
Link Discovery Attacks in Software-Defined Networks:

Topology Poisoning and Impact Analysis

Sonali Sen Baidya and Rattikorn Hewett
Department of Computer Science, Texas Tech University, Lubbock, TX, USA

Email: {Sonali.Sen-Baidya, Rattikorn.Hewett}@ttu.edu

Abstract—Software Defined Networking (SDN) has become a

popular technology that offers advantages of programmable and

flexible network management over the legacy practice. The

centralized SDN controller is an important enabler of these

benefits. One of the most crucial tasks of the SDN controller is

link discovery as it provides topology of the network essential

for the controller to direct or create rule forwarding and routing

mechanisms. Much research on SDN security has been studied

but only recently that security of OpenFlow link discovery

protocols and topology poisoning have been addressed.

Existing work includes link fabrication attacks via compromised

hosts and defense systems with authentication. This paper

discusses SDN link discovery process and its vulnerability to

link discovery attacks including new attacks via compromised

switches. We present a simple but effective defense mechanism

using active ports that can detect both host-based and switch-

based link discovery attacks. Finally, the paper presents an

analytical and empirical analysis of the impacts of topology

attacks on routing. The paper discusses attack details, proposed

methods and results of these analyses.

Index Terms—SDN; Software-Defined networking; link

discovery; attack; impact analysis

I. INTRODUCTION

Software-Defined Networking (SDN) is a networking

paradigm that innovates network infrastructures to

programmable and flexible network management and

administration [1]-[3]. SDN separates the control logic to

a centralized controller (in the control plane) that directs

the switches/routers (in the data plane) to forward the

packets or create and install forwarding rules in their flow

tables. This allows complex networks to be centrally

managed without the need to deal with distributed low-

level network functionalities [2]. In addition, the

programmability of SDN eases the modification and

reconstruction of important network properties that result

in flexible development, and relatively rapid adoption

with low processing costs.

To efficiently and effectively manage the network, the

controller needs accurate and complete topology

information of the entire network. Therefore, link

discovery (or topology discovery) is one of the most

critical services of SDN controller [4]. To do this, SDN

on OpenFlow [1], a communication protocol to interface

between the controller and the data plane devices.

Unfortunately, the OpenFlow Discovery Protocol

Manuscript received January 2, 2020; revised July 2, 2020.

Corresponding author email: sonali.sen-baidya@ttu.edu.

doi:10.12720/jcm.15.8.596-606

(OFDP), the de-facto standard for implementing topology

discovery in most SDN controller platforms, has been

shown to be insecure [5]. Topology discovery attacks is

the subject of our research in this paper.

 Much research has studied SDN security both in the

data plane that inherits issues from traditional networking

and new security issues in the control plane [5]-[9].

However, most do not address the fundamental

vulnerabilities of the OpenFlow-based controllers [10].

This paper focuses on the latter, particularly the security

issues of the controller's link discovery process. The

OpenFlow discovery protocol is known to be vulnerable

due to the lack of authentication mechanisms in packet

control messages [5]. This leads to security threats and

attacks [11]. A successful attack can poison the network

topology information, convincing the controller of the

falsified view of the network topology. As a result, an

attacker can re-route traffic over false network links

enabling man-in-the-middle or denial-of-service attacks

via compromised machines [12].

A variety of link discovery attacks and counter

measures have been researched [2], [4]-[7], [11], [12].

Early attacks include link fabrication attacks through

compromised hosts [7]. By impersonating the end-host,

an attacker can create spoofed links by injecting fake

control packets into the network via one or more

compromised hosts causing traffic to be re-directed to the

attacker [2], [5], [10]. No existing work discusses attacks

via compromised switches even though the idea is

relatively simple and natural.

Alharbi et al [5] describe detailed mechanisms of these

OpenFlow discovery protocol attacks along with

empirical impact analysis on routing to verify the

possibility of the attack. While this is useful, it would be

desirable to have an analytical approach to impact

analysis as well. Existing defense mechanisms include a

system that automatically detects attacks by observing

anomalous network behaviors [6] and by adding extra

authentication to the packet control messages using a

keyed-hash message authentication code [2], [5].

However, like many intrusion detection techniques, such

defense mechanisms rely on the quality of data and can

only detect anticipated anomalies.

This paper discusses details of SDN link discovery

process and illustrates its vulnerability to link discovery

attacks. The contributions of the paper include:

 Identification of new link discovery attacks via

compromised switches (or switch-based link

discovery attacks).

Journal of Communications Vol. 15, No. 8, August 2020

596©2020 Journal of Communications

 A simple defense mechanism using active ports that

can detect both switch-based and host-based link

discovery attacks.

 An analytical approach to analyze impacts of

topology attacks on routing along with an empirical

approach to verify consistency of the results.

The rest of the paper is organized as follows: Section II

provides the background information about the SDN and

Link Discovery process. Section III describes Link

discovery attacks including previous host-based link

discovery attacks and its defense mechanism in

Subsection A, the switch-based discovery attacks in

Subsection B, and the proposed detection technique in

Subsection C. Section IV presents impact analysis with

analytical approach in Subsection A and empirical

approach in Subsection B. Section V discusses related

work and Section VI concludes the paper.

II. BACKGROUND

This section describes an overview of SDN in Section

A and the link discovery service in Section B.

A. Software-Defined Networking (SDN)

Fig. 1 shows SDN's architecture that can be viewed in

three planes: data plane, control plane and application

plane. By separating the data plane and the control plane,

and enabling network programmability with a centralized

controller, one can adapt network management to

changes (e.g., new configurations, size, or topology)

easily. Thus, SDN provides flexible and easily scalable

network management as opposed to the traditional

networking that ties the functions from the two planes to

the same device (e.g., switch) [1].

Fig. 1 Architecture of Software-Defined Networking. (SDN)

The data plane deals with hardware level packet

processing based on the policies from the control plane.

