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Abstract—Many academic and industrial research working on 
Wireless Communications and Networking rely on simulations, 
at least in the first stages, to obtain preliminary results to be 
subsequently validated in real settings. Topology generators 
(TG) are commonly used to generate the initial placement of 
nodes in artificial Ad Hoc Mesh Network topologies, where 
those simulations take place. The significance of these 
experiments heavily depends on the representativeness of 
artificial topologies. Indeed, if they were not drawn fairly, 
obtained results would apply only to a subset of possible 
configurations, hence they would lack of the appropriate 
generality required to port them to the real world. Although 
using many TGs could mitigate this issue by generating 
topologies in several different ways, that would entail a 
significant additional effort. Hence, the problem arises of what 
TGs to choose, among a number of available generators, to 
maximise the representativeness of generated topologies and 
reduce the number of TGs to use. In this paper, we address that 
problem by investigating the presence of bias in the initial 
placement of nodes in artificial Ad Hoc Mesh Network 
topologies produced by different TGs. We propose a 
methodology to assess such bias and introduce a metric to 
quantify the diversity of the topologies generated by a TG with 
respect to all the available TGs, which can be used to select 
what TGs to use. We carry out experiments on three well-known 
TGs, namely BRITE, NPART and GT-ITM. Obtained results 
show that using the artificial networks produced by a single TG 
can introduce bias. 

 
Index Terms—Topology generator, ad hoc mesh network, 

BRITE, NPART, GT-ITM 

I. INTRODUCTION 

An Ad Hoc Mesh Network is based on a decentralised 

topology of devices/nodes that cooperate to implement 

some routing protocol, i.e. each device forwards its own 

and other devices’ traffic according to a specific 

algorithm with the aim of reaching the target destination. 

Ad Hoc Mesh Networks do not rely on any fixed 

infrastructure and each node can only communicate with 

those other nodes lying within the transmission range of 

one another. Ad Hoc Mesh Network applications are 

wide and significant, ranging from wireless sensor 

networks to vehicular ad hoc networks (VANETs) to 

mobile ad hoc networks (MANETs), and they are used in 

everyday scenarios as well as more critical settings, such 

as military operations. 

Several Ad Hoc Mesh Network aspects are still being 

investigated by the research community, e.g. routing 

protocols [1], [2] and security [3], [4]. For convenience, 

many academic works heavily rely on simulation to test a 
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proposed solution and obtain preliminary results that are 

used to validate its effectiveness. Network simulations 

commonly entail evaluating a given approach on many 

different Ad Hoc Mesh Network topologies to ensure 

results are meaningful, i.e. to have evidence that they can 

apply to a wide variety of networks and are not tied to 

particular network configurations. Hence, as also 

suggested by Gunes et al. [5], a key aspect in any 

network  ̈protocol simulation is the design and selection 

of what test network topologies to consider. 

Network topology generators (TGs) are usually 

employed to create a possibly large number of topologies, 

on the basis of predefined network models, real-world 

measurements and additional parameters available to tune 

the generation process. Although any TG is designed and 

implemented to generate a representative set of 

topologies, different TGs do not rely on the same models 

and assumptions, do not follow the same generation 

approach and thus are likely to produce diverse 

topologies, which in turn can lead to obtain dissimilar 

simulation results [6], [7]. Hence, we claim that the 

choice of the TG can affect this type of experiments, i.e. a 

TG is likely to introduce bias in simulations. This holds 

true for Ad Hoc Mesh Network simulations as well, 

where TGs are used to generate the initial placement of 

nodes, which in turn plays an important role in the way 

an Ad Hoc Mesh Network network evolves over time. 

Despite the fact that each TG has its own peculiarities, 

and that sometimes researchers can select a TG on the 

basis of the specific mathematical or physical model they 

need, there are in general several TGs that can be used to 

create artificial topologies representing the initial 

placement of nodes in Ad Hoc Mesh Networks. In this 

context, the best option would be to use all the available 

TGs to run simulations on the largest possible range of 

topologies, so as to ensure that obtained results are not 

biased by the choice of a specific TG, or subset of TGs. 

On the other hand, using many TGs proves to be really 

demanding for researchers in terms of required time and 

effort to delve into the technical issues of each TG. 

Therefore, a trade-off arises between reducing the effort 

to spend in setting up the simulations, i.e. minimising 

how many TGs to use, and maximising the 

representativeness of the simulations themselves, i.e. 

minimising the bias introduced by TG selection. In this 

paper, we delve into the initial placement of the nodes by 

the topology generators and the analysis of the 
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differences between these topologies generated by 

distinct TGs to help researchers to reduce how many TGs 

to use while still preserving the representativeness of 

generated topologies. In particular, given a fixed number 

of available TGs, we address the following research 

questions. 

