

Manuscript received June 7, 2019; revised February 2, 2020.

doi:10.12720/jcm.15.3.237-244

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

237

Intent-Based Slicing between Containers in SDN Overlay

Network

Adeel Rafiq, Asif Mehmood, and Wang-Cheol Song
Computer Engineering, Jeju, South Korea

Email: {adeel.rafiq asif, philo}@jejunu.ac.kr

Abstract—Container-based service orchestration is getting

famous increasingly because of its ability to be deployed

quickly and it is cheaper as well as more reliable when

compared to virtual machines. Leveraging the container

characteristic, deployment of 5G modules as a group of

containers on different nodes is an excellent solution to

construct a 5g system. In a 5G system, network slicing plays a

vital role to isolate the on-demand services and the SDN based

overlay network consisting of containers provides the platform

which manages to slice the network using intent-based

networking. As the number of containers in a deployment

increases on hosts across the overlay network with the passage

of time in the 5G network, therefore it is necessary to manage

them with the tool in a straight way with high-level abstraction.

In this paper, we present the deployment of an overlay network

which consists of Kubernetes nodes and Open vSwitch. In this

paper, we also present the intent-based slicing system using

Software Defined Network controller and an Intent-Based

Networking (IBN) Manager among the containers across the

Kubernetes pods in an overlay network.


Index Terms—Containers, kubernetes, software-defined

network, slicing, intent-based networking, overlay networking

I. INTRODUCTION

Fifth-generation (5G) networks are the driving force

behind the growth and enhancement of IoT applications

and its evolution is increasing day by day due to its high

utility in IoT applications [1]. A report of International

Data Corporation (IDC) mentions that around $1.2 billion

will be spent on activity management solutions which will

be solely derived by global 5G services and it will cover

70% of global market companies [1]. Owing to the need

for implementing new business models in future IoT and

cater to the demanding requirements of a new application,

the latest performance standards are yet to be met. These

standards include new criteria such as ultra-reliable,

trustworthy, massive connectivity, wireless

communication’s coverage, security, drastic low latency,

throughput for multiple types and a massive number of

IoT devices [2]. To fulfill all these needs, new

connectivity interfaces are required. For upcoming IoT

applications, the required connectivity demands can be

fulfilled by Long-Term Evolution (LTE) and 5G

technologies.

It is very important and favorable to design the latest

5G systems that are more scalable, flexible and elastic,

exploiting advanced virtualization techniques and

development in Network function virtualization (NFV) in

order to cope with the boost and development in cloud

computing and their support of virtualized services. NFV

has got an upper hand in future 5G architecture

development as it provides an immense number of leads

for network flexibility, scalability, and elasticity. Owing

to these advantages NFV has apparently become a prime

element in the development of future 5G systems.

Federated networked cloud provides fragmented physical

infrastructures that have been used by researchers in both

industry and academia to develop new architectures that

are able to operate an end to end platform of a virtual

network and also capable of elasticity composition [3].

The carrier cloud is expected to play a vital part in the

design of 5G wireless networks. Software-Defined

Networking (SDN) techniques seem like one of the prime

initiators for this visual perception of carrier cloud. SDN

has introduced a considerable amount of flexibility and

programmability into network programming and hence it

has greatly impacted the field of computer networks [4].

Intent Framework provided by SDN controller allows

programmers to propose high-level policies without the

consideration of any low-level device details.

In virtualization, trend containerization is the new

initiative [2], [5], [6]. A container contains all the required

elements that are mandatory to run the procedure with

system tools and runnable libraries, which implies that it

provides a namespace cell and comprehensive filesystem.

Moreover, a container is eminently portable as it has no

external dependencies. To get rid of naming and version

conflict issues, the container’s namespace is separated

from other containers. Such as, two web servers can run in

two containers on a bare-metal machine without

introducing conflicts of port 8080 or 8181. These highly

useful features of portability and independence make the

testing and maintenance of containerized application very

easy and simple which remove the complexities from the

entire cycle of the application.

For the management of containers in a cluster, Google

has released an open-source project named Kubernetes. It

is based on over 10 years of running container clusters

internally. The purpose of Kubernetes is to deploy,

manage and make a schedule of containers to clusters of

machines. Basically, Kubernetes is designed to provide all

the primal elements for microservice architectures and to

have these the network support is mandatory since almost

mailto:philo%7d@jejunu.ac.kr

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

238

all the functions of applications such as Discovery,

communication, and synchronization are performed

through the network. Therefore, for any Kubernetes

cluster, network setup is one of the most significant and

prime factors.