The data plane consists of forwarding devices (e.g.,

switches, routers) including physical and virtual switches

that are responsible for data transmission. Each switch

has a corresponding programmable flow table that defines

an action for each packet related to a specific flow (called

a flow rule). When a new packet arrives at a switch, the

switch checks if the packet matches any flow rule in the

switch’s flow table. If so, the packet will be processed

according to the existing flow rule. Otherwise, the switch

consults with the controller to provide appropriate action

(e.g., how to process the particular packet, new flow rule

to be installed in the flow table).

The controller in the control plane directs basic

network services and operations (e.g., packet routing,

traffic monitoring, and network access control) in the data

plane. The software controller has a complete view of the

network topology, network traffic and status of the switch

ports (e.g., active or inactive). Thus, it has the ability to

make appropriate routing decisions to improve the

network traffic. It exercises the direct control over the

data plane through well-defined application programming

interfaces (API) based on a logically centralized, abstract

view of the network. Thus, the controller is a core SDN's

component that can have great influence on the network.

The network is also programmable through software

applications situated in the application plane running on

top of the control plane. This plane has a set of

applications that implement some network control

functions like security, routing, load balancers, fault-

tolerance, recovery, etc. Thus, in addition to providing

core services, the application plane allows other network

applications to be implemented as well (e.g., cloud

network virtualization and data center network

optimization) [2].

The separation of the control plane and the data plane

is realized by the Southbound Application Programming

Interface (API), as shown in Fig. 1. The most notable of

southbound API protocol is OpenFlow. It is one of the

first standard protocols that is used for managing the

communication between the control plane and the data

plane. OpenFlow protocol allows the SDN controller to

configure switches via the packet forwarding rules. The

protocol also allows switches to notify the controller

about special events, e.g., the receipt of a packet that does

not match any existing forwarding rules. Each OpenFlow

switch has one or more flow tables containing the packet-

handling rules. These rules direct the OpenFlow switches

in forwarding the packets. The network managers use

these flow tables to modify the layout of the network and

the traffic flows.

Similar to Southbound, the Northbound API represents

the interface through which the communication between

the application plane and control plane takes place. This

Northbound interface abstracts the low-level instruction

sets used by southbound interfaces.

B. Link Discovery Service

Topology discovery is a crucial core SDN controller's

service since topology information is a fundamental

building block for network management (e.g., packet

routing, network virtualization and optimization, and

mobility tracking). Here we use the terms “topology

discovery” and “link discovery” synonymously, as the

latter constitutes the former.

Packet sending between switches: Although there is

no formal standard for topology discovery in SDN, most

Journal of Communications Vol. 15, No. 8, August 2020

597©2020 Journal of Communications

controller platforms implement topology services using

OpenFlow Discovery Protocol, which has become the de-

facto standard [5]. The OpenFlow Discovery Protocol

sends the Link Layer Discovery Protocol (LLDP) packet

for link discovery between switches. The LLDP packet

has a structure as shown in Fig. 2.

Fig. 2. Structure of LLDP packet.

As shown in Fig. 2, the LLDP Packet includes the

LLDP Data Unit, which can be categorized into several

type-length-value (TLVs) including Chassis ID (a

sending switch ID), Port ID (egress port ID for outgoing

packet), and Time-to-live. These TLVs are followed by

optional TLVs such as Datapath ID (DPID), and End of

LLDP Data Unit TLV.

Packet sending between controller and switches:

OpenFlow supports Packet-In and Packet-Out messages

for sending a data packet from SDN switch to the

controller and vice versa, respectively. Packet-Out

message also allows the controller to send, to the switch,

additional instructions (or action list) on how to forward

the data packet. These messages are important for link

discovery mechanism to be described below.

Discovering existing switches: The controller realizes

the existence of switches and their key properties (e.g.,

ID, ports, MAC address) through the initial OpenFlow

protocol handshake between the switches and the

controller. Fig. 3 illustrates message exchanges in the

handshake process.

Fig. 3. Handshake protocol.

Upon joining the network, the switch sends

OFPT_HELLO to the controller, which in turn sends an

OFPT_FEATURES_REQUEST to the switch. The

switch then sends OFPT_FEATURES_REPLY along

with its key properties (i.e., switch ID, MAC address,

active port). The controller keeps the record of each

existing switch and their properties.

Fig. 4 illustrates a link discovery from Switch S1 to

Switch S2. Here the controller is aware of the existence of

Switches S1 and S2 via initial handshake process when

they join the network. These switches and their key

properties are stored in a “switch” table on top right

corner of the figure. Note that the table does not include

active ports connecting with the controller.

SDN link discovery has three basic steps.

Step 1: the controller creates an LLDP packet for each

active port on each switch recorded by the controller in

the table. Each LLDP packet has corresponding Chassis

ID and Port ID TLVs. For example, based on the table in

Fig. 4, LLDP PACKET (S1, P3) and LLDP PACKET (S2,

P2) are created. Since we focus on a link from Switch S1,

we only show the LLDP PACKET (S1, P3) in the figure.

Fig. 4. Link discovery mechanism

Step 2: Based on the LLDP packets created in Step 1,

the controller then sends Packet-Out message to the

switch having the LLDP packet and instructs the switch

to forward the LLDP packet through the specified port.

As shown in Fig. 4, based on the LLDP PACKET (S1, P3)

created, the controller sends PACKET-OUT(S1, P3) to S1

and instructs to forward the LLDP packet via Port P3.

Step 3: Any received LLDP packets must be sent to the

controller by Packet-In message containing the receiving

switch ID and ingress port ID along with meta data of the

origin switch sending the LLDP packet (i.e., the Chassis

ID and its egress port ID). The evidence of the LLDP

packet being forwarded from the sending to receiving

switches leads to the controller’s conclusion of the

existence of the link and thus, link discovery. For

example, as shown in Fig. 4, The LLDP PACKET (S1, P3,)

contains meta data of the origin switch sending the LLDP

packet (i.e., Switch S1 and Port P3,). Thus, the received

Switch S2 (via Port P2) sends PACKET-IN (S1, P3, S2, P2)

to the controller. Here the last two parameters S2, P2 are

meta data of the receiving switch, while S1, P3 contains

data of the sending switch. The controller infers its

discovery of link from Switch S1 (Port P3) to Switch S2

(Port P2).

