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Abstract—Research has shown that a huge portion of the 

electromagnetic spectrum is underutilized. Over the years, 

cognitive radio has been demonstrated as an efficient dynamic 

spectrum management technique. Energy detection is one of the 

widely used spectrum sensing techniques. However, its 

performance is limited by factors such as multipath fading and 

shadowing, which makes it prone to errors, particularly in low 

signal-to-noise ratio conditions. Yet, it still has a low 

computational cost, which reduces communication overhead. 

This paper aims to improve the detection accuracy of the energy 

detector through the use of machine learning (ML) techniques. 

In this research, ML models were trained using the energy 

characteristics of the primary user and other users present 

within the system. Weighted KNN produced the highest overall 

accuracy with an average of 91.88% accuracy at various SNR 

conditions. However, complex tree algorithm gave the most 

accurate detection (99% accuracy) of the primary user across all 

the channel conditions tested. This detection also helped to 

differentiate between the identity of the primary or secondary 

user from interference. 

Index Terms—Cognitive radio, energy detection, detection 

accuracy, machine learning 

I. INTRODUCTION

The status of the electromagnetic spectrum presently 

reveals a high degree of under-utilization [1]. It was 

observed that some portions of the radio spectrum are 

already overcrowded (3GHz – 300GHz region) [1] due to 

the very many telecommunication applications and 

services that perform better in the very high frequency. 

However, there are some spectrum spaces between 

30MHz and 3GHz that are not as crowded. These 

portions are still part of the radio spectrum (3MHz – 

3THz) that can be effectively utilized for 

telecommunication services [2]. This status is rapidly 

deteriorating such that efficiently using the spectrum to 

empower the increasing wireless devices and services is 

slowly becoming almost infeasible [3]. 

The regulations that were put in place by the Radio 

Communication Sector of ITU (ITU-R) to ensure 
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efficient spectrum allocation and to avoid interference 

between users cannot effectively manage the upsurge of 

existing and upcoming bandwidth-demanding wireless 

technologies. At the end of 2016, the worldwide 

population of mobile phone subscriptions was 7.5 billion, 

with each subscriber individually contributing an average 

data usage of 2.1GB to worldwide 8.8EB total mobile 

data traffic [2], [4]. On average, more than 1 million 

mobile phone subscribers will be added to the annual 

mobile device subscription database until 2022 to make a 

huge 9 billion mobile subscribers worldwide [2]. 

These new radio access technologies are limited by the 

shortage of the useable available radio spectrum. This is 

because the present regulations possess fixed radio 

functions, static spectrum allocation, and limited network 

coordination [5]. This situation calls for an urgent need to 

improve the utilization of the spectrum, and cognitive 

radio is a dynamic spectrum management application that 

can suffice as a workable solution [6]. 

The spectrum utilization statistics in Africa as a case 

study shows that the continent alone contributed 13% to 

the world wireless technology users and 10% of the total 

internet subscribers worldwide as at the end of the first 

quarter of 2017 [4], [7]. There were 985 million 

subscriptions from Africa alone, out of the global 2.1 

billion LTE subscribers in the first quarter of 2017. 

Despite this huge growth in network connectivity demand, 

the continent is still limited by low telecommunication 

connectivity quality which is depicted in measurable 

parameters such the overall Internet Service Provider 

(ISP) subscriptions, Internet Exchange Point (IXP) traffic 

and available bandwidth compared to the rest of the 

world [8]. Bridging this digital divide, which would entail 

an improved broadband wireless access technology 

requires more efficient use of spectrum opportunities 

such as the GSM white space through dynamic spectrum 

management [9], [10].  

Cognitive Radio (CR) technology has been proven 

through research to be an efficient dynamic spectrum 

management technique [10], [11]. This software-defined 

radio can effectively manage the spectrum by exploiting 

spectrum holes and permitting the deployment of diverse 

wireless devices and services [6]. It can sense the status 

of the spectrum channels to determine the possibility of 

utilizing the channels. It is thus able to tune the usage of 

the spectrum dynamically based on certain factors such as 
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number and type of radios requiring bandwidth allocation, 

location of the radios, time of the day, etc. [12]. 