As the technology is boosting exponentially so the total

number of connected devices in 2020 will be expected to

reach around 25 billion as recently stated in a survey of

Gartner [7]. Due to the rapid increase in associated data

streams and objects, problems like data confidentiality and

network performance have become significantly

prominent which also has put a lot of pressure on the

network and edge layer. In addition to this, managing an

IT infrastructure that contains numerous running machines

each having multiple containers, is itself a tedious task.

Keeping this in view, automated devices are getting into

fashion rapidly and becoming popular day by day.

In this complicated situation, this paper proposes a

system using a Kubernetes cluster to deal with the

connectivity problem and slicing in a dispersed

containers-based scheme. Specifically, the Kubernetes

cluster implements a system in three different machines.

Open vSwitch (OVS) is used as one of the mediator plug-

ins to provide connectivity in Kubernetes’ cluster

components. SDN controller communicates with Open

vSwitch (OVS) through OpenFlow protocol and provides

an ideal platform to control slicing among containers

across the overlay network using intent-based networking.

Keeping in view the importance of slicing in a 5G

network, we implemented the system with the SDN

controller and IBN Manager to control the slicing using

intent-based networking.

The proposed system consists of a web application i.e.

IBN Manager to provide a graphical user interface for

slicing management by providing intent, SDN controller

to control the Open vSwitch (OVS) by modifying flow

table according to the provided intent and Kubernetes

cluster.

The remaining paper is composed as follows. Section II

explains the related work. The proposed system is

presented in section III. Experimental results and

conclusion, as well as future work, are discussed in

Sections IV and V respectively.

II. RELATED WORK

In the past few years, many experimental and

methodical works have been proposed dealing with

service composition in Cloud computing. In [8]

researchers proposed a technique for managing the entire

lifespan of an application for automatically providing the

Cloud business applications. Cloud management tools are

employed in this technique which allows them to regulate

and maintain the necessary software components disposal

and their related dependencies. Specifically, a Linked

Unified Service Description Language (LUSD) is

proposed which describes different services that are

analogous to user’s needs and demands. Designing of an

edge Cloud network requires consideration of several

tasks in steps. The foremost step is to decide where the

facilities should be installed among the feasible slots

followed by the assignment of sets of access points. In

parallel, it should be capable to satisfy the service-level

agreements and to support the management of VM,

moreover, it should take into account the information

about partial user mobility. In [9] a link-path formulation

supported by heuristics to estimate and calculate the

answers in a rational amount of time is discussed which

specifically mentions the advantages of mobility

management for both users and VMs. In [10] a Cloud4IoT

platform is proposed which provides self-regulating

deployment, management and non-static configuration of

IoT support software elements and comprehensive data

applications that are employed for analyzing and

processing the data. It allows new sensor objects’ plug-

and-play integration and provides dynamic workload

scalability.

Container technology can provide ease in the

distribution and deployment of applications and services.

Moreover, container technology is very easy and fast to

package [11]-[13]. Because of these factors, it has gained

tremendous popularity.

Primarily containers are processes but to provide

namespace isolation they use mechanisms as chroot [14].

Containers are notably portable due to the

interdependence of container-based applications. This

makes them able to distribute and deploy easily [2].

Moreover, containers are much lightweight as that of VMs

and their initialization process is way faster than VMs [15,

16]. Containers can be operated by the Linux and

Windows operating systems as per need or desire.

Containers can be exploited both within a VM or on bare

metal. There are many container management systems [5],

[6] but Docker [2] is the most famous and noted one

among all.

Mostly the containerized applications comprise of

several containers. Such as in Hadoop [17], reduces and

mapper is a separate container. Nowadays advance web

services are consisting of multiple small services e.g.

database, restful APIs, load balancer and webs server are

deployed with multiple containers for each layer on multi-

host machine cluster. Containers-based cluster

orchestration software Mesos [18] or Kubernetes [5]

provides controlled deployment in this situation. Scaling,

upgrading or replacement of container is safe in this

architecture because the replacement of defected

containers is very quick on the same host or another host

machine. Network performance has a globally impact on

the performance of an application in case of working with

a single application container [19]-[22].

