
Implementing IoT Lottery on Data Encryption Standard

Mohammed M. Alani1, Muath Alrammal2, and Munir Naveed2
1 Senior Member of ACM, Abu Dhabi, UAE

2 Higher Colleges of Technology, Abu Dhabi, 41012, UAE

Email: m@alani.me; malrammal@hct.ac.ae; mnaveed@hct.ac.ae

Abstract—As the number of IoT devices grow rapidly, and soon

to exceed 40 billion, security challenges grow rapidly as well.

One challenge proven to wreak havoc in the past few years is

the use of IoT devices as attacking tools. This paper presents the

results of implementing a brute-force attack on Data Encryption

Standard using clusters of IoT devices. The implementation

presented was successful. Results have shown that a cluster size

of 200 IoT devices was able on average to find the key within

350 seconds. Another experiment of a cluster of 2000 IoT

devices succeeded in finding the key within 0.015 seconds.

Index Terms—IoT, security, IoT security, DES, data encryption

standard, brute-force attack

I. INTRODUCTION

With the number of connected Internet-of-Things (IoT)

devices jumping from 13.4 billion in 2015 to 38.5 billion

in 2020, IoT became a ubiquitous part of our daily lives

[1]. This rapid increase in the number and "smartness" of

these devices makes them vulnerable to many security

issues. In addition to security challenges arising from

protecting IoT devices themselves, another challenge is

becoming a reality [2]. That challenge is that IoT devices

are being used as a tool of attack by malicious attackers.

In 2016, a malicious software called Mirai botnet was

used to conduct the largest Distributed Denial of Service

(DDoS) attack at its time with 1.2 Tbps magnitude. The

botnet used an estimated 100,000 vulnerable IoT devices

to attack the Managed DNS service structure of Dyn; one

of the largest DNS service providers in the world. This

attack, that managed to bring down the service for some

time, in addition to many other attacks of smaller scale

raised many questions about the security of IoT devices,

and the Internet as a whole [3].

The most basic method of attack on any block cipher is

simply trying all the possible key, i.e. brute-force attack.

Most other types of attacks try to reduce the search space

from all-possible keys to a smaller space for faster

cracking.

In 1991, Quisquater and Desmedt published a paper

that suggests an attack named the Chinese Lotto attack

[4]. The simple idea of the attack was based on the notion

of replacing the use of supercomputers to launch an

exhaustive key-search attack with use a much larger

number of not-super computers [5]. The concept

introduced relies on using a massive distributed

Manuscript received March 25, 2020; revised September 4, 2020.

doi:10.12720/jcm.15.10.735-740

computing farm to do the key space in a relatively short

time.

The Chinese lotto attack suggests that a massive

number of television devices with a decryption capability

added to them can be used to decrypt an encrypted

message. The massively large key search space in this

brute-force attack is divided into smaller spaces. Each

one of these small search spaces is then assigned to a

specific television set. This way, the search space will be

exhausted in a much faster way because it will be

searched by all the televisions in China in parallel. The

television that finds the right key, would signal a message

to the television owner that he/she has won the lotto and

they should deliver the key code to the authorities to

receive the prize.

IoT applications are growing rapidly with time. These

devices have been used to solve several kinds of

problems in real-world e.g. Inventory control systems [6],

Indoor Automation [7], clinical support systems [8].

These applications have been optimized using Artificial

Intelligence where techniques have been used to find

answers from the unknow worlds e.g. [9], [10].

IoT devices can solve search problems which required

extensive computing resources. These devices can run

light weight solutions which can solve the problems using

the parallel processing strategies. Such solutions have

been successful to solve the complex problem e.g. train

the system predict demand variation [6], [8], [10]. The

strategies are combination of optimal modular design and

the fast communication between the modules. The load

balancing is added to maximize the use of resources.

Such solutions are cross platform and could take benefit

of low-level message passing based network

communication between processing units.