III. LINK DISCOVERY ATTACKS

The described link discovery mechanism is vulnerable

in that there is no authentication of LLDP control

messages [5]. Thus, any LLDP packet received by the

controller is accepted as a genuine packet. Consequently,

an attacker can inject fabricated LLDP control messages

to poison the topology information of the controller. The

attacker can falsify the LLDP packet content or fabricate

the link discovery by creating a link that does not actually

exist [2]. This section describes link discovery attacks

and defense mechanisms for existing host-based attacks

in Section A and our switch-based attacks in Section B.

A. Host-based Link Discovery Attacks & Defense

Most existing studies [5], [6], [10]-[12] of link

discovery attacks deal with a situation when a host

connecting a switch in a network has been compromised.

As an example, consider an extended network of the

Journal of Communications Vol. 15, No. 8, August 2020

598©2020 Journal of Communications

network in Fig. 4 where now Host H1 connects with

Switch S1 (via Port P4) and Host H2 connects with Switch

S2 (via Port P3). Suppose H1 has been compromised and

an attacker aims to create a fake link between switches S1

(via Port P4) and S2 (via Port P3), which does not exist via

these ports.

Link Fabrication: The controller creates LLDP

packets for all the active ports for switch S1, namely

LLDP PACKET(S1, P3) and LLDP PACKET(S1, P4).

Then it sends out packet-out messages to all active ports,

namely PACKET-OUT(S1, P3) and PACKET-OUT(S1, P4)

to forward the corresponding LLDP packets.

Being at H1, the attacker captures the LLDP

PACKET(S1, P4) and change the packet into LLDP

PACKET(S2, P3) and sends the spoofed packet to S1.

Based on the discovery mechanism (Step 3), when

switch S1 receives the LLDP packet (via Port P4) it sends

a packet-in message to the controller, which includes the

sender’s and receiver’s information. Specifically, S1

sends PACKET-IN (S2, P3, S1, P4), where the first two

parameters are from original when LLDP PACKET(S2,

P3) being forwarded. The controller infers that there is a

link between Switch S2 (via Port P3) and Switch S1 (via

Port P4) when it does not actually exist as desired by the

attacker's goal.

 Previous approaches can be

divided into two groups: strengthening authentication of

LLDP packets by using cryptography [5] and detection

techniques for link discovery attacks [6], [7]. We will

describe basic ideas of one of the latter approach.

The key element of the detection technique proposed

11] is to realize that in a non-malicious

network, the LLDP packet will never be sent from the

host. In link discovery process, the controller generates

LLDP packets for all active switches to be forwarded

through the links. The recipient switch will send the

packet-in message to the controller to infer link but the

recipient host will not as it does not participate in the link

discovery process.

However, in the attack case, the compromised host will

behave as if it was a switch by sending the spoofed LLDP

packet to the switch. The recipient switch carries on and

the controller wrongly accepts the spoofed information.

Hong et.al propose TopoGuard, a security extension of

the controller that raises an alert when it detects a LLDP

packet being sent from a host. For example, in the

scenario described above, when the TopoGuard observes

PACKET-IN(S2, P3, S1, P4) and detects that Port P4

connects with a host, it raises an alert and stops the

discovery update.

B. Switch-based Link Discovery Attacks

In this section, we introduce a switch-based link

discovery attack, a slightly different link discovery attack

where a switch has been compromised (e.g., by flooding

the switch's Mac table with fake Mac addresses) and

propose a detection technique that can detect both host-

based and switch-based attacks. Attacks through

compromised switches do not only have the equivalent

capabilities as those through malicious hosts but can also

have strong impacts and high severity.

Fig. 5. Switch-based link discovery attack.

The basic idea of switch-based is similar to that of

host-based in that once the switch is compromised, an

attacker can obtain information to poison the network

topology. However, methods for obtaining such

information may be slightly different. To illustrate the

attack, assume that an attacker has compromised Switch

S2 as shown in red Switch S2 in Fig. 5. In this scenario,

the attacker aims to create a fake link between Switch S1

and Switch S3, which does not actually exist. As shown in

Fig. 5, in Steps 1 and 2 of the link discovery process, the

controller creates LLDP packets for the active ports P1

and P4 of Switch S1 and P2 and P3 for Switch S3,

respectively and sends corresponding packet-out

messages to the respective switches with additional

instructions for them to forward the created LLDP

packets to adjacent switches. For example, as shown in

Fig. 5, the controller sends PACKET-OUT(S1, P1) to S1

that forwards LLDP PACKET(S1, P1) to S2. Similarly, S3

forwards LLDP PACKET(S3, P2) to S2. Note we omit

showing LLDP packets that are not relevant to the attack

(e.g., LLDP packets from S1 and S3 to hosts H1 and H2,

respectively).

In Step 3 of the link discovery process, each LLDP

packet received must be sent to the controller with

packet-in message that contains information of the

sending and receiving switches. For this example, both

LLDP packets (i.e., LLDP PACKET(S1, P1) and LLDP

PACKET(S3, P2)) are received by S2. Since S2 has been

compromised, the attacker receives and intercepts the

LLDP packets and then extracts the MAC address of the

switch in the packet (i.e., those of S1 and S3). Since MAC

addresses are the unique identifier of a switch that the

controller uses, capturing MAC addresses will enable the

attacker at S2 to mimic Switches S1 and S3. To create a

fake link from S1 to S3, the attacker (S2) mimics S3 as a

receiving switch of this fake link and thus, sends a

packet-in message to the controller, specifically a

malicious PACKET-IN(S1, P1, S3, P2) instead of the

correct PACKET-IN(S1, P1, S2, P2) and PACKET-IN(S3,

P2, S2, P1). As a result, the controller wrongly discovers

that there is a link from S1 (via P1) to S3 (via P2). Note

Journal of Communications Vol. 15, No. 8, August 2020

599©2020 Journal of Communications

Defense M echanisms:

by Hong et al. [

that the attack needs to forge the controller. Hence, if the

malicious switch simply forwards LLDP packets across

its ingress/egress ports (e.g., P2 and P1 in S2, to the

adjacent switches S1 and S3 in this case), instead of

sending a corrupted LLDP packet to the controller, the

controller would not have had the view of the changed

network and the attack would not have been

accomplished (i.e., the controller does not discover

wrongly a fake link from S1 (via P1) to S3 (via P2)).