A container networking solution must be able to tackle

the plausible four cases that happen to own the possibility

that if the containers run on a physical machine or VM

hosts. Today most of the containers use overlay networks

frequently in order to have maximum portability. There

are numerous available possible ways at the software end

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

239

which provide overlay networking like Weave [23] and

Calico [24]. These solutions use software bridges to

connect the virtual interface of containers with the

network interface card of a host machine and provide

communication medium between them. The router also

executes the right tunneling (encapsulation and de-

encapsulation) for the movement of the traffic between the

overlay fabric and the tangible network. To connect with

software routers on added hosts, standard networking

protocols like BGP are exploited at the routers' end.

Containers always remain in the state of doubt related to

further container's location because they terminate the IP

packet through this overlay.

Deployment management of microservices for Edge

computing is proposed in [25] which also considers

geographical constraints. It assumes that a shared service

is possessed many microservices and users can make a

selection of the definitive regions in which these services

will be deployed using geolocation deployment

constraints. It also includes the instruction for the

deployment of each node involving Fog computing.

Considering the management of networking services, a

protocol for management control is proposed in [26]. It

supplies a way for managing the joint network of cloud by

providing a solution to transport application programming

interface. Subsequently, it allows communication of

divergent control planes in order to provide restoration

and provisioning of end-to-end quality of service services.

In [27] authors specifically discussed the upcoming 5G

network applications in the future. In this paper, the

authors discussed the Mobile Network Operator which is

constructed over a common physical network by

virtualizing backhaul tenant using SDN/NFV orchestrator

tool. Different infrastructure providers own divergent

technologies such as packet-based technology or optical

technology etc. that form the basis of a physical

aggregation network over which backhaul tenants are built.

In [28] authors proposed the latest method for the

management of energy-familiar services using energy-

familiar resource management framework for scattered

Cloud setup. In this research, authors have mainly focused

on proposing a system’s architecture in the context of

managing IT resources and networks. To drill and

examine the communication problems which are

associated with SO deployment in IoT systems, a

compound methodology is presented in [29] and [30]. It

basically models and simulates IoT systems with regard to

network simulator and multi-agent systems.

The goal of authors in the research work [31] is the

development of a platform in order to aid the non-static

resource-provisioning that rest on Kubernetes. The

detailed monitoring system, provisioning of resources

vigorously and the restraint loop are major features of this

developed platform.

To the best of our knowledge, the proposed paper

presents a unique system for service orchestration in

containers. This system is unique due to providing on-

demand service in the Kubernetes cluster using intent-

based slicing in the SDN overlay network.

III. SYSTEM ARCHITECTURE

This section presents the complete architecture of our

system and discusses each module in detail. The

uniqueness of our system is given in the last paragraph of

“Related Work”. We have designed the proposed system

with the context of Software Defined Network which

consists of three major parts and each representing an

SDN layer as shown in Fig. 1. IBN Manager represents

the management layer, Open Networking Operating

System (ONOS) represents the controller layer and

Kubernetes nodes represent the data layer.

Fig. 1. System architecture.

Our objectives in this section are to provide the detail

for creating SDN based Kubernetes cluster in which pods

should be routable across the nodes as well as all

containers inside the pods should communicate will others

and provide slicing mechanism among the containers

using Intent-Based Networking (IBN).

The Intent-Based Networking (IBN) Manager is

developed as a Java-based web application for the end-

user for defining their policy. Fig. 2 shows the IBN

Manager consisting of a back-end and a front-end module.

According to our research, a graphical user interface

(GUI) is mandatory for the end-user to define their

policies. The GUI’s main purpose is to reduce human

error while providing a friendly environment for defining

network policies.

Fig. 2. Frontend and backend moduel representation of IBN manager.

Fig. 3. Creating slice using point to point Intents API of ONOS

controller.

The Front-end module is shown in Fig. 3 provides an

interface where the user can create the intent. It gives a

detailed view of each intent and a list of all installed

intents. The Front-end module can query the information

from a database and then submit a creation request to the

back-end module of IBN Manager.

One of the features of the IBN Manager is the creation

of Point to Point (P2P) intents, which gives an interactive

way to define a detailed policy between two switches and

the rest of the work is done by the backend module. By

using P2P intents with ONOS, we can achieve slicing. In

order to realize this, specific information need to be

configured for each intent that is created as shown in Fig.