Spectrum sensing is very crucial in cognitive radio 

operations to avoid interference and channel 

misallocation. This is particularly very sensitive because 

interfering with the channel of a licensed user has legal 

implications [13]. There are several techniques that can 

be used in spectrum sensing. Energy detection-based 

sensing is one of the least resource-demanding and yet 

effective methods in spectrum hole detection [14], [15]. 

Cognitive radio is one of the solutions to the problem of 

spectrum overcrowding, and it does this by 

opportunistically allocating unoccupied frequency bands 

of licensed users to unlicensed users. It is necessary for 

unlicensed users to have cognitive radio capabilities, such 

as reliable spectrum sensing in order to check if a 

particular channel is in use by a licensed user at a specific 

point in time [13]. 

II. LITERATURE REVIEW

Authors in [16] worked on the evaluation of an 

improved version of the energy detection algorithm. The 

aim was to improve the detection quality of energy 

detectors in cognitive radio systems. The method 

proposed outperformed the classical energy detection 

scheme and at the same time, maintaining a similar level 

of algorithm complexity and computational cost. 

Detection time was reduced in comparison to other, more 

sophisticated methods of sensing. 

Authors in [17] examined different spectrum sensing 

schemes amongst which is an adaptive threshold energy 

detector. Performance and lower hardware requirements 

were used to suggest new schemes. The results were then 

used to confirm the theoretical basis of these techniques. 

The work in [18] improved energy detection spectrum 

sensing by using an optimum power operation instead of 

the squaring operation in the classical energy detector. 

The best power operation was achieved based on the 

probability of false alarm, the probability of detection, the 

average signal-to-noise ratio, or the sample size. 

Authors in [19] developed an improved energy 

detector for wideband spectrum sensing in cognitive radio 

networks. The aim was to determine the detection 

thresholds for non-overlapping sub-bands. This resulted 

in improved spectrum sensing and opportunistic access 

for secondary users. 

In  [20], an augmented spectrum sensing algorithm for 

cognitive radio systems was proposed. Cyclostationary 

detection was used to augment the energy detector’s 

detection. However, this method needs some knowledge 

of the primary users’ transmission characteristics.  

Authors in [21] used multiple antenna techniques to 

improve the performance of energy detection and 

cyclostationary feature detection-based spectrum sensing 

systems for cognitive radios. Cooperative spectrum 

sensing was used together with various combining 

techniques. Equal Gain Combining (EGC) gave the 

highest gain when used with different modulation 

schemes. 

Reference [22] used a cyclostationary detection based 

cooperative spectrum sensing in a cognitive radio 

network consisting of multiple antennas and a fusion 

center. The method used was able to perform well in low 

signal-to-noise ratios (SNR) conditions. The paper also 

showed that the probabilities of detection in low SNR 

conditions can be increased with an increasing number of 

secondary users.   

Authors in [23] proposed a scheme where cognitive 

users can use different channels, even without any 

information about the environment. This paper was able 

to improve on the usage of the idle spectrum and at the 

same time considering fairness in channel selection. In 

[24], the authors developed an improved energy detection 

algorithm with the aid of a p-norm energy detector. This 

improved the sensing of each cognitive radio used in 

cooperative spectrum sensing thus affecting the 

performance gain positively in AWGN and generalized κ-

μ fading channels. 

III. METHODOLOGY

A. System Model

Energy detection is a non-coherent detection method

that is used to detect the operation of a licensed user 

within a particular communication channel [9]. In energy 

detection, the energy detected in the channel being sensed 

is measured and compared with a predefined threshold to 

determine the presence or absence of the primary user 

(PU) signal [10]. An energy detector is largely employed 

in ultra-wideband communication to utilize an idle 

channel when not in use by a licensed user. 

In the implementation of the energy detector, the 

received signal  is filtered by a bandpass filter (BPF) 

in line with the bounds of the frequency channel being 

sensed. This signal detected is then squared with a 

square-law device. The bandpass filter serves to reduce 

the noise bandwidth. Hence, noise at the input to the 

squaring device has a band-limited flat spectral density. 

The output of the integrator is the energy of the input to 

the squaring device over the time interval . Afterward, 

the output signal from the integrator (the decision 

statistic), , is compared with a threshold to decide 

whether a primary (licensed) user is present or not. A 

decision regarding the usage of the band will be made by 

comparing the detection statistic to a threshold [24]. 

