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Abstract—As the number of IoT devices grow rapidly, and soon 

to exceed 40 billion, security challenges grow rapidly as well. 

One challenge proven to wreak havoc in the past few years is 

the use of IoT devices as attacking tools. This paper presents the 

results of implementing a brute-force attack on Data Encryption 

Standard using clusters of IoT devices. The implementation 

presented was successful. Results have shown that a cluster size 

of 200 IoT devices was able on average to find the key within 

350 seconds. Another experiment of a cluster of 2000 IoT 

devices succeeded in finding the key within 0.015 seconds. 
 
Index Terms—IoT, security, IoT security, DES, data encryption 

standard, brute-force attack 

I. INTRODUCTION 

With the number of connected Internet-of-Things (IoT) 

devices jumping from 13.4 billion in 2015 to 38.5 billion 

in 2020, IoT became a ubiquitous part of our daily lives 

[1]. This rapid increase in the number and "smartness" of 

these devices makes them vulnerable to many security 

issues. In addition to security challenges arising from 

protecting IoT devices themselves, another challenge is 

becoming a reality [2]. That challenge is that IoT devices 

are being used as a tool of attack by malicious attackers. 

In 2016, a malicious software called Mirai botnet was 

used to conduct the largest Distributed Denial of Service 

(DDoS) attack at its time with 1.2 Tbps magnitude. The 

botnet used an estimated 100,000 vulnerable IoT devices 

to attack the Managed DNS service structure of Dyn; one 

of the largest DNS service providers in the world. This 

attack, that managed to bring down the service for some 

time, in addition to many other attacks of smaller scale 

raised many questions about the security of IoT devices, 

and the Internet as a whole [3]. 

The most basic method of attack on any block cipher is 

simply trying all the possible key, i.e. brute-force attack. 

Most other types of attacks try to reduce the search space 

from all-possible keys to a smaller space for faster 

cracking. 

In 1991, Quisquater and Desmedt published a paper 

that suggests an attack named the Chinese Lotto attack 

[4]. The simple idea of the attack was based on the notion 

of replacing the use of supercomputers to launch an 

exhaustive key-search attack with use a much larger 

number of not-super computers [5]. The concept 

introduced relies on using a massive distributed 
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computing farm to do the key space in a relatively short 

time. 

The Chinese lotto attack suggests that a massive 

number of television devices with a decryption capability 

added to them can be used to decrypt an encrypted 

message. The massively large key search space in this 

brute-force attack is divided into smaller spaces. Each 

one of these small search spaces is then assigned to a 

specific television set. This way, the search space will be 

exhausted in a much faster way because it will be 

searched by all the televisions in China in parallel. The 

television that finds the right key, would signal a message 

to the television owner that he/she has won the lotto and 

they should deliver the key code to the authorities to 

receive the prize. 

IoT applications are growing rapidly with time. These 

devices have been used to solve several kinds of 

problems in real-world e.g. Inventory control systems [6], 

Indoor Automation [7], clinical support systems [8]. 

These applications have been optimized using Artificial 

Intelligence where techniques have been used to find 

answers from the unknow worlds e.g. [9], [10].  

IoT devices can solve search problems which required 

extensive computing resources. These devices can run 

light weight solutions which can solve the problems using 

the parallel processing strategies. Such solutions have 

been successful to solve the complex problem e.g. train 

the system predict demand variation [6], [8], [10]. The 

strategies are combination of optimal modular design and 

the fast communication between the modules. The load 

balancing is added to maximize the use of resources.  

Such solutions are cross platform and could take benefit 

of low-level message passing based network 

communication between processing units.  

The use of remote procedure calls (rpc) has been 

explored in [6] to develop light weight machine learning 

solutions. The key advantage of such a distributed 

computing architecture is to delegate sub tasks to each 

participating IoT device. The device the perform such 

tasks on anytime basis.  To search for an answer for each 

task, the IoT devices perform a fixed look ahead search 

and develop a learning structure. The use of such 

structures is shared via mapping functions which are 

implemented as remote procedure calls. The use of RPC 

is also independent of the underlying implementation. 