The use of remote procedure calls (rpc) has been

explored in [6] to develop light weight machine learning

solutions. The key advantage of such a distributed

computing architecture is to delegate sub tasks to each

participating IoT device. The device the perform such

tasks on anytime basis. To search for an answer for each

task, the IoT devices perform a fixed look ahead search

and develop a learning structure. The use of such

structures is shared via mapping functions which are

implemented as remote procedure calls. The use of RPC

is also independent of the underlying implementation.

The calls can be made from any platform. Such solutions

are also intuitive as rpc implementation are available in

all operating systems available for IoT devices.

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 735

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 736

In this paper, we present the first implementation of

the conceptual work presented in [2] and validating the

suggested design. This paper builds a small-scale IoT

brute-force system by combining a number of IoT

devices and harnessing their processing power to try

possible decryption keys to decrypt a text that is

encrypted with Data Encryption Standard (DES).

II. IOT LOTTO

In the design presented in [2], a concept similar to

Chinese lottery is presented. However, the design

employs a massive number of IoT devices instead of

computers. As brute-force attacks rely on exhaustive

search of the whole key space to find the correct

decryption key, the presented system divides the key

search space into smaller spaces that can be searched, in

parallel, in a reasonable amount of time by a large group

of IoT devices.

To assure proper key distribution, the proposed design

employs a central arbitration unit named the Key

Distribution Arbiter (KDA). This arbiter is responsible

for assigning keys to IoT devices to assure that each

device is assigned an exclusive key space. Fig. 1 shows

an overview of the proposed design. This arbiter can be

hosted on a single server or can be hosted on a cloud-

based system. Cloud hosting of the arbiter is highly

recommended for implementations that include a large

number of IoT devices to assure seamless operation of the

system.

Fig. 1. Overview of IoT Lotto [2]

The IoT Lotto system uses n IoT devices. This

arrangement will divide the key search space to n smaller

search spaces. The main search space has a size of 2u

where u is the key length of the original symmetric

encryption key, measured in bits.

Using n IoT devices would results in having n smaller

search spaces each of the size 2u/n. This means that the

time required to exhaust all of the search space, t, will

also be divided by n to be t/n. The higher n goes, the less

time it takes to find the correct key.

Inside each IoT device, three software components are

required, as shown in Fig. 2. The Key Arbitration Agent

(KAA) is the component that coordinates with the KDA

to assure that the key search space assigned to the

particular device is exclusive. The second component is

the decryption algorithm. This component depends on the

algorithm that was used in encryption as selected earlier

by the attacker. In our setup, we're using DES. The last

component is the one that stops the processing when the

correct key is found, or all the search space has been

exhausted with no success.

Fig. 2. Software components in IoT devices [2]

A. Key Arbitration Process

As mentioned earlier, each IoT device is assigned an

exclusive key search space. As the search process is

exhaustive and aims at trying to decrypt the given

ciphertext block with all possible key combinations, each

device will be assigned a range of keys instead of a

random key sequence.

For example, if u = 8, then there are 28 possible

combinations. Assuming that we have 16 IoT devices, n

= 16, each device is expected to try 28/16 = 16 keys.

Instead of transferring the keys and storing them in the

memory of the IoT devices, each device is given the first

key and last key in its search space. Hence, for the first

IoT device, the first key is 0000 0000, and the last key is

0000 1111.

For the second IoT device, the first key is 0001 0000

and the last key is 0001 1111. The keys in-between these

ranges, can easily be generated by adding 1 until reaching

the last key. Fig. 3 shows a flowchart of the key

generation process along with the decryption.

Fig. 3. Flowchart of key generation and decryption at the IoT device [2]

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 737

This type of key arbitration reduces the memory

requirements at the IoT device side and reduces the

amount of data to be transferred between the KDA and

the IoT device, keeping in mind that the example

explained earlier is a non-realistic one because key sizes

can be 128, 256, 512, 1024 bits, or even higher.