3. P2P Intents use the source MAC Address of the pod for

which a specific VLAN ID needs to be assigned for

slicing, it also requires the Identification of the switch

(this can be obtained from the ONOS controller list of

devices) as well as the Ingress and Egress ports. The most

important field that is used for denoting a specific slice is

the VLAN ID.

The Backend module shown in Fig. 4 contains a request

handler that is responsible for communication between the

front-end, the database, and the ONOS. It also contains a

policy-making module that takes input from the front-end

and maps all values to the variables in order to make a

proper policy that is intent-based. The Backend also

contains a CLASS to the JSON module for converting

objects (created with the policy-making module) to JSON

format in order to achieve Restful communication with

ONOS.

Fig. 4. Internal architecture of IBN manager and ONOS module involve

in intent based networking.

ONOS controller at the control layer communicates

with both IBN Manager via the northbound API and with

the Kubernetes cluster via southbound API. The intent

manager module of the ONOS controller receives the

request from IBN Manager in the form of JSON and

converts it into the low-level command after compiling it

which is executable on switches. Then posts the intent (in

the form of JSON) installer module of ONOS core for

installation. After the successful installation, our intent

installer communicates with the flow rule manager

module to keep a record of the created intent for the

relevant Kubernetes node.

IV. EXPERIMENT SETUP AND RESULTS

In this section, we present complete detail involved in

the construction of an overlay network for the Kubernetes

cluster and in the configuration of the ONOS controller.

We have deployed IBN Manager in windows desktop

machine and ONOS controller deployed in a virtual

machine running in the same windows host which is

configured with host machine using bridge networking

adaptor of Virtual Box. All three Kubernetes nodes are

deployed in three physical machines with Ubuntu 16.04

LTS operating system.

Let’s take an example of a Kubernetes node 1 with the

help of Fig. 1 to explain all configurations required to

create a setup in one hypervisor because this configuration

is enough to understand the configuration of the rest two

Kubernetes nodes. At first, we installed Kubernetes in the

Ubuntu machine and created two pods with two different

IP addresses. After creating two pods, we created an OVS

bridge and then configured the SDN controller IP in order

to provide connectivity between OVS and the controller.

Every switch device contains a unique Identification and it

appears in ONOS controller in the list of devices when it

is connected to the ONOS controller. Unt il now OVS can

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

240

communicate with the SDN controller but the pods are

running alone. To establish communication between pods

and OVS, we need to create two pairs of virtual Ethernet

interfaces veth1, veth2, veth2, veth4 and the links between

them as shown in the first two lines of Fig. 5 virtual

interfaces are the only solution to create a connection

between Linux and OVS bridges. In Fig. 5, third and

fourth lines are used to assign veth1 and veth2 interfaces

to OVS and sixth and seventh lines are assigned veth3 and

veth4 to Kubernetes pods. The last two groups of

command rename the virtual interface, assign an IP to the

virtual interface and default gateway. At this point, we

have successfully completed this setup in one machine

with two pods of Kubernetes, connected to OVS which is

further connected to the SDN controller. By replicating

the procedure of the first machine on the other two

machines, the basic experimental setup is completed

which is monitored by the ONOS controller. VxLAN

tunnel is used to support multi-host overlay networking

between Kubernetes pods across the nodes in this

experiment. Virtual LAN (VLAN) instances or VxLAN

(encapsulated L2) can be used to achieve slicing at layer 2.

In the meantime, VLANs have viewable limitations of

scalability and service location stickiness in the growing

cloud environment, VxLAN solves all of these problems

by introducing the larger tag space as compared to VLAN

(VLAN: 2^12 = 4096, VxLAN: 2^24 = 16777216).

Fig. 5. Configuration detail between pods and OVS on Host 1.

Fig. 6. Snapshot of ovs-vsctl show command’s result from Host1

According to system architecture shown in Fig. 1, we

have created two VxLAN tunnels in each OVS bridge

which are pointed to the other two host machines for the

purpose of connection establishment between three

Kubernetes nodes. Fig. 6 shows the configuration of two

VxLAN tunnels in the OVS of host1 pointing towards the

other two hosts. SDN overlay network completion after

replicating the procedure of VxLAN configuration and

resultant topology is shown in Table I.