The calls can be made from any platform.  Such solutions 

are also intuitive as rpc implementation are available in 

all operating systems available for IoT devices.  
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In this paper, we present the first implementation of 

the conceptual work presented in [2] and validating the 

suggested design. This paper builds a small-scale IoT 

brute-force system by combining a number of IoT 

devices and harnessing their processing power to try 

possible decryption keys to decrypt a text that is 

encrypted with Data Encryption Standard (DES). 

II. IOT LOTTO 

In the design presented in [2], a concept similar to 

Chinese lottery is presented. However, the design 

employs a massive number of IoT devices instead of 

computers. As brute-force attacks rely on exhaustive 

search of the whole key space to find the correct 

decryption key, the presented system divides the key 

search space into smaller spaces that can be searched, in 

parallel, in a reasonable amount of time by a large group 

of IoT devices. 

To assure proper key distribution, the proposed design 

employs a central arbitration unit named the Key 

Distribution Arbiter (KDA). This arbiter is responsible 

for assigning keys to IoT devices to assure that each 

device is assigned an exclusive key space. Fig. 1 shows 

an overview of the proposed design. This arbiter can be 

hosted on a single server or can be hosted on a cloud-

based system. Cloud hosting of the arbiter is highly 

recommended for implementations that include a large 

number of IoT devices to assure seamless operation of the 

system. 

 
Fig. 1. Overview of IoT Lotto [2] 

The IoT Lotto system uses n IoT devices. This 

arrangement will divide the key search space to n smaller 

search spaces. The main search space has a size of 2u 

where u is the key length of the original symmetric 

encryption key, measured in bits. 

Using n IoT devices would results in having n smaller 

search spaces each of the size 2u/n. This means that the 

time required to exhaust all of the search space, t, will 

also be divided by n to be t/n. The higher n goes, the less 

time it takes to find the correct key. 

Inside each IoT device, three software components are 

required, as shown in Fig. 2. The Key Arbitration Agent 

(KAA) is the component that coordinates with the KDA 

to assure that the key search space assigned to the 

particular device is exclusive. The second component is 

the decryption algorithm. This component depends on the 

algorithm that was used in encryption as selected earlier 

by the attacker. In our setup, we're using DES. The last 

component is the one that stops the processing when the 

correct key is found, or all the search space has been 

exhausted with no success. 

 

 
Fig. 2. Software components in IoT devices [2]  

A. Key Arbitration Process 

As mentioned earlier, each IoT device is assigned an 

exclusive key search space. As the search process is 

exhaustive and aims at trying to decrypt the given 

ciphertext block with all possible key combinations, each 

device will be assigned a range of keys instead of a 

random key sequence. 

For example, if u = 8, then there are 28 possible 

combinations. Assuming that we have 16 IoT devices, n 

= 16, each device is expected to try 28/16 = 16 keys. 

Instead of transferring the keys and storing them in the 

memory of the IoT devices, each device is given the first 

key and last key in its search space. Hence, for the first 

IoT device, the first key is 0000 0000, and the last key is 

0000 1111.  

For the second IoT device, the first key is 0001 0000 

and the last key is 0001 1111. The keys in-between these 

ranges, can easily be generated by adding 1 until reaching 

the last key. Fig. 3 shows a flowchart of the key 

generation process along with the decryption. 

 
Fig. 3. Flowchart of key generation and decryption at the IoT device [2]  
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This type of key arbitration reduces the memory 

requirements at the IoT device side and reduces the 

amount of data to be transferred between the KDA and 

the IoT device, keeping in mind that the example 

explained earlier is a non-realistic one because key sizes 

can be 128, 256, 512, 1024 bits, or even higher. 

III. IMPLEMENTATION ENVIRONMENT  

Experiments were performed using Raspberry PI 3 

devices with RAM of 1GB and a 64bit 1.2GHz ARM 

quad core CPU. All the devices are connected via a 

switch and are assigned standard static IP assigning 

scheme. Each device runs on Raspbian Operating system 

and has full support for Remote Procedure Calls (RPC). 

