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Abstract—Software Defined Networking (SDN) has become a 

popular technology that offers advantages of programmable and 

flexible network management over the legacy practice. The 

centralized SDN controller is an important enabler of these 

benefits.  One of the most crucial tasks of the SDN controller is 

link discovery as it provides topology of the network essential 

for the controller to direct or create rule forwarding and routing 

mechanisms.  Much research on SDN security has been studied 

but only recently that security of OpenFlow link discovery 

protocols and topology poisoning have been addressed.  

Existing work includes link fabrication attacks via compromised 

hosts and defense systems with authentication.  This paper 

discusses SDN link discovery process and its vulnerability to 

link discovery attacks including new attacks via compromised 

switches.  We present a simple but effective defense mechanism 

using active ports that can detect both host-based and switch-

based link discovery attacks. Finally, the paper presents an 

analytical and empirical analysis of the impacts of topology 

attacks on routing.  The paper discusses attack details, proposed 

methods and results of these analyses. 
 
Index Terms—SDN; Software-Defined networking; link 

discovery; attack; impact analysis 

I. INTRODUCTION 

Software-Defined Networking (SDN) is a networking 

paradigm that innovates network infrastructures to 

programmable and flexible network management and 

administration [1]-[3]. SDN separates the control logic to 

a centralized controller (in the control plane) that directs 

the switches/routers (in the data plane) to forward the 

packets or create and install forwarding rules in their flow 

tables.  This allows complex networks to be centrally 

managed without the need to deal with distributed low-

level network functionalities [2]. In addition, the 

programmability of SDN eases the modification and 

reconstruction of important network properties that result 

in flexible development, and relatively rapid adoption 

with low processing costs.  

To efficiently and effectively manage the network, the 

controller needs accurate and complete topology 

information of the entire network. Therefore, link 

discovery (or topology discovery) is one of the most 

critical services of SDN controller [4]. To do this, SDN 

on OpenFlow [1], a communication protocol to interface 

between the controller and the data plane devices. 

Unfortunately, the OpenFlow Discovery Protocol 
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(OFDP), the de-facto standard for implementing topology 

discovery in most SDN controller platforms, has been 

shown to be insecure [5]. Topology discovery attacks is 

the subject of our research in this paper.           

 Much research has studied SDN security both in the 

data plane that inherits issues from traditional networking 

and new security issues in the control plane [5]-[9].  

However, most do not address the fundamental 

vulnerabilities of the OpenFlow-based controllers [10].  

This paper focuses on the latter, particularly the security 

issues of the controller's link discovery process. The 

OpenFlow discovery protocol is known to be vulnerable 

due to the lack of authentication mechanisms in packet 

control messages [5]. This leads to security threats and 

attacks [11]. A successful attack can poison the network 

topology information, convincing the controller of the 

falsified view of the network topology.  As a result, an 

attacker can re-route traffic over false network links 

enabling man-in-the-middle or denial-of-service attacks 

via compromised machines [12].  

A variety of link discovery attacks and counter 

measures have been researched [2], [4]-[7], [11], [12].  

Early attacks include link fabrication attacks through 

compromised hosts [7]. By impersonating the end-host, 

an attacker can create spoofed links by injecting fake 

control packets into the network via one or more 

compromised hosts causing traffic to be re-directed to the 

attacker [2], [5], [10]. No existing work discusses attacks 

via compromised switches even though the idea is 

relatively simple and natural.  

Alharbi et al [5] describe detailed mechanisms of these 

OpenFlow discovery protocol attacks along with 

empirical impact analysis on routing to verify the 

possibility of the attack. While this is useful, it would be 

desirable to have an analytical approach to impact 

analysis as well. Existing defense mechanisms include a 

system that automatically detects attacks by observing 

anomalous network behaviors [6] and by adding extra 

authentication to the packet control messages using a 

keyed-hash message authentication code [2], [5]. 

However, like many intrusion detection techniques, such 

defense mechanisms rely on the quality of data and can 

only detect anticipated anomalies. 

This paper discusses details of SDN link discovery 

process and illustrates its vulnerability to link discovery 

attacks. The contributions of the paper include: 

 Identification of new link discovery attacks via 

compromised switches (or switch-based link 

discovery attacks). 
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 A simple defense mechanism using active ports that 

can detect both switch-based and host-based link 

discovery attacks.  

 An analytical approach to analyze impacts of 

topology attacks on routing along with an empirical 

approach to verify consistency of the results.   

The rest of the paper is organized as follows: Section II 

provides the background information about the SDN and 

Link Discovery process. Section III describes Link 

discovery attacks including previous host-based link 

discovery attacks and its defense mechanism in 

Subsection A, the switch-based discovery attacks in 

Subsection B, and the proposed detection technique in 

Subsection C.    Section IV presents impact analysis with 

analytical approach in Subsection A and empirical 

approach in Subsection B.  Section V discusses related 

work and Section VI concludes the paper. 

II. BACKGROUND 

This section describes an overview of SDN in Section 

A and the link discovery service in Section B. 

A.  Software-Defined Networking (SDN) 

Fig. 1 shows SDN's architecture that can be viewed in 

three planes: data plane, control plane and application 

plane. By separating the data plane and the control plane, 

and enabling network programmability with a centralized 

controller, one can adapt network management to 

changes (e.g., new configurations, size, or topology) 

easily.  Thus, SDN provides flexible and easily scalable 

network management as opposed to the traditional 

networking that ties the functions from the two planes to 

the same device (e.g., switch) [1].  