C. Proposed Defense Mechanism

Our defense mechanism is for the controller to validate

the link discovered (i.e., those sent via the packet-in

messages as well as attacks via compromised switch and

host) and alert a suspicious link instead of accepting any

link discovered. The principle behind the link validation

criterion is that no active port should be used to connect

more than one link at a time. By monitoring all active

ports of every switch and every active link in the network,

our defense mechanism makes sure that no active port

can be shared for connecting multiple links at the same

time. If a new discovered link sent (via packet-in message)

violates this principle, then the defense mechanism

declares the new discovered link to be non-legitimate (or

invalid) and sends an alert to the controller to either reject

it (aggressive resolution) or to further investigate and

decide if the link should be rejected (conservative

resolution).

To maintain the status of active links with

corresponding ports of each switch, the controller is

assumed to have the ability to monitor and obtain updates

of this information as that used in [13]. The SDN

controller stores the network inventory and traffic data

from the control and data planes for processing and

generating network statistics. In this paper, we slightly

modify the monitoring parameters, for example, by

including the port-link mapping between the switches.

Specifically, let T be a table, where each column

represents active switch and each row represents an

instance of an active link.

Defense on Switched-based Link Discovery Attack.

As an example, consider a scenario in Fig. 5. The

controller creates LLDP PACKET(S1, P1) in Step 1, then

sends the PACKET-OUT(S1, P1) message to S2 in Step 2,

causing the LLDP packet to be sent to S1. The receiving

switch S2 sends PACKET-IN(S1, P1, S2, P2), which in

turn is discovered as a link from S1 (via P1) to S2 (via P2).

This link is represented in the first row of Table I. The

entry is an active port of the switch column for each end

of the link.

TABLE I: ACTIVE LINKS OF NETWORK IN FIGURE 5.

Link S1 S2 S3

(S1, S2) P1 P2

(S3, S2) P1 P2

(S1, S3) P1 P2

Similarly, the link (S3, S2) in second row of the table is

discovered. Since its active ports of both ends have not

been shared with other links, therefore the link is

legitimate to be added in the controller's topology view of

the network.

Now consider the compromised Switch S2, where the

attacker has spoofed S3 and sends a malicious fake

package-in message to the controller (i.e., PACKET-

IN(S1, P1, S3, P2) from S2 in Fig. 5). If we were to add this

link into the controller's topology view, the monitoring

table would appear as shown with an additional last link

in the last row. But now the defense mechanism observes

that active ports P1 of switch are shared by two links

connecting with S1, namely link (S1, S2) and link (S1, S3).

Thus, the defense mechanism will alert the controller of a

potential threat to take further action. Consequently, the

last link (S1, S3) is detected as non-legitimate and will not

be allowed to add in the table.

Fig. 6 summarizes the algorithm described above in

more details.

Procedure Link validation(NewLink((S1, P1, S2, P2), T)

Inputs: NewLink (S1, P1, S2, P2);

 T, a table of active links, ports, switches as in TABLE I

Output: Is Link (S1, P1, S2, P2) legitimate?

1 Legitimate  True

2 If P1 is a host port (i.e., port of switch attached to a
host) of S1 P2 is a host port of S2

then Legitimate  False;
 Send alert to controller and exit

3 P(S1)  {Port P | P is an active port of Switch S1 of an
active link

 in the table}
4 P(S2)  {Port P | P is an active port of Switch S2 of an

active link

 in the table}

5 If P1  P(S1) or P2  P(S2)
then Legitimate  False;
 Send alert to controller and exit

Fig. 6. Proposed simple defense mechanism

Defense on Host-based Link Discovery Attack. The

proposed mechanism is simple and general in that it is

also applicable to Host-based Link Discovery Attacks as

well. As an example, consider a scenario in Section III.A,

which is a network in Fig. 4 with a Host H1 connects with

Switch S1 (via Port P4) and Host H2 connects with Switch

S2 (via Port P3), where H1 has been compromised.

Before the attack, the controller sends call-out message

to S1 to forward LLDP PACKET (S1, P3) to S2. As a result,

the receiving switch S2 (via P2) sends PACKET-IN(S1, P3,

S2, P2) to the controller. Since this is the first link and

none of the port is a host port, the link is legitimate and

added to the first row of Table II.

Similarly, S1 forwards LLDP PACKET (S1, P4) to H1.
The controller only discovers links between switches. If

H1 is not malicious there will not be additional active link

added to the table. Instead, since H1 is compromised, the

attacker captures the LLDP PACKET(S1, P4) and sends

the spoofed LLDP PACKET(S2, P3) to S1. As a result, S1

sends PACKET-IN (S1, P4, S2, P3) to the controller. If we

were to update Table II with this new link, the result

would have been shown as in the second row of the table.

Since P4 is a host port, our defense mechanism would

determine that this new link is non-legitimate and sends

alert to the controller to reject or re-examine the link

Journal of Communications Vol. 15, No. 8, August 2020

600©2020 Journal of Communications

before accepting it. The second row of the table would

not have been there in the table T at the control plane.

TABLE II: ACTIVE LINKS OF EXTENDED NETWORK OF FIGURE 4.

Link S1 S2 S3

(S1, S2) P3 P2

(S1, S2) P4 P3

IV. IMPACT ANALYSIS OF LINK DISCOVERY ATTACKS

Impact analysis assesses likelihoods of consequences

of any exploitation of vulnerabilities (or attacks) in the

network. This paper focuses on impacts of the SDN Link

Discovery Attacks on packet Routing, which is one of the

most fundamental services of SDN.

Although we have shown that host-based and switch-

based link discovery attacks are slightly different (in

terms of the attacker's actions), both falsify the network

topology, disrupt the network functions, and escalate to

the same resulting impacts such as denial-of-service and

man-in-the-middle attacks [14]. As a result, the impacts

on poisoning network topology from these attacks are the

same no matter how the attacks are performed. Thus, our

impact analysis will not differentiate the host-based and

switch-based attacks but focus on the resulting

consequences to SDN's routings.