TABLE I. TABULAR REPRESENTATION OF NETWORK TOPOLOGY

Switch Port 1 Port 2 Port 3 Port 4

S1 Pod 1 S2 Pod 2 S3

S2 Pod 1 S1 Pod 2 S3

S3 Pod 1 S1 Pod 2 S2

TABLE II. OPENFLOW TABLE ENTRY OF OPEN VSWTICH

Switch Source Destination VLAN_ID Action

S1 1 2 958 PUSH

S1 2 1 958 POP

S1 3 4 957 PUSH

S1 4 3 957 POP

S2 1 2 958 PUSH

S2 2 1 958 POP

S2 3 4 957 PUSH

S2 4 3 957 POP

S3 1 2 958 PUSH

S3 2 1 958 POP

S3 3 4 957 PUSH

S3 4 3 957 POP

Until now, the whole system has been deployed

successfully as mentioned in Section III and all the three

layers including Management, Control and Data Layer has

been started communication with each other successfully.

For the testing of slicing scenario in the deployed system,

we utilized the Kubernetes cluster as follows:

 We have deployed a video server in the container of

pod1 and web browsing sever in the container of pod2

of K-Node3.

 Firewall software is deployed in containers of both

pods of K-Node2.

 Clients for video server is deployed in the container of

pod1 and web browser server is deployed in the

container of pod2 of K-Node1.

VxLAN tunnels in each Kubernetes node isolate the

traffic of each node to separate the traffic of each pod, a

VLAN_ID is needed to attach with each port of OVS. As

explained earlier in Section III, network administrators

can configure each port of OVS using IBN Manager’s

GUI by providing their intents.

The testing procedure for creating slicing and traffic

flow is precisely explained below. Prior to start testing, an

overlay network should be created first. The network

administrator can use IBN Manager to install their intents

in Open vSwitch (OVS). IBN Manager provides multiple

functionalities for intent management and Fig. 3 shows

the image of intent creation page in which network

administrators can provide their intents by filling all fields

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

241

in the perspective of creating slicing between containers

and submit it to IBN Manager.

Intents are created using IBN Manager with specific

directives on all Open vSwitch for pushing and popping

the VLAN ID of the network that serves the slice of the

connection, as shown in Table II.

Before sending the intent to ONOS, backend module of

IBN Manager receives the submitted intent from frontend

and after compiling it into the intent policy as shown in

Fig. 7, then transforms it to JSON object which is a

contractual object, transferred between management

application and the intent framework of the ONOS

controller. Rectangular boxes in Fig. 7 shows the variables

that hold the intent information while making intent policy

in the backend module. Now ONOS receives the intent

request from IBN Manager and installs those rules in the

flow table of targeted Open vSwitch located in the

Kubernetes node using southbound as explained in the

previous section. Fig. 8 shows that we have achieved two

slices in the overlay network after installing the flow rule

patterns presented in Table II for all of the Open vSwitch.

Fig. 7. IBN Manager’s code for making intent policy from input intent

Fig. 8. Complete end to end slicing for service orchestration

We have executed two tests to verify the two created

slices. We added the valid IP address in a successful test

case and we also added the wrong IP address in failure test

for each slice in firewall software. For a successful test,

K-Node2 authenticated the request of both clients of K-

Node1 and received data from servers of K-Node3

successfully. In Failure test, K-Node2 blocked the request

of both clients of K-Node1.

Fig. 9 shows the result of the iperf test which is

executed on both clients of K -No de1 to provide the

evidence of traffic isolation in each slice. The result shows

that the slice did not disturb the performance of another

slice.

Fig. 9. Result of iPerf test for each slice

V. CONCLUSION

In this paper, we presented different aspects for the

management of Kubernetes cluster by introducing an SDN

controller. In this study, we presented the creation of an

overlay network of Kubernetes cluster using Open

vSwitch and management of traffic flow by creating

slicing among the containers, deployed on different

separate hypervisors using the SDN controller and IBN

Manager. Experimental results have shown that the

proposed system has successfully achieved two slices

using an intent-based networking approach, one slicing

created for video streaming and second slicing created

web browsing.

Open Virtual Networking (OVN) is emerged as the best

solution to manage the Kubernetes cluster in the mode of

overlay network which is configured using Open vSwitch

(OVS). OVN monitored all Kubernetes nodes centrally by

using the northbound and southbound databases. OVN

northbound database is effectively like a public API,

where Kubernetes defines its network configurations.