• RQ1: How to measure the difference between 

topologies generated by distinct TGs? i.e. how to 

characterise the bias introduced by the choice of a 

specific TG rather than using all the TGs? 

• RQ2: how to choose what TG, or TGs, to use to 

reduce such a bias? 

The approach we propose relies on a compact, numeric 

representation of topologies, based on a number of 

aspects about how network nodes are placed over the 

plane (e.g. inter-node distance, clustering) and about how 

Ad Hoc Mesh Networks work (e.g. nodes can only 

communicate with other nodes within their transmission 

range). Each topology is modelled as a vector of numeric 

features, which enables to compute distance metrics. We 

consider a fixed number of TGs and propose to interpret 

the bias as a measure of the differences that arise in 

generated Ad Hoc Mesh Network topologies when 

selecting any single TG, or subset of TGS, instead of 

picking all the available TGs. 

The creation of the bias index is the culmination of a 

number of feature of the node placement by the TGs, that 

of Inter-node distance, Spatial distribution, Node density, 

Shared Neighbours Distribution and Clustering 

coefficient. It looks at each of the features for a given TG, 

and measures the distance the standardised mean for this 

TG is from the general population, that of all TG’s within 

the experiment. We are looking at the initial stage of any 

experiment, before any data is transmitted or node 

undertake movement. 

We tackle RQ1 by focusing on two complementary 

facets of the distances between topologies. On the one 

hand, we want to quantify the bias by measuring the 

average distance between topologies generated by distinct 

TGs. In the specific, we use Hedges’ g measure of effect 

size to compute the bias index, which measures the 

difference between topologies produced by a specific TGs, 

or subset of TGs, and those created by all the available 

TGs. On the other hand, we are also interested in 

evaluating to what extent existing differences are 

distinguishing of some TG, i.e. whether such differences 

allow to determine which TG generated a topology, 

regardless of the extent of those differences. In this 

regard, we employ machine learning techniques to 

compute the classification accuracy, i.e. to estimate how 

precisely we can discover which TG generated a topology. 

We answer RQ2 by proposing a simple methodology, 

based on the bias index, to select what TGs to use to 

reduce the bias, depending on how many TGs can be 

picked at most. 

We carry out an experimental evaluation using three 

wellknown TGs, i.e. BRITE, NPART and TG-ITM. 

Obtained results show that using a single TG is likely to 

introduce bias, and that in this case picking NPART is the 

best choice to mitigate this issue. If two TGs can be used, 

BRITE and NPART provide the lowest bias. The 

experiments on the classification accuracy show that 

topologies can be correctly classified according to their 

TGs with high accuracy, i.e. up to almost 78%, and that, 

in this specific case, four topology features contribute 

most to distinguishing between different TGs. 

To the best of our knowledge, this is the first work in 

literature that systematically investigates the differences 

between topologies generated by diverse TGs in the 

context of Ad Hoc 

Mesh Network simulation. The contributions of this 

work are 

1) The definition of a vector-based representation of 

Ad Hoc Mesh Network topologies, based on a 

number of features derived from different aspects of 

node placement; 

2) The definition of a novel metric to assess the 

differences between TGs, i.e. the bias index; 

3) A methodology to choose what TG, or TGs, to use 

among available TGs to minimise the bias; 

4) An experimental evaluation on BRITE, NPART and 

GTITM TGs, showing the presence of bias in 

picking either a single TG or a pair of TGs. 

The rest of the paper is organised as follows. Section II 

describes background and discusses related work. The 

system model for our investigation is introduced in 

section III. The methodology we propose is detailed in 

section IV. The experiments and obtained results are 

presented in section V. Finally, section VI draws 

conclusions and outlines possible future work. 

II. BACKGROUND AND RELATED WORK 

In this paper we focus on TGs that provide the initial 

placement of nodes over a plane. As we are dealing with 

Ad Hoc Mesh Networks, we are not interested in how 

nodes are connected among each other and assume that 

any node can communicate directly with all the nodes 

lying within its transmission range. 

TGs can differ mainly in how nodes placement is 

decided [8] and what each node represents [7]. 