Most existing work analyzes the network empirically

by verifying the feasibility of the attacks [2], [5] using

simulation tools to emulate the SDN network behaviors

[15]. However, we propose two approaches: analytical

and empirical analyses. The proposed analytical approach

is simple, but it can be applied to any network topology.

A. Analytical Approach

The analytical approach is useful for estimating

security impacts to help detect overall system topology

security flaws, should there be discovery link attacks,

before its deployment. Although the method is simple, it

is grounded by a commonly known probabilistic model.

Here we assume that, unless specified, at any switch, if

there are multiple routing options, all data packets are

equally likely to be forwarded to each optional switch in

order to provide load balancing. For example, S1 has two

options to forward the packet (i.e., to S2 or S4). The

number of packets received by S2 or S2 should be 1/2

(probability of S2 to be selected out of the two

alternatives) of the number of the packets obtained by S1.

During the routing, it is possible that the packets may

not reach the destination in an expected duration due to

delays in traffic or services of switches on the routing

path. If the timeout occurs before all the packets are

delivered, there are several routing schemes. For example,

the routing manager can continue sending additional

packets on a different route or can start over and lose the

packets sent so far. For simplicity, the proposed

analytical method will assume the latter. The selection of

suitable alternative routing paths is to select the shortest

path first but if the alternatives are of equal path length

then the alternative route is selected at random. In

addition, we use the UDP (User Datagram Protocol)

communication protocol where the sender switch does

not wait for acknowledgements. However, in our

empirical analysis, we consider both UDP and TCP

(Transmission Control Protocol), where sender expects an

acknowledgement from the receiver when the packets are

received.

The key element of the proposed approach is to

compute the estimated the likelihood of the number of

packets received on each switch, when all routes are

considered, and most importantly the destination switch,

as this indicates the effectiveness of the routing (or

impacts of attacks on the resulting packet delivery).

Let L(Si) be an estimated likelihood of the number of

the packets Si received. Suppose Si has n alternatives to

forward these packets. Let pij be the probability that Si

will transmit packets received to switch Sj (connecting

with Si). Thus, the estimated number of packets Sj

received from Si will be pij .L(Si). Note that if we assume

that packets transmission from Si to Sj are equal likely,

then pij = 1/n. Suppose Sj can receive packets from m

routing alternatives (i.e., incoming routes to Sj other than

from Si). We have:

L(Sj) =∑ 𝑝𝑚
𝑖=1 ij L(Si) = ∑

1

𝑛

𝑚
𝑖=1 L(Si) (1)

Due to delays in network traffic or delays of a

particular switch function (e.g., communication with

SDN's controller to identify or create flow rule), some

packets may not get transmitted in time for a set

"timeout" period causing unsuccessful transmission. The

packets are dropped when timeout occurs. In such a case,

the routing manager searches for alternative routes and

select a route to start sending the packets over again from

S1 (there maybe other variations of communication

protocols but the same concept of our mathematical

analysis can still be applied). As described before, most

routing strategy selects the shortest path first and

randomly selects among those of equal path length. We

will now illustrate the proposed probabilistic impact

assessment in three scenarios of the same network

topology in more details.

Scenario1 Normal with no attacks:
Consider a routing scenario of a network with six

switches as shown in Fig. 7, where the routing starts from

switch S1 to the destiny at switch S6. Both S1 and S6 are

connected to host X and host Y respectively. Note the

hosts are not relevant to our analytical impact assessment

here but they are to attacks for empirical analyses.

Fig. 7. Routing of packets from source S1 to destination S6.

In this scenario a source switch S1 sends packets to the

destination switch S6 with a transmission rate of about 10

packets/sec through each link. When timeout occurs, the

Journal of Communications Vol. 15, No. 8, August 2020

601©2020 Journal of Communications

routing manager seeks alternative route based on the path

length. To simplify our illustration, here the routing

manager will select the alternative paths in the following

order, namely (S1, S2, S6), (S1, S2, S3, S6), (S1, S2, S5, S6),

and (S1, S4, S3, S6). Furthermore, attempts to send packets

starting from S1 occur as follows.

First, S1 successfully routes 10 packets to S6 (no

timeout). Then the next 10 packets are sent through the

same path (i.e., (S1, S2, S6)) but the packets are delayed

this time at S2 and timeout occurs. Thus, the routing starts

sending the third set of 10 packets again from S1 using an

alternative route of (S1, S2, S3, S6). This times the routing

also fails because of the delays at S3 and eventually

expires S3's timeout. The routing now tries again with the

next alternative route from S1, namely (S1, S2, S5, S6).

Unfortunately, the timeout occurs at S5, and finally the

last alternative route of (S1, S4, S3, S6) is tried and

successfully transmits the packets to the destination

Switch S6.

TABLE III: NUMBER OF PACKETS BEING FORWARDED - NO ATTACK

Path S1 S2 S3 S4 S5 S6

(S1, S2, S6) 10 ½ 10 ⅓ 10

(S1, S2, S6) 10 ½ 10

(S1, S2, S3, S6) 10 ½ 10 ⅓ 10

(S1, S2, S5, S6) 10 ½ 10 ⅓ 10

(S1, S4, S5, S6) 10 ½ 10 10 10

Total impacts L(S1) L(S2) L(S3) L(S4) L(S5) L(S6)

50 20 3.3 5 13.3 13.3

Based on the scenario described, we can fill in the

estimated number of packets received at each switch in a

corresponding path. As shown in Table III, packets

received at S2 and S4 from S1 is a half of packets of S1,

while S3 receives only one third of those received by S2

(since there are three alternatives).

As shown at the bottom of Table III, we can compute

the estimated likelihood of the number of packets

received at each switch easily by summing the number of

packets received by all routing activities. For examples,

L(S1) = 50 but L(S6) = 13.3 since there are a lot of routing

failures in this scenario. This scenario is pessimistic in

order to illustrate the technique. This preliminary

structure maybe too tedious to analyze now as it requires

the system designer to anticipate what can happen in the

routing scenario. The subject to predict such behaviors of

the network is beyond the scope of this paper.

