computing-load are 

used as the reference point. 

 Increasing or decreasing the number of computing 

nodes will increase or decreasing the tiers of compute-

capacity proportionally. The rule is that 

growing/decreasing the number of computing nodes 

by 1/6 will increase/decrease the heterogeneity of 

compute-capacity for 1 tier.   

The 15 experimental pairs of the number of computing 

nodes vs the tiers of compute-capacity are listed as 

follows in the format: Pi(tier, number of nodes), where i 

is the sequence number of a pair.  

P1(1, 6666), P2(2, 13333), P3(3, 20000), P4(4, 26666), 

P5(5,33333), P6(6, 40000), P7(7, 46666), P8(8, 53333), 

P9(9, 60000), P10(10, 66666), P11(11, 73333), P12(12, 

80000), P13(13, 86666), P14(14, 93333), P15(15, 100000) 

The change of pairs are listed as follows in the format 

Ci(PjPk), which means that the ith change is from pair 

Pj to Pk, where i, j{1, 2, …, 14}k{2, 3, …, 15}. 

C1(P1P2), C2(P2P3), C3(P3P4), C4(P4P5), 

C5(P5P6), C6(P6P7), C7(P7P8), C8(P8P9), 
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C9(P9P10), C10(P10P11), C11(P11P12), C12(P12P13), 

C13(P13P14), C14(P14P15) 

 
Fig. 19. The speedup in response to the proportional number of 

computing nodes and tiers of compute-capacity 

The evaluation results have been reported in Fig. 19 

for speedup vs pairs of tier and compute-capacity and in 

Fig. 20 for speedup growth rate vs change of pairs. The 

evaluation results have confirmed that from the number 

of computing nodes of 40,000 and compute-capacity of 6-

tiers (P6 and C6 in the above list) forward, the speedup 

growth rate is less than 6% and going flat when 

increasing the number of computing nodes and tiers of 

compute-capacity proportionally from that point. This 

result has demonstrated that even in a non-dynamic 

environment, computing nodes with compute-capacity 

lower than a certain level will not speed up but even slow 

the overall performance. The reason is that the slow 

nodes still hold the assigned tasks when fast nodes are 

available. 

 
Fig. 20. The speedup growth rate in response to the proportional change 

of the number of computing nodes and the tiers of compute-capacity 

VIII.   CONCLUSIONS AND FUTURE WORK 

A series of experiments has been conducted to 

compare the impact strength of the 8 factors: 

heterogeneity, download/upload speed, round trip time, 

churn rate, start position, occurrence interval, map/reduce 

ratio and redistribution factor to cover the impact from 

compute-capacity, communication, dynamics of network 

and applications themselves. To make these factors 

comparable, a spectrum of 5 representative values has 

been chosen for each factor. To make the results trustable, 

2 reference points at the beginning of the spectrum and in 

the middle of the spectrum have been chosen to inspect 

consistence between the results. 

The evaluation results have demonstrated that for map 

step the factors can be classified into 2 groups: Group A 

in ascending impact strength of churn rate, round trip 

time, redistribution factor and heterogeneity, and Group 

B in ascending impact strength of map/reduce ratio, 

occurrence interval, download/upload speed and start 

position. Any factors in Group A vary their impact much 

more severe than any factors in Group B. For reduce step 

with an exception, the factors can still be classified into 

Group A and Group B having the same intra- and inter-

group impact strength as those of map step. The 

exception is map/reduce ratio, which incurs further 

evaluation results that a certain size of overlay produces 

optimal efficiency for a certain level of workload. A 

possible optimization that has been confirmed for 

balancing the working cost on an overlay and the 

compute-capacity of the overlay is to separate the overlay 

to multiple overlays for map step but retain a single 

overlay for reduce step. The final conclusive result is that 

heterogeneity is the strongest factor among the 8 impact 

factors for both map and reduce steps. Given a certain 

workload, increasing the number of computing nodes 

with more heterogeneous compute-capacities will not be 

useful for the overall performance. 

Based on the confirmation of the impact strength of the 

factors and the relationship between the impact strength, 

our future work is to explore the optimization of overlay 

construction to answer the question: given a workload in 

terms of number of map and reduce tasks, data size and 

computing load of each task, what overlay in terms of 

heterogeneity, communication cost and churn will be 

optimized for the overall performance requirements. 
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