III. IMPLEMENTATION ENVIRONMENT

Experiments were performed using Raspberry PI 3

devices with RAM of 1GB and a 64bit 1.2GHz ARM

quad core CPU. All the devices are connected via a

switch and are assigned standard static IP assigning

scheme. Each device runs on Raspbian Operating system

and has full support for Remote Procedure Calls (RPC).

 The devices are programmed using asynchronous RPC

calls to send and receive messages for communication. A

device can send a remote call message using Internet

Protocol (IP) address, function name and its parameters

via RPC calls. Experimental setup is designed as a client-

server architecture where a server (KDA) sends an

encryption key range to a client (IoT device) to process.

The receiving device which works as client searches

through key space and finds the correct decryption key.

In an analogy to a master-slave architecture of node

communication in a cluster, in our experiment setup, a

master acts as server and makes RPC calls to clients

which process the requests for decryption key search.

However, due to asynchronous communication, the

master can stop a slave from searching for a key or give it

a new search depending on decisions by load balancing

strategy. The load-balancing strategy is focused on

maximum utilization of devices in key search process. If

a device exhausts its search space earlier than its peers, it

is given a new search space created by reducing the load

of another device. The key search process is shown in Fig.

3. Each RPC call sends two parameters for search which

are current key and cipher text. If it is successful in

decrypting the ciphertext then statistical parameters are

stored e.g. duration of search, number of iterations etc. A

search can be stopped for pre-emptive reason and its

status is kept failure due to the fact that the correct key

was not found, yet. All RPC calls are made using

standard xmlrpc library of Python.

The decryption is performed using python Crypto.

Cipher package and applies Data Encryption Standard

(DES) algorithm [11]. The standard key size of DES is 56

bits. Hence, the complete size of key search space is 256.

Although DES is not currently used in significant real-life

applications, it was chosen due to its limited key size as a

proof-of-concept for the IoT lottery system.

The key space is divided into parts using a heuristic

that divides the space according to the available number

of IoT devices for the search. The search starts from an

entry point in the key search space and ends at a fixed

length of search process. If search does not find solution

within the length, then IoT device returns failure flag.

IV. RESULTS

Experiments are performed using different number of

IoT devices. The perform of each strategy is measured

using the average time to find solution and number keys

to search. As a further measure of optimization, the key

was transferred as an integer ignoring the least significant

zeros. After the transfer, the key is converted to binary

and then the remaining zeros are inserted to the left until

it reaches the standard DES key size of 56-bits.

Fig. 4, where the key length is measured in integer

digits, shows a profile of search process with 200 nodes

in a cluster. The results show that IoT takes more time to

find a key successful when the key size is large. In Fig. 5,

a profile of time taken by a node in a cluster of 2000

nodes in shown with respect to key length. According to

this profile, the time taken per node reduces if key size is

larger than 9 integer digits. The reason for this

optimization is due to a better load balancing strategy in a

large network of IoT device. Fig. 6 supports the results

shown in Fig. 5 as it shows the average time take per

node in a cluster of large size. The time reduces

significantly to find a key successfully if the number of

IoT devices grow. The results also show the importance

of a load balancing strategy to scale up the performance

of IoT network.

The use of optimal load-balancing plays main role in

solving the key search with IoT devices. The load-

balancing strategies are implemented using the parallel

processing strategies used in [9]. It applies a heuristic

which depends on estimated time to complete and range

of key values. The device that has highest heuristic value

is added to a load queue in such a way that the least value

is kept the end of the queue. The queue is managed by

central system and update the queue after a fixed time

interval which is tuned to have optimal updates. Each

update includes the refined heuristic values and position

in the load queue. As soon as a resource completes it

searches, it takes a task from a device of highest heuristic

value or the first value of the queue. The queue is updated,

and the spared device gets the tasks of least heuristic

value.