Node placement strategy can be based either on some 

predefined model or on real-world measurements. In the 

former case, a certain probability distribution can be used, 

such as the Waxman model [9], or specific strategies can 

be enforced to preserve the inter-node distance among 

nodes placed on a line (chain node placement) or to 

position nodes at the intersections of square cells when 

the plane is organised as a grid (grid node placement). In 

the latter case, nodes positions are instead determined in 

compliance with real-world measurements of existing 

network topologies. Nodes in an artificial topology can 

represent either autonomous systems (AS), i.e. AS-level 

topologies, or routers, i.e. router-level topologies. 

Some existing works in literature deal with the 

investigation of diverse aspects of TGs, e.g. how realistic 
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generated topologies are. Several works [10], [11], [6] 

focus on TGs for Internet topologies by comparing the 

topologies they generate with available real Internet map 

topologies, with the aim of assessing to what extent those 

topologies can be considered realistic. Rossi et al. [12] 

propose a framework to analyse Internet topologies by 

using a multi-level approach based on a number of graph 

measures and existing reference datasets. Their goal is to 

assess whether Internet TGs comply with their claimed 

objectives and how realistic generated topologies are. Our 

work differs from those papers mainly because we do not 

evaluate whether artificial topologies are realistic, rather 

we investigate the bias in topologies generated by 

different TGs. Furthermore, we tackle Ad Hoc Mesh 

Networks rather than 

Internet. 

Heckmann et al. [7] compare three TGs according to 

the similarity of generated topologies with an available 

collection of real-world topologies. 

Although all those works, likewise ours, focus on 

evaluating and comparing existing TGs, the main 

difference lies in the goal of such a comparison. In fact, 

while existing literature is interested in measuring how 

well generated topologies represent real-world networks, 

we concentrate on an orthogonal aspect by investigating 

whether picking a certain TG rather than another one, or 

rather than choosing more TGs, can introduce bias. From 

this point of view, our contribution is novel and 

complements existing research on comparing available 

TGs. 

III. SYSTEM MODEL 

We consider a set T G with NTG topology generators 

(TG), i.e. |T G| = NTG. Each TG generates coordinates for 

the initial placement of nodes, i.e. devices, within a 

defined square topology area, with sides D units long. 

Each TG tgi generates a set Ti with NT topologies, where 

i=0,...,NTG−1. The set containing all the topologies 

generated by all the TGs is referred to as 

𝑇 =  ⋃ 𝑇𝑖

𝑁𝑇𝐺−1

𝑖=0

 

 

 

(1) 

hence |T | = NTG · NT. Each topology tj ∈ Ti has N nodes 

Nj = {nk}, where i=0,...,NTG−1, j=0,...,NT−1, k=0,...,N−1. 

Each node nk is identified by its bidimensional 

coordinates (xk,yk) in the topology area, where 0 ≤ xk,yk ≤ 

D. Given two nodes na and nb (a,b=0,...,N−1), we define 

their Euclidean distance as 

 

 (𝑛𝑎, 𝑛𝑏) = √(𝑥𝑎 − 𝑥𝑏)
2 + (𝑦𝑎 − 𝑦𝑏)

2  (2)  

In Ad Hoc Mesh Networks, any device can establish 

connections with other devices placed within a specific 

distance, which we refer to as radius r. We consider a 

number NR of different radii R = {ri}, where i=0,...,NR−1 

and 0 < rj < rj+1 < D for j=0,...,NR−2. 

IV. METHODOLOGY  

In general, a topology generator (TG) introduces bias if 

the topologies it generates are not representative enough 

of some target application, such as analysing routing 

protocols. It is not trivial to decide whether a given set of 

topologies can be considered representative enough of a 

certain application, let alone it is possible to provide 

general criteria to evaluate the representativeness of a 

group of topologies regardless of what they are intended 

to be used for. However, if we consider the universe set T 

U, containing all the possible topologies, and a subset of 

it S ⊂ T U, we can investigate to what extent S is 

representative of T U by inspecting the differences 

between topologies in S and topologies in T U. We 

propose to use those differences to analyse the bias of 

using topologies in S only, i.e. the larger and sharper 

such differences, the higher the bias. 

Although we cannot have in practice a set like T U, we 

do have a number of available TGs, T G (see section III), 

which can be used to generate a set of topologies T . 

While we do not know how much T is representative of T 

U, we claim that T is the best approximation of T U we 

can aim for from a pragmatic point of view. Hence, to 

measure the bias introduced by a TG tgi ∈ T G, we can 

examine the differences between the topologies it 

generates, Ti, and the topologies in T . 