 
Fig. 1 Architecture of Software-Defined Networking. (SDN) 

The data plane deals with hardware level packet 

processing based on the policies from the control plane.  

The data plane consists of forwarding devices (e.g., 

switches, routers) including physical and virtual switches 

that are responsible for data transmission. Each switch 

has a corresponding programmable flow table that defines 

an action for each packet related to a specific flow (called 

a flow rule).  When a new packet arrives at a switch, the 

switch checks if the packet matches any flow rule in the 

switch’s flow table.  If so, the packet will be processed 

according to the existing flow rule.  Otherwise, the switch 

consults with the controller to provide appropriate action 

(e.g., how to process the particular packet, new flow rule 

to be installed in the flow table).     

The controller in the control plane directs basic 

network services and operations (e.g., packet routing, 

traffic monitoring, and network access control) in the data 

plane. The software controller has a complete view of the 

network topology, network traffic and status of the switch 

ports (e.g., active or inactive).  Thus, it has the ability to 

make appropriate routing decisions to improve the 

network traffic. It exercises the direct control over the 

data plane through well-defined application programming 

interfaces (API) based on a logically centralized, abstract 

view of the network.  Thus, the controller is a core SDN's 

component that can have great influence on the network.    

The network is also programmable through software 

applications situated in the application plane running on 

top of the control plane. This plane has a set of 

applications that implement some network control 

functions like security, routing, load balancers, fault-

tolerance, recovery, etc.  Thus, in addition to providing 

core services, the application plane allows other network 

applications to be implemented as well (e.g., cloud 

network virtualization and data center network 

optimization) [2].    

The separation of the control plane and the data plane 

is realized by the Southbound Application Programming 

Interface (API), as shown in Fig. 1. The most notable of 

southbound API protocol is OpenFlow. It is one of the 

first standard protocols that is used for managing the 

communication between the control plane and the data 

plane.  OpenFlow protocol allows the SDN controller to 

configure switches via the packet forwarding rules. The 

protocol also allows switches to notify the controller 

about special events, e.g., the receipt of a packet that does 

not match any existing forwarding rules. Each OpenFlow 

switch has one or more flow tables containing the packet-

handling rules. These rules direct the OpenFlow switches 

in forwarding the packets. The network managers use 

these flow tables to modify the layout of the network and 

the traffic flows. 

Similar to Southbound, the Northbound API represents 

the interface through which the communication between 

the application plane and control plane takes place. This 

Northbound interface abstracts the low-level instruction 

sets used by southbound interfaces. 

B. Link Discovery Service 

Topology discovery is a crucial core SDN controller's 

service since topology information is a fundamental 

building block for network management (e.g., packet 

routing, network virtualization and optimization, and 

mobility tracking). Here we use the terms “topology 

discovery” and “link discovery” synonymously, as the 

latter constitutes the former.    

Packet sending between switches: Although there is 

no formal standard for topology discovery in SDN, most 
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controller platforms implement topology services using 

OpenFlow Discovery Protocol, which has become the de-

facto standard [5]. The OpenFlow Discovery Protocol 

sends the Link Layer Discovery Protocol (LLDP) packet 

for link discovery between switches.  The LLDP packet 

has a structure as shown in Fig. 2.   

 
Fig. 2. Structure of LLDP packet. 

As shown in Fig. 2, the LLDP Packet includes the 

LLDP Data Unit, which can be categorized into several 

type-length-value (TLVs) including Chassis ID (a 

sending switch ID), Port ID (egress port ID for outgoing 

packet), and Time-to-live. These TLVs are followed by 

optional TLVs such as Datapath ID (DPID), and End of 

LLDP Data Unit TLV.   

Packet sending between controller and switches: 

OpenFlow supports Packet-In and Packet-Out messages 

for sending a data packet from SDN switch to the 

controller and vice versa, respectively.  Packet-Out 

message also allows the controller to send, to the switch, 

additional instructions (or action list) on how to forward 

the data packet. These messages are important for link 

discovery mechanism to be described below.  

Discovering existing switches: The controller realizes 

the existence of switches and their key properties (e.g., 

ID, ports, MAC address) through the initial OpenFlow 

protocol handshake between the switches and the 

controller. Fig. 3 illustrates message exchanges in the 

handshake process.   

 
Fig. 3. Handshake protocol. 

Upon joining the network, the switch sends 

OFPT_HELLO to the controller, which in turn sends an 

OFPT_FEATURES_REQUEST to the switch. The 

switch then sends OFPT_FEATURES_REPLY along 

with its key properties (i.e., switch ID, MAC address, 

active port).  The controller keeps the record of each 

existing switch and their properties.  

Fig. 4 illustrates a link discovery from Switch S1 to 

Switch S2. Here the controller is aware of the existence of 

Switches S1 and S2 via initial handshake process when 

they join the network. These switches and their key 

properties are stored in a “switch” table on top right 

corner of the figure. Note that the table does not include 

active ports connecting with the controller. 

SDN link discovery has three basic steps. 

Step 1: the controller creates an LLDP packet for each 

active port on each switch recorded by the controller in 

the table. Each LLDP packet has corresponding Chassis 

ID and Port ID TLVs.  For example, based on the table in 

Fig. 4, LLDP PACKET (S1, P3) and LLDP PACKET (S2, 

P2) are created. Since we focus on a link from Switch S1, 

we only show the LLDP PACKET (S1, P3) in the figure.  

 
Fig. 4. Link discovery mechanism 

Step 2: Based on the LLDP packets created in Step 1, 

the controller then sends Packet-Out message to the 

switch having the LLDP packet and instructs the switch 

to forward the LLDP packet through the specified port.  