Fig. 4. Time taken by per node to decrypt a key in a cluster of 200 nodes

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 738

Fig. 5. Time take by an IoT to search a key successfully in a cluster of

2000 nodes

Fig. 6. Average time required to decrypt a key versus size of cluster

Fig. 7. Time taken by per node to complete search with fixed load queue

size

A contextual model is used to transfer the search from

one device to another. The latest search state is stored on

a contextual model for each member of the queue. Once a

device is given a search taken from another, the new

device resumes the search from the state stored on the

contextual model. The contextual model is also updated

according to the fixed time interval. This interval is tuned

for both queue update and state space stored for

contextual model. The model remains updated for each

member of the queue. The contextual model is kept

minimal in this way and always have same number of

entries as in the load queue.

To find the optimal queue size, the load balancing

strategies is explored with different queue sizes and the

profile of fixed queue size is shown in Fig. 7. The queue

size is kept to a constant number depending on the size of

the cluster. A very small size according to the cluster size

will degrade the load balancing performance. A dynamic

queue size requires a sophisticated heuristic which

requires several learning trials. As shown in Fig. 7, the

optimal performance of load balancing is achieved with

much smaller time window using a fixed size load queue.

Without using appropriate load queue size, the parallel

processing strategies can consume more time search even

less number of states as shown in Fig. 7. If the queue size

is too large, the load balancing will consume more time in

transfer the contextual information and increases the

overload, hence less number of states are explored with

large time. With a very small queue size, the time to

complete the search is minimized but in such cases each

device can only search very limited states.

Fig. 8. Time taken by per node to complete search with fixed time

interval to update load queue and contextual model

The load balancing strategies highly depends on the

time interval to update load queue and contextual model

as shown in Figure 8. The smaller time windows add

overhead to update heuristic values for each queue

member and store state of the latest search progress by

each queue member device. Such overheads lead to very

limited search of states by each device to find the key.

The number of states visited by each device is optimized

by using the appropriate window for contextual model

and load queue as shown in Fig. 8.

V. DISCUSSION

The implementation of the design system went

smoothly and as planned. The results, as expected, show

that the increase in cluster size does reduce the time

rapidly. However, the relationship does not reflect

linearity i.e. the factor by which we increased the number

0.00E+00

2.00E+11

4.00E+11

6.00E+11

8.00E+11

1.00E+12

1.20E+12

Se
ar

ch
 S

iz
e

Time

Fixed Time Interval

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 739

of IoT devices was not the same factor of decrease in

time required to find the correct key, as shown in Fig. 6.

This steep decline in the required time with the increase

in the cluster size can be seen clearly if we compare the

points of 11-digit key length. In Fig. 4, with a cluster of

200 IoT devices, the time required was about 350 seconds.

On the other hand, as shown in figure 6, a cluster size of

2000 devices resulted in a time of only 0.015 seconds for

an 11-digit key length.

Results presented in the previous section prove the

concept introduced in [2]. Results also show that the

attack can be implemented at a large or small scale. The

results reveal the importance of optimizing load

balancing to exploit the use of IoT devices to search the

keys for decrypting data. Load balancing strategy is

implemented by using a heuristic based model to identify

the best candidate for transferring the contextual

information from one device to another.

VI. CONCLSION AND FUTURE WORK

In this paper the IoT Lotto attack was implemented

successfully on DES-encrypted data. Results have shown

that a small cluster of IoT devices was able to break the

encryption in around 350 seconds which is very good in

comparison to older brute-force attacks on DES.

Experiments also shown that the increase in the cluster

size would cause a non-linear drop in the time required to

break the encryption. In general, the results presented

here prove the concept of IoT Lotto introduced in [2].

Future research can be directed towards other more

commonly used ciphers like AES or 3DES. In addition,

some work can be done in terms of optimization of the

process and the code. Another research direction can be

implementing the attack on much larger clusters.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Prof. Alani introduced the idea of IoT lotto and

supervised the preparation for the experiments and

discussion of results.

Dr. Alrammal developed the proposed solution, he

conducted the experimentation, and help in finalizing the paper.

Dr. Munir Naveed designed the IoT architecture and

analyze the results.