OVN southbound database is used for the internal state of

OVN and it contains more detailed information that how a

network should behave which is intended to be consumed

by the hypervisor. OVN creates the logical switches and

ports among the containers running on different hosts in

an overly-network and produces less overhead due to

native OVS support for L2/L3 overlays.

ACKNOWLEDGMENT

This research was supported by the MSIT (Ministry of

Science and ICT), Korea, under the ITRC (Information

Technology Research Center) support program (IITP-

2019-2017-0-01633) supervised by the IITP (Institute for

Information & communications Technology Planning &

Evaluation).

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education (NRF-2016R1D1A1B01016322).

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

242

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Adeel Rafiq conducted the research, developed the

intent-based networking software and wrote the paper

while Asif Mehmood participated in the establishment of

kubernetes test-bed. All of the work was done under the

supervision of Professor Wang-Cheol Song. All authors

had approved the final version of paper.

REFERENCES

[1] I-Scoop, 5g and iot in 2018 and beyond: The mobile

broadband future of iot, [Online]. Available:

https://www.i-scoop.eu/internet-of-things-guide/5g-iot/.

[2] Docker. [Online]. Available: http://www.docker.com/

[3] T. Taleb, “Towards carrier cloud: Potential challenges &

solutions,” IEEE Wireless Commun., vol. 21, no. 3, pp.

80-91, June 2014.

[4] T. Subramanya, R. Riggio, and T. Rasheed, “Intent-based

mobile backhauling for 5G networks,” in Proc. 12th

International Conference on Network and Service

Management (CNSM), Montreal, QC, 2016, pp. 348-352

[5] Kubernetes. [Online]. Available: http://kubernetes.io/

[6] CoreOS. [Online]. Available: https://coreos.com/

[7] Gartner. [Online]. Available:

https://www.gartner.com/newsroom/id/2970017

[8] H. Benfenatki, C. F. D. Silva, G. Kemp, A. N. Benharkat,

P. Ghodous, and Z. Maamar, “Madona: A method for

automated provisioning of cloud-based component-

oriented business applications,” Service Oteamriented

Computing and Applications, vol. 11, no. 1, pp. 87–100,

2017.

[9] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud

network design optimization,” IEEE/ACM Transactions

on Networking, 2017.

[10] D. Pizzolli, G. Cossu, D. Santoro, L. Capra, C. Dupont, D.

Charalampos, F. De Pellegrini, F. Antonelli, and S. Cretti,

“Cloud4iot: A heterogeneous, distributed and autonomic

cloud platform for the iot,” in Proc. International

Conference on Cloud Computing Technology and Science,

CloudCom, 2017, pp. 476–479.

[11] Docker. Docker community passes two billion pulls.

[Online]. Available:

https://blog.docker.com/2016/02/docker-hub-two-billion-

pulls/

[12] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson,

“Farm: Fast remote ́memory,” in USENIX NSDI, 2014.

[13] Iron.io. Docker in production – what we’ve learned

launching over 300 million containers. [Online].

Available: https://www.iron.io/docker-in-production-

what-weve-learned/

[14] FreeBDS. chroot – FreeBDS Man Pages. [Online].

Available: http://www.freebsd.org/cgi/man.cgi

[15] A. Madhavapeddy, T. Leonard, M. Skjegstad, T.

Gazagnaire, et al., “Jitsu: Just-in-time summoning of

unikernels,” in USENIX NSDI, 2015.

[16] D. Merkel, “Docker: Lightweight linux containers for

consistent development and deployment,” Linux J., 2014.

[17] Apache Hadoop. [Online]. Available:

http://hadoop.apache.org/

[18] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A

platform for fine-grained resource sharing in the data

center,” in USENIX NSDI, 2011.

[19] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I.

Stoica, Y. Lu, B. Saha, and E. Harris, “Reining in the

outliers in map-reduce clusters using mantri,” in USENIX

OSDI, 2010.

[20] M. Chowdhury and I. Stoica, “Efficient coflow scheduling

without prior knowledge,” in ACM SIGCOMM, 2015.

[21] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I.

Stoica, “Managing data transfers in computer clusters

with orchestra,” in ACM SIGCOMM, 2011.

[22] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow

scheduling with varys,” in ACM SIGCOMM, 2014.