As shown in Fig. 4, based on the LLDP PACKET (S1, P3) 

created, the controller sends PACKET-OUT(S1, P3) to S1 

and instructs to forward the LLDP packet via Port P3. 

Step 3: Any received LLDP packets must be sent to the 

controller by Packet-In message containing the receiving 

switch ID and ingress port ID along with meta data of the 

origin switch sending the LLDP packet (i.e., the Chassis 

ID and its egress port ID). The evidence of the LLDP 

packet being forwarded from the sending to receiving 

switches leads to the controller’s conclusion of the 

existence of the link and thus, link discovery. For 

example, as shown in Fig. 4, The LLDP PACKET (S1, P3,) 

contains meta data of the origin switch sending the LLDP 

packet (i.e., Switch S1 and Port P3,). Thus, the received 

Switch S2 (via Port P2) sends PACKET-IN (S1, P3, S2, P2) 

to the controller. Here the last two parameters S2, P2 are 

meta data of the receiving switch, while S1, P3 contains 

data of the sending switch. The controller infers its 

discovery of link from Switch S1 (Port P3) to Switch S2 

(Port P2). 

III. LINK DISCOVERY ATTACKS  

The described link discovery mechanism is vulnerable 

in that there is no authentication of LLDP control 

messages [5]. Thus, any LLDP packet received by the 

controller is accepted as a genuine packet.  Consequently, 

an attacker can inject fabricated LLDP control messages 

to poison the topology information of the controller.  The 

attacker can falsify the LLDP packet content or fabricate 

the link discovery by creating a link that does not actually 

exist [2]. This section describes link discovery attacks 

and defense mechanisms for existing host-based attacks 

in Section A and our switch-based attacks in Section B. 

A. Host-based Link Discovery Attacks & Defense 

Most existing studies [5], [6], [10]-[12] of link 

discovery attacks deal with a situation when a host 

connecting a switch in a network has been compromised. 

As an example, consider an extended network of the 

Journal of Communications Vol. 15, No. 8, August 2020

598©2020 Journal of Communications



network in Fig. 4 where now Host H1 connects with 

Switch S1 (via Port P4) and Host H2 connects with Switch 

S2 (via Port P3). Suppose H1 has been compromised and 

an attacker aims to create a fake link between switches S1 

(via Port P4) and S2 (via Port P3), which does not exist via 

these ports.  

Link Fabrication: The controller creates LLDP 

packets for all the active ports for switch S1, namely 

LLDP PACKET(S1, P3) and LLDP PACKET(S1, P4). 

Then it sends out packet-out messages to all active ports, 

namely PACKET-OUT(S1, P3) and PACKET-OUT(S1, P4) 

to forward the corresponding LLDP packets.  

Being at H1, the attacker captures the LLDP 

PACKET(S1, P4) and change the packet into LLDP 

PACKET(S2, P3) and sends the spoofed packet to S1.  

Based on the discovery mechanism (Step 3), when 

switch S1 receives the LLDP packet (via Port P4) it sends 

a packet-in message to the controller, which includes the 

sender’s and receiver’s information. Specifically, S1 

sends PACKET-IN (S2, P3, S1, P4), where the first two 

parameters are from original when LLDP PACKET(S2, 

P3) being forwarded.  The controller infers that there is a 

link between Switch S2 (via Port P3) and Switch S1 (via 

Port P4) when it does not actually exist as desired by the 

attacker's goal. 

 Previous approaches can be 

divided into two groups: strengthening authentication of 

LLDP packets by using cryptography [5] and detection 

techniques for link discovery attacks [6], [7]. We will 

describe basic ideas of one of the latter approach.  

The key element of the detection technique proposed 

11] is to realize that in a non-malicious 

network, the LLDP packet will never be sent from the 

host. In link discovery process, the controller generates 

LLDP packets for all active switches to be forwarded 

through the links. The recipient switch will send the 

packet-in message to the controller to infer link but the 

recipient host will not as it does not participate in the link 

discovery process.  

However, in the attack case, the compromised host will 

behave as if it was a switch by sending the spoofed LLDP 

packet to the switch. The recipient switch carries on and 

the controller wrongly accepts the spoofed information.    

Hong et.al propose TopoGuard, a security extension of 

the controller that raises an alert when it detects a LLDP 

packet being sent from a host. For example, in the 

scenario described above, when the TopoGuard observes 

PACKET-IN(S2, P3, S1, P4) and detects that Port P4 

connects with a host, it raises an alert and stops the 

discovery update.   

B. Switch-based Link Discovery Attacks 

In this section, we introduce a switch-based link 

discovery attack, a slightly different link discovery attack 

where a switch has been compromised (e.g., by flooding 

the switch's Mac table with fake Mac addresses) and 

propose a detection technique that can detect both host-

based and switch-based attacks. Attacks through 

compromised switches do not only have the equivalent 

capabilities as those through malicious hosts but can also 

have strong impacts and high severity. 

 
Fig. 5. Switch-based link discovery attack. 