REFERENCES

[1] Iot connected devices to triple to over 38bn units.

https://www.juniperresearch.com/press/press-releases/iot-

connected-devices-to-triple-to-38-bn-by-2020

[2] M. M. Alani, “Iot lotto: Utilizing IoT devices in brute-

force attacks,” in Proc. 6th International Conference on

Information Technology, New York, NY, USA, 2018.

[3] S. Hilton. (2016). Dyn analysis summary of friday october

21 attack | dyn blog. [Online]. Available:

https://dyn.com/blog/dyn-analysis-summary-of-friday-

october-21-attack/

[4] J. J. Quisquater, Y. G. Desmedt, “Chinese lotto as an

exhaustive code-breaking machine,” Computer, vol. 24, no.

11, 1991.

[5] M. Leech, “Chinese lottery cryptanalysis revisited: The

internet as a codebreaking tool,” Tech. Rep., 2003.

[6] M. Naveed, M. Adnan, I. Ahmed, and Y. Javed, “Smart

IoT based demand variation prediction model,” in Proc.

Sixth HCT Information Technology Trends, Ras Al

Khaimah, United Arab Emirates, 2019, pp. 296-299.

[7] M. Naveed, Y. Javed, G. M. Bhatti, and S. Asif, “Smart

indoor Positioning Model for Deterministic Environment,”

in Proc. Sixth HCT Information Technology Trends (ITT),

Ras Al Khaimah, United Arab Emirates, 2019, pp. 288-291.

[8] M. Naveed, D. Kitchin, A. Crampton, L. Chrpa, and P.

Gregory, “A monte-carlo path planner for dynamic and

partially observable environments,” in Proc. IEEE

Conference on Computational Intelligence and Games

(CIG), Granada, 2012, pp. 211-218.

[9] M. Naveed, A. Crampton, D. Kitchin, and L. McCluskey,

“Real-Time path planning using a simulation-based

markov decision process,” in Research and Development

in Intelligent Systems, Bramer M., Petridis M., Nolle L.

eds., 2011.

[10] K. Samara, Y. Javed, and M. Naveed, “Designing common

ontologies to support clinical practice guidelines using

OWL-based ontologies,” in Proc. Fifth HCT Information

Technology Trends (ITT), Dubai, United Arab Emirates,

2018, pp. 7-11.

[11] B. Schneier, Applied Cryptography: Protocols, Algorithms,

and Source Code in C. John Wiley & Sons, 2007.

Copyright © 2020

by the authors.

This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Prof. Mohammed M. Alani

is a

Professor of Networking and

Cybersecurity. He has authored many

books and paper that were published in

reputable international venues. His areas

of interest include security in cloud

computing, and mobile computing, in

addition to applications of machine

learning and data analytics in cybersecurity

https://creativecommons.org/licenses/by-nc-nd/4.0/

Dr. Muath Alrammal received his MSc

in Information Technology from

Telecom SudParis, Evry, France, in

2007. He received his Ph.D. degrees in

Computer Sciences from the University

of Paris Est, Paris, in 2011.

In 2011, he joined LACL, University of

Paris Est, as post-doctoral researcher. In

2012 he joined LIFO, University of Orleans, France, as a post-

doctoral researcher. Between 2013-2017 he joined IT

Department in KIC, Abu Dhabi, UAE, where he was an

assistant professor. Since 2017 he works for HCT, Abu Dhabi,

UAE as assistant professor in CIS department. His current

research interests include processing big data in streaming,

performance models, selectivity estimation techniques, and

Machine learning. Dr. Alrammal is a member of LaMHA

research group.

Dr. Munir Naveed obtained his first

degree in Software Engineering and a

PhD in Automated planning for real-

time-strategy games. He has been

exploring AI in different domains e.g.

computer games, big data and network

security since 2014. The main focus of

his research is designing new algorithms

to solve problems for real-time applications.

Journal of Communications Vol. 15, No. 10, October 2020

©2020 Journal of Communications 740