The mathematical model for energy detection is given 

by the following two hypotheses [11]:  

   (1) 

   (2) 

where  is noise and  is the PU’s signal 
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The energy detector performs optimally in spectrum 

sensing if the noise variance is known. This is required to 

define the threshold which helps in deciding spectrum is 

occupied or not [25]. The challenge with the spectrum 

sensing of the energy detector is that it is unable to 

accurately detect the PU when the signal is weak, i.e. at 

low SNR. The detection accuracy further deteriorates 

when the noise characteristics cannot be defined due to 

varying noise uncertainties [26], [27].  

This study is aimed at managing interference which 

may occur in energy-detection based cognitive radio by 

introducing supervised machine learning. This is 

expected to help the cognitive radio system (CRS) learn 

the patterns in the unknown noise characteristics through 

a clustering algorithm. The specific properties of the PU 

were used as training data in a supervised learning 

technique to serve a feature detection algorithm in the 

CRS. This scheme intends to improve the detection 

accuracy of the energy detector in scenarios when the 

SNR falls to the SNR wall level. 

Equation (3) shows the normalized test (decision) 

statistic for the detector and this was developed based on 

[28] as:

(3) 

where: 

= test statistic in during sensing session 

 = received signal input  

 = sampling instant 

 = two-sided noise power density spectrum 

If the test statistics exceed a fixed decision threshold 

then it results in H1 hypothesis. However, when the test 

statistics is less than the decision threshold then H0 

hypothesis occurs. 

As shown in [16],  is the decision threshold which in 

the number of samples , can be expressed as a 

Gaussian distribution: 

(4) 

where: 

(5) 

(6) 

(7) 

 is the received average primary signal power 

 is the noise variance.  

B. Machine Learning Improved Solution

The operating characteristics in the network can be

assessed in frames ( ). The energy test statistic ( ) 

at the frame of the user’s transmission operations can 

be extracted as input data. Similarly,  and 

can be extracted at specific points in the channel 

and receiver respectively. 

Energy test statistics for the primary user ( ) is 

represented as: 

(9) 

Energy test statistics for a secondary user ( ) is 

represented as: 

    (10) 

Energy test statistics for an interfering user ( ) is 

represented as: 

    (11) 

The labels identifying these input data in specific 

frames as primary user ( ), a secondary user ( ) or 

interfering user ( ) based on their respective energy test 

statistics can be represented as decisions ( ).  

Both classes of data (energy test statistics and labels) 

are expected to be inputted as training data. The resulting 

ML classifier should be able to identify an unknown user 

( ) occupying the channel based on its energy test 

statistics as follows: 

  (12) 

This machine-learning enabled energy detection 

process can be represented in the form of a block diagram 

as shown in Fig. 1. 

Fig. 1. Block diagram representing the machine-learning enabled energy 

detection process 

The block diagram in Fig. 1 was implemented with 

MATLAB Simulink on MATLAB 2017a software. The 

model consisted of transmitters with an energy detector 

based cognitive radio through an additive white gaussian 

noise (AWGN) channel. The noise variance of the 

channel was set to -15dB to -25dB. The single sensing 

technique was employed using a frequency of 936MHZ 

and a bandwidth of 200 kHz and the threshold set to 0.2. 

Setting up the cognitive radio spectrum sensor (energy 

detector) in Simulink. Details of the simulation 

parameters are presented in Table I. The cognitive radio 

was tested through simulations in scenarios such as the 
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PU utilizing the channel, the PU not utilizing the channel, 

the secondary user (SU) utilizing the channel and 

interference in the channel. Afterward, machine learning 

was introduced to mitigate interference. 

SNRs were varied in order to access the performance 

of the Energy Detector (ED) in very low SNRs. Machine 

Learning (ML) algorithms, particularly tree algorithms 

and KNN were harnessed to enable the ED to learn the 

characteristics of the network for better sensing. The 

sample size was varied between 300 and 300,000 samples 

using holdout validation. This helped to determine the 

best accuracy for the system. The simulations carried out 

compared the output of a conventional energy detector 

with an ML-enabled energy detector. The best 5 ML 

algorithms were selected based on their overall prediction 

accuracy. 