The basic idea of switch-based is similar to that of 

host-based in that once the switch is compromised, an 

attacker can obtain information to poison the network 

topology. However, methods for obtaining such 

information may be slightly different. To illustrate the 

attack, assume that an attacker has compromised Switch 

S2 as shown in red Switch S2 in Fig. 5. In this scenario, 

the attacker aims to create a fake link between Switch S1 

and Switch S3, which does not actually exist. As shown in 

Fig. 5, in Steps 1 and 2 of the link discovery process, the 

controller creates LLDP packets for the active ports P1 

and P4 of Switch S1 and P2 and P3 for Switch S3, 

respectively and sends corresponding packet-out 

messages to the respective switches with additional 

instructions for them to forward the created LLDP 

packets to adjacent switches.  For example, as shown in 

Fig. 5, the controller sends PACKET-OUT(S1, P1) to S1 

that forwards LLDP PACKET(S1, P1) to S2. Similarly, S3 

forwards LLDP PACKET(S3, P2) to S2. Note we omit 

showing LLDP packets that are not relevant to the attack 

(e.g., LLDP packets from S1 and S3 to hosts H1 and H2, 

respectively).    

In Step 3 of the link discovery process, each LLDP 

packet received must be sent to the controller with 

packet-in message that contains information of the 

sending and receiving switches. For this example, both 

LLDP packets (i.e., LLDP PACKET(S1, P1) and LLDP 

PACKET(S3, P2)) are received by S2. Since S2 has been 

compromised, the attacker receives and intercepts the 

LLDP packets and then extracts the MAC address of the 

switch in the packet (i.e., those of S1 and S3).  Since MAC 

addresses are the unique identifier of a switch that the 

controller uses, capturing MAC addresses will enable the 

attacker at S2 to mimic Switches S1 and S3. To create a 

fake link from S1 to S3, the attacker (S2) mimics S3 as a 

receiving switch of this fake link and thus, sends a 

packet-in message to the controller, specifically a 

malicious PACKET-IN(S1, P1, S3, P2) instead of the 

correct PACKET-IN(S1, P1, S2, P2) and PACKET-IN(S3, 

P2, S2, P1). As a result, the controller wrongly discovers 

that there is a link from S1 (via P1) to S3 (via P2). Note 
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that the attack needs to forge the controller. Hence, if the 

malicious switch simply forwards LLDP packets across 

its ingress/egress ports (e.g., P2 and P1 in S2, to the 

adjacent switches S1 and S3 in this case), instead of 

sending a corrupted LLDP packet to the controller, the 

controller would not have had the view of the changed 

network and the attack would not have been 

accomplished (i.e., the controller does not discover 

wrongly a fake link from S1 (via P1) to S3 (via P2)). 

C. Proposed Defense Mechanism 

Our defense mechanism is for the controller to validate 

the link discovered (i.e., those sent via the packet-in 

messages as well as attacks via compromised switch and 

host) and alert a suspicious link instead of accepting any 

link discovered. The principle behind the link validation 

criterion is that no active port should be used to connect 

more than one link at a time. By monitoring all active 

ports of every switch and every active link in the network, 

our defense mechanism makes sure that no active port 

can be shared for connecting multiple links at the same 

time. If a new discovered link sent (via packet-in message) 

violates this principle, then the defense mechanism 

declares the new discovered link to be non-legitimate (or 

invalid) and sends an alert to the controller to either reject 

it (aggressive resolution) or to further investigate and 

decide if the link should be rejected (conservative 

resolution).  

To maintain the status of active links with 

corresponding ports of each switch, the controller is 

assumed to have the ability to monitor and obtain updates 

of this information as that used in [13]. The SDN 

controller stores the network inventory and traffic data 

from the control and data planes for processing and 

generating network statistics. In this paper, we slightly 

modify the monitoring parameters, for example, by 

including the port-link mapping between the switches.  

Specifically, let T be a table, where each column 

represents active switch and each row represents an 

instance of an active link.  

Defense on Switched-based Link Discovery Attack.  

As an example, consider a scenario in Fig. 5. The 

controller creates LLDP PACKET(S1, P1) in Step 1, then 

sends the PACKET-OUT(S1, P1) message to S2 in Step 2, 

causing the LLDP packet to be sent to S1.  The receiving 

switch S2 sends PACKET-IN(S1, P1, S2, P2), which in 

turn is discovered as a link from S1 (via P1) to S2 (via P2). 

This link is represented in the first row of Table I. The 

entry is an active port of the switch column for each end 

of the link. 

TABLE I: ACTIVE LINKS OF NETWORK IN FIGURE 5. 

Link S1 S2 S3 

(S1, S2) P1 P2  

(S3, S2)  P1 P2 

(S1, S3) P1  P2 

 

Similarly, the link (S3, S2) in second row of the table is 

discovered. Since its active ports of both ends have not 

been shared with other links, therefore the link is 

legitimate to be added in the controller's topology view of 

the network. 

Now consider the compromised Switch S2, where the 

attacker has spoofed S3 and sends a malicious fake 

package-in message to the controller (i.e., PACKET-

IN(S1, P1, S3, P2) from S2 in Fig. 5). If we were to add this 

link into the controller's topology view, the monitoring 

table would appear as shown with an additional last link 

in the last row. But now the defense mechanism observes 

that active ports P1 of switch are shared by two links 

connecting with S1, namely link (S1, S2) and link (S1, S3).  

Thus, the defense mechanism will alert the controller of a 

potential threat to take further action.  Consequently, the 

last link (S1, S3) is detected as non-legitimate and will not 

be allowed to add in the table. 

Fig. 6 summarizes the algorithm described above in 

more details. 

Procedure Link validation(NewLink((S1, P1, S2, P2), T) 

Inputs: NewLink (S1, P1, S2, P2);  

              T, a table of active links, ports, switches as in TABLE I  

Output: Is Link (S1, P1, S2, P2) legitimate? 