Scenario2 Attack scenarios:
We consider two attacks, namely an attack at S2 and an

attack at S3 (one attack at a time). We assume the same

delays and timeouts as used in the normal scenario.

In the first case, suppose S2 is compromised.

Consequently, attacker at S2 will not forward the packet

further causing the timeout. Thus, the routing manager

will use an alternative route and start over. This is

different from the normal case where the first 10 packets

are successfully transmitted. In order to compare the

normal scenario with the attack scenario at S2, after the

destination S6 receives 10 packets, we continue on with

the next 10 packets (so that a total of 50 packets are sent

from S1 in both scenarios), in which case, the shortest

path will be applied. The summary of the estimated

likelihood of the number of packets received is shown in

Table IV. The last 10 packets sent from S1 is shown in the

last row of the table.

TABLE IV: NUMBER OF PACKETS BEING FORWARDED- S2 ATTACK

Path S1 S2 S3 S4 S5 S6

(S1, S2, S6) 10 ½ 10

(S1, S2, S3, S6) 10 ½ 10

(S1, S2, S5, S6) 10 ½ 10

(S1, S4, S5, S6) 10 ½ 10 10 10

(S1, S2, S6) 10 ½ 10

Total impacts 50 20 0 5 10 10

As shown in Table IV, the number of packets received

at the destination switch is at a slightly decreased rate of

10/50 = 20% as opposed to the rate of 13.3/50 = 26.6% in

the normal case when no attack on S2. If our scenario in

the normal case did not have a timeout at S2, the resulting

impacts would have been greater.

Next, we consider when an attack occurs at S3. The

resulting impact analysis is summarized in Table V.

TABLE V. NUMBER OF PACKETS BEING FORWARDED- S3 ATTACK

Path S1 S2 S3 S4 S5 S6

(S1, S2, S6) 10 ½ 10 ⅓ 10

(S1, S2, S6) 10 ½ 10

(S1, S2, S3, S6) 10 ½ 10 ⅓ 10

(S1, S2, S5, S6) 10 ½ 10 ⅓ 10

(S1, S4, S5, S6) 10 ½ 10 10 10

Total impacts 50 20 3.3 5 13.3 13.3

As seen in Table V, attack at S3 in this scenario has no

impact on the number of packets received at S6. If the

scenario did not have timeout at S3 for path route (S1, S2,

S3, S6), we may see more impacts of the attack since S3

will not forward the packet (as opposed to timeout).

However, we can see that the impact of the attack on

the network routing becomes more severe if an attack

occurs on a more connected switch (i.e., S2) than less

connected switch (i.e., S3) that are on the path to the

destination.

The results of the analysis are meant to illustrate the

key concept and contribution of the proposed mechanism

and not on the actual results themselves. The proposed

mechanism gives a framework that allows a systematic

analytical analysis to estimate impacts of SDN attacks.

B. Empirical Approach

Most SDN’s research relies on a simulation of SDN

architecture as a tool to verify their studies. This section

shows how we analyze the impacts of link discovery

attacks empirically.

SDN Simulation and Experimental Setup:
Here we used Mininet [16] for emulating virtual

SDN/OpenFlow networks, and POX [17], a Python-based

controller for software-defined networking simulation,

which we used to perform the link discovery attack. In

this paper, our simulation considers only cases when the

network has a single attack at a time.

For the Link Discovery Attack, we simulated a “fake”

link between two nodes by injecting a false message to

the controller notifying a packet being sent from either a

Journal of Communications Vol. 15, No. 8, August 2020

602©2020 Journal of Communications

non-existing sender’s ID or from a legitimate sender’s

ID/address but with a non-existing/unused port. The

simulation was run on HP v7x machine having Intel(R)

Core(TM) i7-5600U CPU at 2.60 GHz, and 8GB of RAM,

running 64 bit Windows 10 Pro.

We ran experiments on the network as shown in Fig. 7,

where the packets are sent from host X to host Y. For the

attack scenarios we want to further verify our analytical

results that attack at most connected switch (i.e., S2)

yields more severe consequences than the attack at the

less connected one (e.g., S3). To obtain realistic results,

we ran experiments for both UDP and TCP protocols as

in practice. Link discovery attacks from the compromised

switch leads to the fabrication of the links following the

switch (e.g., links (S2, S3), (S2, S6), (S3, S6)) Recall that

only one single attack occurs at a time. In each scenario,

we set hard timeouts of 10 seconds. This means that a

flow table entry is removed after 10 seconds and a new

flow rule or path has to be recomputed and identified by

the controller. The total time for running each session of

the experiment was set for 10 minutes.

Experimental Results:

We compare the number of packets received at each

switch in the three scenarios: normal, link discovery

attack at S2 and link discovery attack at S3. Here the

critical switch is the destination switch S6, which

connects to host Y. For the UDP protocol (no

acknowledgement), an estimated of 520 packets are sent

for each scenario. Fig. 8 shows the comparison results

obtained for the UDP protocol.

Fig. 8. Comparison of packets received using UDP protocol.

As shown in Fig. 8, while the numbers of packets

received at S2 are comparable for the three scenarios (i.e.,

407, 411, and 408 for normal, attack at S2 and attack at S3,

respectively), they are not at the destination switch S6. As

expected, the number of packets received when attacks

occur are 137 and 177, which are lower than that of the

normal case of 185 packets.

Here attack at S2 yields less number of packets

received than attack at S3. This is consistent with results

obtained from our mathematical analysis in that both

confirm our hypothesis that the link discovery attack on

the most connected switch (S2) is more severe than attack

on less connected switch (S3).

Fig. 8 also shows significant reduction of the number

of packets received on its other connecting switches (e.g.,

reduction from 66 to zero on S3, and from 240 to 137 on

S5). The reduction of the number of packets received as a

result of attack at S3 goes directly to S6, whose packets

are received from multiple paths. Thus, we cannot isolate

the immediate impact of attack at S3 alone. On the other

hand, the numbers of packet received at S2 and S4 in the

three scenarios are comparable. Based on the network

topology in Fig. 7, it is clear why the attacks have no

impacts on these switches (as they are not on the path

following the attack switches).