 The devices are programmed using asynchronous RPC 

calls to send and receive messages for communication. A 

device can send a remote call message using Internet 

Protocol (IP) address, function name and its parameters 

via RPC calls. Experimental setup is designed as a client-

server architecture where a server (KDA) sends an 

encryption key range to a client (IoT device) to process. 

The receiving device which works as client searches 

through key space and finds the correct decryption key.  

In an analogy to a master-slave architecture of node 

communication in a cluster, in our experiment setup, a 

master acts as server and makes RPC calls to clients 

which process the requests for decryption key search. 

However, due to asynchronous communication, the 

master can stop a slave from searching for a key or give it 

a new search depending on decisions by load balancing 

strategy. The load-balancing strategy is focused on 

maximum utilization of devices in key search process. If 

a device exhausts its search space earlier than its peers, it 

is given a new search space created by reducing the load 

of another device. The key search process is shown in Fig. 

3. Each RPC call sends two parameters for search which 

are current key and cipher text. If it is successful in 

decrypting the ciphertext then statistical parameters are 

stored e.g. duration of search, number of iterations etc. A 

search can be stopped for pre-emptive reason and its 

status is kept failure due to the fact that the correct key 

was not found, yet. All RPC calls are made using 

standard xmlrpc library of Python. 

The decryption is performed using python Crypto. 

Cipher package and applies Data Encryption Standard 

(DES) algorithm [11]. The standard key size of DES is 56 

bits. Hence, the complete size of key search space is 256. 

Although DES is not currently used in significant real-life 

applications, it was chosen due to its limited key size as a 

proof-of-concept for the IoT lottery system. 

The key space is divided into parts using a heuristic 

that divides the space according to the available number 

of IoT devices for the search. The search starts from an 

entry point in the key search space and ends at a fixed 

length of search process. If search does not find solution 

within the length, then IoT device returns failure flag. 

IV. RESULTS 

Experiments are performed using different number of 

IoT devices. The perform of each strategy is measured 

using the average time to find solution and number keys 

to search. As a further measure of optimization, the key 

was transferred as an integer ignoring the least significant 

zeros. After the transfer, the key is converted to binary 

and then the remaining zeros are inserted to the left until 

it reaches the standard DES key size of 56-bits.  

Fig. 4, where the key length is measured in integer 

digits, shows a profile of search process with 200 nodes 

in a cluster. The results show that IoT takes more time to 

find a key successful when the key size is large. In Fig. 5, 

a profile of time taken by a node in a cluster of 2000 

nodes in shown with respect to key length. According to 

this profile, the time taken per node reduces if key size is 

larger than 9 integer digits. The reason for this 

optimization is due to a better load balancing strategy in a 

large network of IoT device. Fig. 6 supports the results 

shown in Fig. 5 as it shows the average time take per 

node in a cluster of large size. The time reduces 

significantly to find a key successfully if the number of 

IoT devices grow. The results also show the importance 

of a load balancing strategy to scale up the performance 

of IoT network. 

The use of optimal load-balancing plays main role in 

solving the key search with IoT devices. The load-

balancing strategies are implemented using the parallel 

processing strategies used in [9]. It applies a heuristic 

which depends on estimated time to complete and range 

of key values. The device that has highest heuristic value 

is added to a load queue in such a way that the least value 

is kept the end of the queue. The queue is managed by 

central system and update the queue after a fixed time 

interval which is tuned to have optimal updates. Each 

update includes the refined heuristic values and position 

in the load queue. As soon as a resource completes it 

searches, it takes a task from a device of highest heuristic 

value or the first value of the queue. The queue is updated, 

and the spared device gets the tasks of least heuristic 

value.  