1 Legitimate  True 

2 If P1 is a host port (i.e., port of switch attached to a 
host) of S1  P2 is a host port of S2  

then Legitimate  False;  
         Send alert to controller and exit  

3 P(S1)  {Port P | P is an active port of Switch S1 of an 
active link  

               in the table} 
4 P(S2)  {Port P | P is an active port of Switch S2 of an 

active link  

               in the table}  

5 If P1  P(S1) or P2  P(S2)  
then Legitimate  False;  
         Send alert to controller and exit   

Fig. 6. Proposed simple defense mechanism 

Defense on Host-based Link Discovery Attack. The 

proposed mechanism is simple and general in that it is 

also applicable to Host-based Link Discovery Attacks as 

well. As an example, consider a scenario in Section III.A, 

which is a network in Fig. 4 with a Host H1 connects with 

Switch S1 (via Port P4) and Host H2 connects with Switch 

S2 (via Port P3), where H1 has been compromised.  

Before the attack, the controller sends call-out message 

to S1 to forward LLDP PACKET (S1, P3) to S2. As a result, 

the receiving switch S2 (via P2) sends PACKET-IN(S1, P3, 

S2, P2) to the controller. Since this is the first link and 

none of the port is a host port, the link is legitimate and 

added to the first row of Table II.  

Similarly, S1 forwards LLDP PACKET (S1, P4) to H1. 
The controller only discovers links between switches. If 

H1 is not malicious there will not be additional active link 

added to the table.  Instead, since H1 is compromised, the 

attacker captures the LLDP PACKET(S1, P4) and sends 

the spoofed LLDP PACKET(S2, P3) to S1.  As a result, S1 

sends PACKET-IN (S1, P4, S2, P3) to the controller.  If we 

were to update Table II with this new link, the result 

would have been shown as in the second row of the table.  

Since P4 is a host port, our defense mechanism would 

determine that this new link is non-legitimate and sends 

alert to the controller to reject or re-examine the link 
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before accepting it.  The second row of the table would 

not have been there in the table T at the control plane. 

TABLE II: ACTIVE LINKS OF EXTENDED NETWORK OF FIGURE 4. 

Link S1 S2 S3 

(S1, S2) P3 P2  

(S1, S2) P4  P3 

IV. IMPACT ANALYSIS OF LINK DISCOVERY ATTACKS 

Impact analysis assesses likelihoods of consequences 

of any exploitation of vulnerabilities (or attacks) in the 

network. This paper focuses on impacts of the SDN Link 

Discovery Attacks on packet Routing, which is one of the 

most fundamental services of SDN.  

Although we have shown that host-based and switch-

based link discovery attacks are slightly different (in 

terms of the attacker's actions), both falsify the network 

topology, disrupt the network functions, and escalate to 

the same resulting impacts such as denial-of-service and 

man-in-the-middle attacks [14]. As a result, the impacts 

on poisoning network topology from these attacks are the 

same no matter how the attacks are performed. Thus, our 

impact analysis will not differentiate the host-based and 

switch-based attacks but focus on the resulting 

consequences to SDN's routings.  

Most existing work analyzes the network empirically 

by verifying the feasibility of the attacks [2], [5] using 

simulation tools to emulate the SDN network behaviors 

[15]. However, we propose two approaches: analytical 

and empirical analyses. The proposed analytical approach 

is simple, but it can be applied to any network topology. 

A. Analytical Approach 

The analytical approach is useful for estimating 

security impacts to help detect overall system topology 

security flaws, should there be discovery link attacks, 

before its deployment.  Although the method is simple, it 

is grounded by a commonly known probabilistic model.  

Here we assume that, unless specified, at any switch, if 

there are multiple routing options, all data packets are 

equally likely to be forwarded to each optional switch in 

order to provide load balancing.  For example, S1 has two 

options to forward the packet (i.e., to S2 or S4).  The 

number of packets received by S2 or S2 should be 1/2 

(probability of S2 to be selected out of the two 

alternatives) of the number of the packets obtained by S1.  

During the routing, it is possible that the packets may 

not reach the destination in an expected duration due to 

delays in traffic or services of switches on the routing 

path. If the timeout occurs before all the packets are 

delivered, there are several routing schemes. For example, 

the routing manager can continue sending additional 

packets on a different route or can start over and lose the 

packets sent so far. For simplicity, the proposed 

analytical method will assume the latter. The selection of 

suitable alternative routing paths is to select the shortest 

path first but if the alternatives are of equal path length 

then the alternative route is selected at random. In 

addition, we use the UDP (User Datagram Protocol) 

communication protocol where the sender switch does 

not wait for acknowledgements.  However, in our 

empirical analysis, we consider both UDP and TCP 

(Transmission Control Protocol), where sender expects an 

acknowledgement from the receiver when the packets are 

received. 

The key element of the proposed approach is to 

compute the estimated the likelihood of the number of 

packets received on each switch, when all routes are 

considered, and most importantly the destination switch, 

as this indicates the effectiveness of the routing (or 

impacts of attacks on the resulting packet delivery).  