[23] Weave Net. [Online]. Available:

https://www.weave.works/

[24] Project calico. [Online]. Available:

https://www.projectcalico.org/

[25] M. Villari, A. Celesti, G. Tricomi, A. Galletta, and M.

Fazio, “Deployment orchestration of microservices with

geographical constraints for edge computing,” in Proc.

IEEE Symposium on Computers andCommunications,

July 2017, pp. 633–638.

[26] A. Mayoral, R. Vilalta, R. Munoz, R. Casellas, R.

Martinez, M. Moreolo, J. Fabrega, et al., “Control

orchestration protocol: Unified transport api for

distributed cloud and network orchestration,” Journal of

Optical Communications and Networking, vol. 9, no. 2,

pp. A216–A222, 2017.

[27] R. Martinez, A. Mayoral, R. Vilalta, R. Casellas, R.

Munoz, S. Pachnicke, T. Szyrkowiec, and A. Autenrieth,

“Integrated sdn/nfv orchestration for the dynamic

deployment of mobile virtual backhaul networks over a

multilayer (packet/optical) aggregation infrastructure,”

Journal of Optical Communications and Networking, vol.

9, no. 2, pp. A135–A142, 2017.

[28] G. Fioccola, P. Donadio, R. Canonico, and G. Ventre,

“Dynamic routing and virtual machine consolidation in

green clouds,” in Proc. International Conference on

Cloud Computing Technology and Science, CloudCom,

2017, pp. 590–595.

[29] G. Fortino, R. Gravina, W. Russo, and C. Savaglio,

“Modeling and simulating internet-of-things systems: A

hybrid agent-oriented approach,” Computing in Science

Engineering, vol. 19, no. 5, pp. 68–76, 2017.

[30] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou,

“Agentoriented cooperative smart objects: From iot

system design to implementation,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, no. 99, pp. 1–18,

2017.

[31] C. C. Chang, S. R. Yang, E. H. Yeh, P. Lin, and J. Y. Jeng,

“A kubernetes based monitoring platform for dynamic

cloud resource provisioning,” in Proc. GLOBECOM 2017

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

243

- 2017 IEEE Global Communications Conference, Dec.

2017, pp. 1–6

Copyright © 2020 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Adeel Rafiq is a Ph.D. student at the

Computer Engineering department, Jeju

National University, South Korea. He

received his Master's degree in Software

Engineering from University of

Engineering and Technology, Taxila,

Pakistan in 2014 and Bachelor degree in

Computer Engineering from COMSATS

Institute of Information Technology, Wah, Pakistan in 2011.

He worked as a research assistant and visiting lecturer in UET

Taxila and CIIT Wah repectively. He also has professional

work experience of 5 years as a software developer in renowned

US-based software houses in Pakistan.

Currently, his fields of research comprise of SDN, NFV, E2E

Orchestration, Open Source MANO (OSM), ONOS, Intent-

Based Networking (IBN) and Load Balancing applications.

Asif Mehmood is a Master's student at

Computer Engineering department, Jeju

National University, South Korea. He

received his Bachelor's degree in

Computer Science from COMSATS

Islamabad, Pakistan in 2015.

He worked as a Software Engineer in

several organizations such as U

Microfinance Bank, TypeUX, Horizon, BroadPeak

Technologies. The total years of industrial experience are 3

years in very dynamic and fast-paced environments. Currently

he is researching on IBN, Orchestration, SFC, SDN, NFV using

different techniques such as Kubernetes, M-CORD, COMAC,

etc

Wang-Cheol Song work at the Computer

Engineering department, Jeju National

University, South Korea. Member of

Advanced Network Forum

(correspondent), Korea Contents

Association (correspondent Distinguished

Service medal 2005), Korea Information

Science Society (correspondent), Korean

Institute Communications and Sciences (correspondent).

He received B.S. degree in Food Engineering and Electronics

from Yonsei University, Seoul, Korea in 1986 and 1989,

respectively. And M.S. and Ph.D. in Electronics studies from

Yonsei University, Seoul, Korea, in 1991 and 1995,

respectively. Since 1996 he has been working at Jeju National

University. His research interests include VANETs and

MANETs, Software Defined Networks, network security, and

network management.

©2020 Journal of Communications

Journal of Communications Vol. 15, No. 3, March 2020

244