We propose a two-steps methodology to analyse the 

bias of TGs. The first step is modelling topologies by 

extracting a number of characteristic features, which will 

be used to have a compact, numeric representation of 

topologies and enable to measure the differences between 

them. The second step is indeed computing a metric to 

quantify the dissimilarities between topologies generated 

by different TGs. The extent of those differences, i.e. how 

large they are, provides an objective scale of the bias. The 

approach we propose consists in computing the average 

distance between the topologies generated by a TG and 

all the topologies in T. By mapping topologies into the 

space generated by the chosen features, we use the 

Hedges’g [13], measure of effect size, to quantify the 

difference between two populations: the topologies 

generated by a specific TG and the topologies in T. We 

refer to such a difference as bias index. 

We used the following types of features to characterise 

topologies: inter-node distance (statistics on distances 

between nodes), spatial distribution (statistics on how 

nodes are distributed over the topology area), node 

density (how many nodes are within the transmission 

range, on average, for each radius in R), shared 

neighbours distribution (how many nodes are within the 

transmission range of each node pair, on average, for 

each radius in R) and cluster coefficient (how many 

neighbour node pair are within transmission range, on 

average, for each radius in R). For a detailed explanation 
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of how those features are computed, refer to [14]. We 

detail how we compute the bias index and the TG 

selection approach in sections IV-A and IV-B, 

respectively. 

A. Bias Index 

The bias index of a TG tgi ∈ T G with respect to all the 

TGs in T G is measured as the distance between the 

topologies Ti generated by tgi and all the topologies 

generated T. This distance is computed on the basis of the 

following feature-based representation of a topology tj 

                      (3) 

where fk
j is the value of the k-th feature of tj (k = 0,...,F−1) 

and F is the number of used features, equal 1to 12+3NR. 

Hedges’ g [13] is used to estimate the standardised 

mean difference between two populations, i.e. the 

average distance between the elements of two different 

populations, measured in standard deviations. Although 

in its original form it can be applied to single-dimension 

elements only, we propose to extend Hedges’ g to F 

dimensions to quantify the difference between topologies 

in Ti and in T . 

We first detail how to apply Hedges’ g to a single 

feature fk, where k = 0,...,F−1. We define T k and  as 

the projections of T and Ti to feature fk, respectively, as 

follows 

 

 (4) 

  

 (5) 

 

Let mk and sk be the mean and standard deviation of T k, 

respectively. Let mk
i and sk

i be the mean and standard 

deviation of Ti
k, respectively. In compliance with the 

original formulation, we define Hedges’ g for a single 

feature fk as 

 

                           (6) 

where s∗
i
k is the pooled standard deviation for T k and Ti

k, 

computed as follows 

 (7) 

Finally, to obtain the bias index gi for tgi, we combine 

all the F values  by considering each of them as a 

distance along one dimension, as follows 

                                                                 
1 There are 7 features for inter-node distances, 5 features for spatial 

distribution and as many features as the number of radii NR for (i) node 

density, (ii) shared neighbours distribution and (iii) clustering 

coefficient. 

                         (8) 

B. TG Selection 

The bias index can be used to choose what TG to pick 

to reduce the possible bias. Selecting the TG with the 

lowest bias index would correspond to using the set of 

topologies with the lowest distance, on average, from the 

whole set T of available topologies. According to the 

methodology approach introduced at the beginning of this 

section, this in turn means choosing the most 

representative subset of topologies available, if a single 

TG has to be selected. 

If more than one TG can be picked, say p out of NTG, 

then the same strategy can be used by considering the 

possible  subsets of T , each in the form 

 

 𝑇𝑖0,…,𝑝−1 = 𝑗 = 0𝑝 − 1𝑇𝑖𝑗                       (9) 

 

with Tij ⊂ T , 0 ≤ i0 < ··· < ip−1 < NTG, 0 < p < NTG, and 

computing the corresponding bias index. Again, the 

subset with the lowest bias index is the most 

representative of T . We refer to gi0,...,ip−1 as the bias 

index of Ti0,...,ip−1. 

V. EXPERIMENTAL EVALUATION 

We apply the proposed methodology to a number of 

wellknown TGs, namely BRITE [15], NPART [16] and 

GT- 

ITM [17]. The parameters we choose to instantiate the 

model (see section III) are reported in section V-A. The 

experiments on bias index and obtained results are 

described in section V-B. 

A. Evaluation Settings 

With reference to the system model defined in section 

III, we consider the NTG = 3 TGs described in the 

previous section, i.e. TG = {BRITE, NPART, GT-ITM}, 

and generate NT = 1000 topologies for each TG. Each 

topology has N = 1000 nodes. The reference topology 

area has sides D = 1000 units long. We evaluate the 

following NR = 8 radii: R = {5,10,20,30,40,60,80,100}. 