 
Fig. 4. Time taken by per node to decrypt a key in a cluster of 200 nodes  
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Fig. 5. Time take by an IoT to search a key successfully in a cluster of 

2000 nodes  

 

Fig. 6. Average time required to decrypt a key versus size of cluster  

 

Fig. 7. Time taken by per node to complete search with fixed load queue 

size  

A contextual model is used to transfer the search from 

one device to another. The latest search state is stored on 

a contextual model for each member of the queue. Once a 

device is given a search taken from another, the new 

device resumes the search from the state stored on the 

contextual model. The contextual model is also updated 

according to the fixed time interval. This interval is tuned 

for both queue update and state space stored for 

contextual model. The model remains updated for each 

member of the queue. The contextual model is kept 

minimal in this way and always have same number of 

entries as in the load queue. 

To find the optimal queue size, the load balancing 

strategies is explored with different queue sizes and the 

profile of fixed queue size is shown in Fig. 7. The queue 

size is kept to a constant number depending on the size of 

the cluster. A very small size according to the cluster size 

will degrade the load balancing performance. A dynamic 

queue size requires a sophisticated heuristic which 

requires several learning trials.  As shown in Fig. 7, the 

optimal performance of load balancing is achieved with 

much smaller time window using a fixed size load queue. 

Without using appropriate load queue size, the parallel 

processing strategies can consume more time search even 

less number of states as shown in Fig. 7. If the queue size 

is too large, the load balancing will consume more time in 

transfer the contextual information and increases the 

overload, hence less number of states are explored with 

large time. With a very small queue size, the time to 

complete the search is minimized but in such cases each 

device can only search very limited states.   

 
Fig. 8. Time taken by per node to complete search with fixed time 

interval to update load queue and contextual model 

The load balancing strategies highly depends on the 

time interval to update load queue and contextual model 

as shown in Figure 8. The smaller time windows add 

overhead to update heuristic values for each queue 

member and store state of the latest search progress by 

each queue member device. Such overheads lead to very 

limited search of states by each device to find the key.  

The number of states visited by each device is optimized 

by using the appropriate window for contextual model 

and load queue as shown in Fig. 8.  

V. DISCUSSION 

The implementation of the design system went 

smoothly and as planned. The results, as expected, show 

that the increase in cluster size does reduce the time 

rapidly. However, the relationship does not reflect 

linearity i.e. the factor by which we increased the number 

0.00E+00

2.00E+11

4.00E+11

6.00E+11

8.00E+11

1.00E+12

1.20E+12

Se
ar

ch
 S

iz
e 

Time 

Fixed Time Interval 



  

 

 

 

 

 

  

 

 

 

    

 

 

 

 

 

 

 

  

 

  

 

 

  

 

 

 

 

 

 

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 739

of IoT devices was not the same factor of decrease in 

time required to find the correct key, as shown in Fig. 6. 

This steep decline in the required time with the increase 

in the cluster size can be seen clearly if we compare the 

points of 11-digit key length. In Fig. 4, with a cluster of 

200 IoT devices, the time required was about 350 seconds. 

On the other hand, as shown in figure 6, a cluster size of 

2000 devices resulted in a time of only 0.015 seconds for 

an 11-digit key length. 

Results presented in the previous section prove the 

concept introduced in [2]. Results also show that the 

attack can be implemented at a large or small scale.  The 

results reveal the importance of optimizing load 

balancing to exploit the use of IoT devices to search the 

keys for decrypting data.  Load balancing strategy is 

implemented by using a heuristic based model to identify 

the best candidate for transferring the contextual 

information from one device to another.  

VI. CONCLSION AND FUTURE WORK 

In this paper the IoT Lotto attack was implemented 

successfully on DES-encrypted data. Results have shown 

that a small cluster of IoT devices was able to break the 

encryption in around 350 seconds which is very good in 

comparison to older brute-force attacks on DES. 

Experiments also shown that the increase in the cluster 

size would cause a non-linear drop in the time required to 

break the encryption. In general, the results presented 

here prove the concept of IoT Lotto introduced in [2].  

Future research can be directed towards other more 

commonly used ciphers like AES or 3DES. In addition, 

some work can be done in terms of optimization of the 

process and the code. Another research direction can be 

implementing the attack on much larger clusters. 
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