Let L(Si) be an estimated likelihood of the number of 

the packets Si received. Suppose Si has n alternatives to 

forward these packets. Let pij be the probability that Si 

will transmit packets received to switch Sj (connecting 

with Si).  Thus, the estimated number of packets Sj 

received from Si will be pij .L(Si).  Note that if we assume 

that packets transmission from Si to Sj are equal likely, 

then pij = 1/n. Suppose Sj can receive packets from m 

routing alternatives (i.e., incoming routes to Sj other than 

from Si). We have: 

L(Sj) =∑ 𝑝𝑚
𝑖=1 ij   L(Si) = ∑

1

𝑛

𝑚
𝑖=1  L(Si)              (1) 

Due to delays in network traffic or delays of a 

particular switch function (e.g., communication with 

SDN's controller to identify or create flow rule), some 

packets may not get transmitted in time for a set 

"timeout" period causing unsuccessful transmission. The 

packets are dropped when timeout occurs. In such a case, 

the routing manager searches for alternative routes and 

select a route to start sending the packets over again from 

S1 (there maybe other variations of communication 

protocols but the same concept of our mathematical 

analysis can still be applied). As described before, most 

routing strategy selects the shortest path first and 

randomly selects among those of equal path length.  We 

will now illustrate the proposed probabilistic impact 

assessment in three scenarios of the same network 

topology in more details.  

Scenario1 Normal with no attacks:  
Consider a routing scenario of a network with six 

switches as shown in Fig. 7, where the routing starts from 

switch S1 to the destiny at switch S6. Both S1 and S6 are 

connected to host X and host Y respectively. Note the 

hosts are not relevant to our analytical impact assessment 

here but they are to attacks for empirical analyses.  

 
Fig. 7. Routing of packets from source S1 to destination S6. 

In this scenario a source switch S1 sends packets to the 

destination switch S6 with a transmission rate of about 10 

packets/sec through each link. When timeout occurs, the 
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routing manager seeks alternative route based on the path 

length. To simplify our illustration, here the routing 

manager will select the alternative paths in the following 

order, namely (S1, S2, S6), (S1, S2, S3, S6), (S1, S2, S5, S6), 

and (S1, S4, S3, S6). Furthermore, attempts to send packets 

starting from S1 occur as follows. 

First, S1 successfully routes 10 packets to S6 (no 

timeout). Then the next 10 packets are sent through the 

same path (i.e., (S1, S2, S6)) but the packets are delayed 

this time at S2 and timeout occurs. Thus, the routing starts 

sending the third set of 10 packets again from S1 using an 

alternative route of (S1, S2, S3, S6).  This times the routing 

also fails because of the delays at S3 and eventually 

expires S3's timeout.  The routing now tries again with the 

next alternative route from S1, namely (S1, S2, S5, S6). 

Unfortunately, the timeout occurs at S5, and finally the 

last alternative route of (S1, S4, S3, S6) is tried and 

successfully transmits the packets to the destination 

Switch S6.   

TABLE III:  NUMBER OF PACKETS BEING FORWARDED - NO ATTACK 

Path S1 S2 S3 S4 S5 S6 

(S1, S2, S6) 10 ½ 10 ⅓ 10 

(S1, S2, S6) 10 ½ 10 

(S1, S2, S3, S6) 10 ½ 10 ⅓ 10 

(S1, S2, S5, S6) 10 ½ 10 ⅓ 10 

(S1, S4, S5, S6) 10 ½ 10 10 10 

Total impacts L(S1) L(S2) L(S3) L(S4) L(S5) L(S6) 

50 20 3.3 5 13.3 13.3 

Based on the scenario described, we can fill in the 

estimated number of packets received at each switch in a 

corresponding path.  As shown in Table III, packets 

received at S2 and S4 from S1 is a half of packets of S1, 

while S3 receives only one third of those received by S2 

(since there are three alternatives).  

As shown at the bottom of Table III, we can compute 

the estimated likelihood of the number of packets 

received at each switch easily by summing the number of 

packets received by all routing activities.  For examples, 

L(S1) = 50 but L(S6) = 13.3 since there are a lot of routing 

failures in this scenario.  This scenario is pessimistic in 

order to illustrate the technique.  This preliminary 

structure maybe too tedious to analyze now as it requires 

the system designer to anticipate what can happen in the 

routing scenario.  The subject to predict such behaviors of 

the network is beyond the scope of this paper. 

Scenario2 Attack scenarios: 
We consider two attacks, namely an attack at S2 and an 

attack at S3 (one attack at a time). We assume the same 

delays and timeouts as used in the normal scenario.  

In the first case, suppose S2 is compromised. 

Consequently, attacker at S2 will not forward the packet 

further causing the timeout. Thus, the routing manager 

will use an alternative route and start over. This is 

different from the normal case where the first 10 packets 

are successfully transmitted. In order to compare the 

normal scenario with the attack scenario at S2, after the 

destination S6 receives 10 packets, we continue on with 

the next 10 packets (so that a total of 50 packets are sent 

from S1 in both scenarios), in which case, the shortest 

path will be applied.  The summary of the estimated 

likelihood of the number of packets received is shown in 

Table IV. The last 10 packets sent from S1 is shown in the 

last row of the table. 

TABLE IV: NUMBER OF PACKETS BEING FORWARDED- S2  ATTACK  

Path S1 S2 S3 S4 S5 S6 

(S1, S2, S6) 10 ½ 10 

(S1, S2, S3, S6) 10 ½ 10 

(S1, S2, S5, S6) 10 ½ 10 

(S1, S4, S5, S6) 10 ½ 10 10 10 

(S1, S2, S6) 10 ½ 10 

Total impacts 50 20 0 5 10 10 

As shown in Table IV, the number of packets received 

at the destination switch is at a slightly decreased rate of 

10/50 = 20% as opposed to the rate of 13.3/50 = 26.6% in 

the normal case when no attack on S2.  If our scenario in 

the normal case did not have a timeout at S2, the resulting 

impacts would have been greater. 

Next, we consider when an attack occurs at S3. The 

resulting impact analysis is summarized in Table V.  