Fig. 9. Comparison of packets received using TCP protocol.

Fig. 9 shows the comparison results obtained for the

TCP protocol. Here an estimated of 1535 packets are

used for each scenario. The results are similar to the UDP

case. The destination switch S6 received the least number

of packets of 255 on the S2 attack compared to that in the

normal case of 396, and that of 412 in the S3 attack.

Because of the nature of TCP communication that

requires acknowledgement, which causes extra delays

along with the fact that the attack at S3 barely effects the

number of packets received at S6 (since it is one out of

three routes), the resulting packets received at S6 when

attack occurs on S3 is slightly higher than that when no

attack occurs.

Fig. 10. Comparison of ACK packets received in TCP protocol.

The TCP communication protocol requires a recipient

switch to send an acknowledgement (ACK packets). Fig.

10 shows the number of ACK packets received at each

switch in all of the three scenarios. As shown in Fig. 10,

on S2 attack case, there is zero ACK packets received at

S2 and the following switches, S3 and S6 on the routing

path. Since S6 is the end of the route, there is no need to

send ACK packets to it. Thus, no ACK packet received at

S6 in every scenario.

Fig. 11. Comparison of flow rules installation.

Journal of Communications Vol. 15, No. 8, August 2020

603©2020 Journal of Communications

Fig. 11 shows the number of flow rules installed. As

shown in Fig. 11, the number of flow rules at each switch

fluctuates. However, the numbers compared in all of the

three scenarios are about the same, whether there is attack

or not. This is because the attacks do not impact the flow

rule activities more than the normal case. On the other

hand, the numbers of flow rules installed at each switch

in the TCP case are always higher than those of the UDP

case (e.g., at S2 the numbers of installed flow rules are 84

in UDP vs. 118 in TCP in the normal scenario) in all

three scenarios. The reason is due to the installation of

additional flow rules of ACK packets.

In this paper we use the packet drop count to signify

link discovery attacks. Although we have not illustrated

here, it should be relatively easy to see that attacks can

also be detected by finding the active ports, which are

already in use in a particular switch (as explained in the

algorithm in Fig. 6).

V. RELATED WORK

There have been a large number of studies that address

various security issues of SDN [7], [8], [14], [18].

However, most of them do not address the fundamental

vulnerabilities of the OpenFlow-based controllers [10].

Recent work on security of topology discovery has

been researched [2]-[5], [9] as it is an important service

of SDN's controller. Topology discovery mechanisms are

based on the Open Flow Discovery Protocol (OFDP),

which has been shown to be vulnerable in that an attacker

can poison the topology view of the SDN and create

spoofed links by injecting fake control packets into the

network via one or more compromised hosts [4]-[6].

Hong et al [11] introduced a link fabrication attack

through a compromised host, while Showyra et al [19]

introduced two new attacks called Port Amnesia and Port

Probing. The former enables an attacker to reset the port

type while the latter enables an attacker to send a fake

message on port configuration, both with the aim for the

following link fabrication attacks to escape the detection

mechanism. Unlike the above work, we identify a link

discovery attack through switches, which occurs when a

switch is compromised (using tools e.g., [20]).

To improve the OFDP topology discovery, work in [10]

aims to improve both efficiency and security while

majority focuses on defense mechanisms and counter

measures [2], [4]-[6], [12]. Two approaches, one of

which implements a real-time system that automatically

detects an attack when it occurs (e.g., SPHINX[15]).

SPHINX compares network behaviors with "normal"

behavior to detect anomaly and sends alert to the

controller. The other approach is by adding an extra

authentication to the LLDP packets and ignoring all

LLDP packets originating from the host port as used in

TopoGuard [11], which is later extended to TopoGuard+

[12] to handle the port attacks. TopoGuard and Alharbi et

al approach are similar in that both use HMAC, a keyed-

hash authentication mechanism [5]. However, TopoGuard

uses a static secret key, for computing HMAC and

therefore is vulnerable to replay attacks. In addition,

Alharbi [5] also discussed LLDP spoofing with technical

details of the attack and provided empirical analysis to

verify the feasibility of these attacks.

More recent work on link discovery attacks have been

studied [6], [8], [10], [21]. In [21] the authors have shown

that the OFDP is vulnerable to attacks that can cause a

serious impact on the network. Alimohammadifar et. al

[10] has shown that one of the most vulnerable attack is

link discovery attack which can poison the topology view

of the SDN and create spoofed links by injecting fake

control packets into the network via one or more

compromised hosts. Similarly, Nehra et al [8] has shown

the other similar attacks that can poison the network.

Authors in [21] also have shown that these topology

poisoning attacks can lead to other attacks like MiTM

which can also eventually cause a threat to the

controller. Azzouni et al. [7] have tried to improve the

OFDP by introducing an improved protocol sOFTDP

while others have tried to propose some defense

mechanisms and counter measures. Some have used

probing mechanism by sending probing packets in order

to verify legitimate links and identify fake links

independent of how a fake link is fabricated as in [8], [10]

while others present a technique to detect Link

Fabrication Attack by observing if the packet traffic

exceeds normal threshold [21].

Our work is similar to the above in that we aim to

automatically detect link discovery attacks to alert the

controller. However, unlike any of the above, our

detection technique does not use authentication

mechanisms or comparison of network behavior but an

active port status to help detect malicious behaviors.

Furthermore, our detection mechanism can detect both

host-based and switch-based link discovery attacks.

Finally, unlike [4], [5] that provide empirical analysis, we

provide an impact analysis framework to estimate

consequences of the attacks.

VI. CONCLUSION

This paper addresses security challenges of topology

discovery, an essential service of SDN controller. We

show how topology discovery attacks can occur in

OpenFlow discovery protocols via compromised hosts

and switches and present a simple detection technique for

both cases as a defense mechanism. The paper also

describes an analytical technique to analyze impacts of

these attacks on network routing and verify some

hypotheses with empirical analysis. Future work on

additional security can enhance current limitations

including securing controller's tracking table, and HMAC

or LLDP authentication for the LLDP packet fields to

prevent it from forging.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

Journal of Communications Vol. 15, No. 8, August 2020

604©2020 Journal of Communications

AUTHOR CONTRIBUTIONS

Sonali Sen Baidya conducted the research including

formulating idea, performance evaluation to the final

manuscript. Rattikorn Hewett supervised this work by

investing a full guidance to conduct this research.