B. Bias Index Evaluation 

We compute the bias index gi for each TG and gi,j for 

each pair of TGs, as described in section IV-A. The 

results are reported in table I. As can be noted, BRITE 

topologies seem to be significantly different from those 

generated by NPART and GT-ITM, and vice-versa, 

which suggests that using either TG alone would provide 

a set of topologies significantly different from the set 

including all the topologies. However, if only one TG has 

to be selected, NPART proves to generate topologies that 

are less different on average from those generated by all 

available TGs. If two TGs can be chosen, BRITE and 

NPART show to be the best pair to consider. 
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It should be noted that the bias index of a single TG 

can be vastly different from the index when combined 

with one of the other 2 TG’s. This is because the ’Bias 

Index’ is a measure of how different each TG or 

combination of TG’s is against the general population, 

the more TG’s in the bias index, the nearer to the general 

population, so a combination of all the TG’s would give a 

bias index of 0. 

TABLE I: BIAS INDEX OF THE CONSIDERED TGS 

Topology Generator(s) Bias index 

NPART 1.890 

GT-ITM 2.145 

BRITE 4.282 

BRITE + NPART 0.908 

BRITE + GT-ITM 0.976 

NPART + GT-ITM 2.430 

VI. CONCLUSION  

In this paper, we investigate the presence of bias in 

node placement in Ad Hoc Mesh Networks simulations 

due the choice of what TG, or TGs, to use among a fixed 

number of available TGs. This is of importance in the 

design of simulation used in the testing and analysis of 

network protocols and signal processing.   

In particular, we explore these research questions: (a) 

how to measure the difference between topologies 

generated by distinct TGs? and (b) how to choose what 

TG, or TGs, to use to reduce such a bias?  

To answer the first question, we propose a metric, 

namely the bias index, based on measurements of a 

number of characteristic features of generated topologies. 

We use these measurements to calculate the distance 

between topologies generated by a single TG and 

topologies produced by all available TGs. To answer the 

second question, we propose a methodology to select the 

TG, or TGs, that minimise the bias index. We present an 

experimental evaluation where we compute the bias index 

for three well-known TGs: BRITE, NPART and GT-ITM. 

Obtained results prove that topologies generated by a 

single TG are different from those created by all the three 

TGs.  

As future work, we plan to carry out additional 

evaluations to investigate how the bias index is linked to 

variance in the results of same experiments performed on 

different TGs. A number of reference algorithms can be 

chosen, e.g. routing protocols, and executed on available 

generated topologies to verify whether lower values for 

bias index can actually lead to reduced variance of 

obtained results, with respect to the experimental 

outcomes that would be achieved by using all the 

available TGs. An additional, significant future work 

concerns the sensitivity analysis on both system model 

parameters and TGs configurations, to assess to what 

extent such a tuning affects computed values for bias 

index.  

 

CONFLICT OF INTEREST  

The authors declare no conflict of interest.  

 AUTHOR CONTRIBUTIONS 

Michael O’Sullivan conducted the research, analysed the 

data and wrote the paper; Leonardo Aniello contributed to 

problem formulation, manuscript organisation and writing; 

Vladimiro Sassone supervised the work from an academic point 

of view; all authors had approved the final version. 

REFERENCES 

[1] Bo Cheng and G. Hancke, “Energy efficient scalable video 

manycast in wireless ad-hoc networks,” in Proc. 42nd 

Annual Conference of the IEEE Industrial Electronics 

Society, Oct. 2016, pp. 6216–6221. 

[2] C. Cheng and S. Lin, “A hole-bypassing routing algorithm 

for WANETs,” in Proc. IEEE 42nd Conference on Local 

Computer Networks (LCN), Oct. 2017, pp. 547–550. 

[3] Y. Xu, J. Liu, Y. Shen, X. Jiang, and T. Taleb, 

“Security/qos-aware route selection in multi-hop wireless 

ad hoc networks,” in Proc. IEEE International Conference 

on Communications (ICC), May 2016, pp. 1–6. 

[4] Y. Xu, J. Liu, O. Takahashi, N. Shiratori, and X. Jiang, 

“Soqr: Secure optimal qos routing in wireless ad hoc 

networks,” in Proc. IEEE Wireless Communications and 

Networking Conference (WCNC), 2017, pp. 1–6. 

[5] M. H. Gunes and M. B. Akg ün., “Link-level network 
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