TABLE V. NUMBER OF PACKETS BEING FORWARDED- S3 ATTACK 

Path S1 S2 S3 S4 S5 S6 

(S1, S2, S6) 10 ½ 10 ⅓ 10 

(S1, S2, S6) 10 ½ 10 

(S1, S2, S3, S6) 10 ½ 10 ⅓ 10 

(S1, S2, S5, S6) 10 ½ 10 ⅓ 10 

(S1, S4, S5, S6) 10 ½ 10 10 10 

Total impacts 50 20 3.3 5 13.3 13.3 

As seen in Table V, attack at S3 in this scenario has no 

impact on the number of packets received at S6.  If the 

scenario did not have timeout at S3 for path route (S1, S2, 

S3, S6), we may see more impacts of the attack since S3 

will not forward the packet (as opposed to timeout). 

However, we can see that the impact of the attack on 

the network routing becomes more severe if an attack 

occurs on a more connected switch (i.e., S2) than less 

connected switch (i.e., S3) that are on the path to the 

destination. 

The results of the analysis are meant to illustrate the 

key concept and contribution of the proposed mechanism 

and not on the actual results themselves. The proposed 

mechanism gives a framework that allows a systematic 

analytical analysis to estimate impacts of SDN attacks.  

B. Empirical Approach

Most SDN’s research relies on a simulation of SDN

architecture as a tool to verify their studies. This section 

shows how we analyze the impacts of link discovery 

attacks empirically. 

SDN Simulation and Experimental Setup: 
Here we used Mininet [16] for emulating virtual 

SDN/OpenFlow networks, and POX [17], a Python-based 

controller for software-defined networking simulation, 

which we used to perform the link discovery attack.  In 

this paper, our simulation considers only cases when the 

network has a single attack at a time. 

For the Link Discovery Attack, we simulated a “fake” 

link between two nodes by injecting a false message to 

the controller notifying a packet being sent from either a 
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non-existing sender’s ID or from a legitimate sender’s 

ID/address but with a non-existing/unused port. The 

simulation was run on HP v7x machine having Intel(R) 

Core(TM) i7-5600U CPU at 2.60 GHz, and 8GB of RAM, 

running 64 bit Windows 10 Pro. 

We ran experiments on the network as shown in Fig. 7, 

where the packets are sent from host X to host Y.  For the 

attack scenarios we want to further verify our analytical 

results that attack at most connected switch (i.e., S2) 

yields more severe consequences than the attack at the 

less connected one (e.g., S3). To obtain realistic results, 

we ran experiments for both UDP and TCP protocols as 

in practice. Link discovery attacks from the compromised 

switch leads to the fabrication of the links following the 

switch (e.g., links (S2, S3), (S2, S6), (S3, S6)) Recall that 

only one single attack occurs at a time. In each scenario, 

we set hard timeouts of 10 seconds. This means that a 

flow table entry is removed after 10 seconds and a new 

flow rule or path has to be recomputed and identified by 

the controller. The total time for running each session of 

the experiment was set for 10 minutes.  

Experimental Results:  

We compare the number of packets received at each 

switch in the three scenarios: normal, link discovery 

attack at S2 and link discovery attack at S3. Here the 

critical switch is the destination switch S6, which 

connects to host Y. For the UDP protocol (no 

acknowledgement), an estimated of 520 packets are sent 

for each scenario. Fig. 8 shows the comparison results 

obtained for the UDP protocol.     

 
Fig. 8. Comparison of packets received using UDP protocol. 

As shown in Fig. 8, while the numbers of packets 

received at S2 are comparable for the three scenarios (i.e., 

407, 411, and 408 for normal, attack at S2 and attack at S3, 

respectively), they are not at the destination switch S6. As 

expected, the number of packets received when attacks 

occur are 137 and 177, which are lower than that of the 

normal case of 185 packets. 

Here attack at S2 yields less number of packets 

received than attack at S3. This is consistent with results 

obtained from our mathematical analysis in that both 

confirm our hypothesis that the link discovery attack on 

the most connected switch (S2) is more severe than attack 

on less connected switch (S3).   

Fig. 8 also shows significant reduction of the number 

of packets received on its other connecting switches (e.g., 

reduction from 66 to zero on S3, and from 240 to 137 on 

S5). The reduction of the number of packets received as a 

result of attack at S3 goes directly to S6, whose packets 

are received from multiple paths.  Thus, we cannot isolate 

the immediate impact of attack at S3 alone.  On the other 

hand, the numbers of packet received at S2 and S4 in the 

three scenarios are comparable. Based on the network 

topology in Fig. 7, it is clear why the attacks have no 

impacts on these switches (as they are not on the path 

following the attack switches).   

 
Fig. 9. Comparison of packets received using TCP protocol. 

Fig. 9 shows the comparison results obtained for the 

TCP protocol. Here an estimated of 1535 packets are 

used for each scenario. The results are similar to the UDP 

case. The destination switch S6 received the least number 

of packets of 255 on the S2 attack compared to that in the 

normal case of 396, and that of 412 in the S3 attack.  

Because of the nature of TCP communication that 

requires acknowledgement, which causes extra delays 

along with the fact that the attack at S3 barely effects the 

number of packets received at S6 (since it is one out of 

three routes), the resulting packets received at S6 when 

attack occurs on S3 is slightly higher than that when no 

attack occurs.  

 
Fig. 10. Comparison of ACK packets received in TCP protocol. 

The TCP communication protocol requires a recipient 

switch to send an acknowledgement (ACK packets). Fig. 