However, both authors had approved the final version.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Verissimo, et al., “Software-

defined networking: A comprehensive survey,” Proc. of

the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[2] A. Dawoud, S. Shahrestani, and C. Ruan, “Software-

defined network controller security: Empirical study,” in

Proc. International Conference on Information Technology

and Applications (ICITA), Sydney, Australia, 2017.

[3] A. Abdou, P. V. Oorschot, and T. Wan, “A framework and

comparative analysis of control plane security of SDN and

conventional networks,” arXiv preprint arXiv: 1703.06992,

2017.

[4] S. Khan, A. Gani, A. Wahab, M. Guizani, and M. Khan,

“Topology discovery in software defined networks:

Threats, taxonomy, and State-of-the-Art,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 1, pp.

303–324, 2017.

[5] T. Alharbi, M. Portmann and F. Pakzad, “The (in) security

of topology discovery in software defined networks,” in

Proc. IEEE 40th Conf. Local Computer Network (LCN),

2015, pp. 502–505.

[6] A. Azzouni, R. Boutaba, N. Trang and G. Pujolle,

“Limitations of OpenFlow topology discovery protocol,”

in Proc. 16th Annual Mediterranean Ad Hoc Networking

Workshop (Med-Hoc-Net), 2017.

[7] A. Azzouni, R. Boutaba, N. Trang, and G. Pujolle,

“sOFTDP: Secure and efficient topology discovery

protocol for SDN,” arXiv preprint arXiv:1705.04527, 2017.

[8] A. Nehra, M. Tripathi, M. Singh, R. Gaur, B. Battula, and

C. Lal, “SLDP: A secure and lightweight link discovery

protocol for software defined networking,” Journal of

Computer Networks, vol. 50, no. 1, pp. 102-116, 2019.

[9] K. Z. Hajji, S. El, and G. Orhanou, “Design and

implementation of a new security plane for hybrid

distributed SDNs,” Journal of Communications, vol. 14, no.

1, pp. 26-32, 2019.

[10] A. Alimohammadifar, S. Majumdar, T. Madi, Y. Jarraya,

M. Pourzandi, L. Wang, and M. Debbabi, “Stealthy

probing-based verification (spv): An active approach to

defending software defined networks against topology

poisoning attacks,” in Proc. European Symposium on

Research in Computer Security, Springer, 2018, pp. 463–

484.

[11] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network

visibility in software-defined networks: New attacks and

countermeasures,” Proceedings of NDSS, vol. 15, pp. 8-11,

2015.

[12] S. Shin and G. Gu, “Attacking software-defined networks:

A first feasibility study,” in Proc. 2nd ACM SIGCOMM

Workshop Hot Topics Software Defined Network, 2013, pp.

165–166.

[13] Q. Wander, A. M. C. Miriam, and D. Mario, “An approach

for SDN traffic monitoring based on big data techniques,”

Journal of Network and Computer Applications, vol. 131,

no. 1, pp. 28-39, 2019.

[14] Z. Shu, J. Wan, D. Li, J. Lin, et al., “Security in software-

defined networking: Threats and countermeasures,” Mobile

Network Appl., pp. 1–13, 2016.

[15] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann,

“SPHINX: Detecting security attacks in software-defined

networks,” in Proc. 22th Annual Network & Distributed

System Security Conference (NDSS’15), 2015.

[16] R. Fontes, S. Afzal, S. Brito, M. Santos, and C. Rothenberg,

“Mininet-WiFi: Emulating software-defined wireless

networks,” in Proc. 11th International Conference on

Network and Service Management (CNSM), 2015, pp. 384-

389.

[17] OpenFlow Networking Foundation, OpenFlow Switch

Specification, Version 1.5.0, December 19, 2014.

[18] T. Nguyen and M. Yoo, “Analysis of link discovery

service attacks in SDN controller,” in Proc. IEEE

International Conference on Information Networking

(ICOIN), 2017, pp. 259-261.

[19] R. Skowyra, L. Xu, G. Gu, et al., “Effective topology

tampering attacks and defenses in software-defined

networks,” in Proc. 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN),

2018, pp. 374-385.

[20] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-

guard: Scalable and vigilant switch flow management in

software-defined networks,” in Proc. 20th ACM

Conference on Computer and Communications Security

(CCS), 2013.

[21] D. Smyth, S. McSweeney, D. O’Shea, and V. Cionca,

“Detecting link fabrication attacks in software-defined

networks,” in Proc. 26th International Conference on

Computer Communication and Networks (ICCCN), 2017.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License

(CC BY-NC-ND 4.0), which permits use, distribution and

reproduction in any medium, provided that the article is

properly cited, the use is non-commercial and no modifications

or adaptations are made.

Sonali Sen Baidya received the B.Eng.

degree in Computer Science from Utkal

University, India and the M.Tech degree

from IIEST, India. She is currently

pursuing the Ph.D. degree in the

department of Computer Science of

Texas Tech University, USA. Her

research area is Cybersecurity in

Software-Defined Networks.

Journal of Communications Vol. 15, No. 8, August 2020

605©2020 Journal of Communications

https://creativecommons.org/licenses/by-nc-nd/4.0/

Rattikorn Hewett is a Whitacre Chair in

Computer Science and a department

Chair at Texas Tech University. She

received a Ph.D. from Iowa State

University and a postdoctoral fellow

from Stanford University. Her research in

Cyber Security includes network security,

attack models and vulnerability analysis,

as well as research in Data Science, Automation, and Intelligent

systems. She has published over 100 peer-reviewed technical

articles, and has served on several journal editorial boards, and

numerous conference program committees.

Journal of Communications Vol. 15, No. 8, August 2020

606©2020 Journal of Communications