10 shows the number of ACK packets received at each 

switch in all of the three scenarios. As shown in Fig. 10, 

on S2 attack case, there is zero ACK packets received at 

S2 and the following switches, S3 and S6 on the routing 

path. Since S6 is the end of the route, there is no need to 

send ACK packets to it. Thus, no ACK packet received at 

S6 in every scenario.  

 
Fig. 11. Comparison of flow rules installation. 
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Fig. 11 shows the number of flow rules installed. As 

shown in Fig. 11, the number of flow rules at each switch 

fluctuates. However, the numbers compared in all of the 

three scenarios are about the same, whether there is attack 

or not.  This is because the attacks do not impact the flow 

rule activities more than the normal case. On the other 

hand, the numbers of flow rules installed at each switch 

in the TCP case are always higher than those of the UDP 

case (e.g., at S2 the numbers of installed flow rules are 84 

in UDP vs. 118 in TCP in the normal scenario) in all 

three scenarios. The reason is due to the installation of 

additional flow rules of ACK packets. 

In this paper we use the packet drop count to signify 

link discovery attacks.  Although we have not illustrated 

here, it should be relatively easy to see that attacks can 

also be detected by finding the active ports, which are 

already in use in a particular switch (as explained in the 

algorithm in Fig. 6).  

V. RELATED WORK 

There have been a large number of studies that address 

various security issues of SDN [7], [8], [14], [18].  

However, most of them do not address the fundamental 

vulnerabilities of the OpenFlow-based controllers [10].  

Recent work on security of topology discovery has 

been researched [2]-[5], [9] as it is an important service 

of SDN's controller. Topology discovery mechanisms are 

based on the Open Flow Discovery Protocol (OFDP), 

which has been shown to be vulnerable in that an attacker 

can poison the topology view of the SDN and create 

spoofed links by injecting fake control packets into the 

network via one or more compromised hosts [4]-[6]. 

Hong et al [11] introduced a link fabrication attack 

through a compromised host, while Showyra et al [19] 

introduced two new attacks called Port Amnesia and Port 

Probing. The former enables an attacker to reset the port 

type while the latter enables an attacker to send a fake 

message on port configuration, both with the aim for the 

following link fabrication attacks to escape the detection 

mechanism. Unlike the above work, we identify a link 

discovery attack through switches, which occurs when a 

switch is compromised (using tools e.g., [20]).  

To improve the OFDP topology discovery, work in [10] 

aims to improve both efficiency and security while 

majority focuses on defense mechanisms and counter 

measures [2], [4]-[6], [12]. Two approaches, one of 

which implements a real-time system that automatically 

detects an attack when it occurs (e.g., SPHINX[15]). 

SPHINX compares network behaviors with "normal" 

behavior to detect anomaly and sends alert to the 

controller. The other approach is by adding an extra 

authentication to the LLDP packets and ignoring all 

LLDP packets originating from the host port as used in 

TopoGuard [11], which is later extended to TopoGuard+ 

[12] to handle the port attacks. TopoGuard and Alharbi et 

al approach are similar in that both use HMAC, a keyed-

hash authentication mechanism [5]. However, TopoGuard 

uses a static secret key, for computing HMAC and 

therefore is vulnerable to replay attacks.  In addition, 

Alharbi [5] also discussed LLDP spoofing with technical 

details of the attack and provided empirical analysis to 

verify the feasibility of these attacks.   

More recent work on link discovery attacks have been 

studied [6], [8], [10], [21]. In [21] the authors have shown 

that the OFDP is vulnerable to attacks that can cause a 

serious impact on the network. Alimohammadifar et. al 

[10] has shown that one of the most vulnerable attack is 

link discovery attack which can poison the topology view 

of the SDN and create spoofed links by injecting fake 

control packets into the network via one or more 

compromised hosts. Similarly, Nehra et al [8] has shown 

the other similar attacks that can poison the network. 

Authors in [21] also have shown that these topology 

poisoning attacks can lead to other attacks like MiTM 

which can also eventually cause a threat to the 

controller. Azzouni et al. [7] have tried to improve the 

OFDP by introducing an improved protocol sOFTDP 

while others have tried to propose some defense 

mechanisms and counter measures. Some have used 

probing mechanism by sending probing packets in order 

to verify legitimate links and identify fake links 

independent of how a fake link is fabricated as in [8], [10] 

while others present a technique to detect Link 

Fabrication Attack by observing if the packet traffic 

exceeds normal threshold [21]. 

Our work is similar to the above in that we aim to 

automatically detect link discovery attacks to alert the 

controller. However, unlike any of the above, our 

detection technique does not use authentication 

mechanisms or comparison of network behavior but an 

active port status to help detect malicious behaviors. 

Furthermore, our detection mechanism can detect both 

host-based and switch-based link discovery attacks. 

Finally, unlike [4], [5] that provide empirical analysis, we 

provide an impact analysis framework to estimate 

consequences of the attacks. 

VI. CONCLUSION 

This paper addresses security challenges of topology 

discovery, an essential service of SDN controller.  We 

show how topology discovery attacks can occur in 

OpenFlow discovery protocols via compromised hosts 

and switches and present a simple detection technique for 

both cases as a defense mechanism. The paper also 

describes an analytical technique to analyze impacts of 

these attacks on network routing and verify some 

hypotheses with empirical analysis. Future work on 

additional security can enhance current limitations 

including securing controller's tracking table, and HMAC 

or LLDP authentication for the LLDP packet fields to 

prevent it from forging. 
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