TABLE I: SIMULATION PARAMETERS 

Parameters Values 

SNR Variation -25 dB to -10 dB 

Channel AWGN 

Frequency of PU 936 MHz 

Bandwidth 200 kHz 

Threshold 0.2 

IV. SIMULATION AND RESULTS

The energy levels of the primary user (PU), a 

Secondary User (SU), and interference (IU) were 

collected. Samples collected were fed into the 

Classification Learner of MATLAB. The problem under 

consideration is a classification problem thus, it is 

required of Machine Learning (ML) to predict the PU, 

SU, and IU correctly. 

Fig. 2. Bar chart showing the accuracies for five classifiers at -15dB 

Quick-to-train classification algorithms were used to 

train the data. The best five algorithms namely: Complex 

Tree, Fine KNN, Weighted KNN, Cubic KNN, and 

Medium KNN were selected and ranked based on the 

accuracy.  These algorithms performed well during 

testing. The accuracies across different dB levels are 

presented in Table II-V. In , results for the output of the 

ML at -15dB were presented with the complex tree 

algorithm having the highest accuracy for the prediction 

of a PU. Thus, Table VI shows the accuracy of different 

sample sizes using the complex tree algorithm at -25dB. 

Fig. 3-6 show the receiver operating characteristics 

(ROC) of the CR for varying dB levels. Comparisons 

were made between the output of the conventional energy 

detector (CED) and the ED with ML incorporated within. 

Fig. 3. ROC curves across four dB levels using CED 

Fig.4. ROC curve comparing five classifiers at -15 dB 

Fig. 5. ROC curve comparing five classifiers at -20 dB 

Fig. 6. ROC curve comparing five classifiers at -25dB 

TABLE II: ACCURACY OF CLASSIFIERS AT -10DB 

PU SU IU 

CM TPR 

(%) 

FNR 

 (%) 

TPR 

(%) 

FNR 

(%) 

TPR 

(%) 

FNR 

(%) 

OA1

(%) 

WKNN 95 5 91 9 92 8 92.5 

FKNN 93 7 91 9 93 7 92.6 

MKNN 96 4 89 11 90 10 91.8 

CKNN 96 4 89 11 90 10 91.7 

CTree >99 <1 85 15 87 13 90.4 
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TABLE III: ACCURACY OF CLASSIFIERS AT -15DB 

PU SU IU 

CM TPR 

(%) 

FNR 

 (%) 

TPR 

(%) 

FNR 

(%) 

TPR 

(%) 

FNR 

(%) 

OA1

(%) 
WKNN 94 6 91 9 92 8 92.2 

FKNN 93 7 91 9 93 7 92.1 

MKNN 96 4 89 11 90 10 91.5 

CKNN 95 5 89 11 90 10 91.3 

CTree >99 <1 85 15 87 13 90.4 

TABLE IV: ACCURACY OF CLASSIFIERS AT -20DB 

PU SU IU 

CM TPR 

(%) 

FNR 

 (%) 

TPR 

(%) 

FNR 

(%) 

TPR 

(%) 

FNR 

(%) 

OA1

(%) 

WKNN 94 6 90 10 91 9 91.7 

FKNN 92 7 90 10 92 8 91.7 

MKNN 96 4 89 11 89 11 91.2 

CKNN 95 5 89 11 89 11 90.9 

CTree >99 <1 84 16 86 14 90.3 

TABLE V: ACCURACY OF CLASSIFIERS AT -25DB 

PU SU IU 

CM TPR 
(%) 

FNR 
 (%) 

TPR 
(%) 

FNR 
(%) 

TPR (%) FNR 
(%) 

OA1

(%) 

WKNN 93 7 89 11 91 9 91.1 

FKNN 91 9 89 11 92 8 90.8 

MKNN 95 5 88 12 89 11 90.7 

CKNN 95 5 88 12 89 11 90.4 

CTree >99 <1 85 15 87 13 90.5 

TABLE VI: EFFECT OF TRAINING SAMPLE SIZE ON ACCURACY AT -25DB 

USING COMPLEX TREE ALGORITHM 

PU SU IU 

Training 
Samples 

TPR 
(%) 

FNR 
(%) 

TPR 
(%) 

FNR 
(%) 

TPR 
(%) 

FNR 
(%) 

OA1

 (%) 

300 52 48 48 52 44 56 48 

3000 99 1 50 50 58 42 69.1 

30000 100 0 78 22 74 26 83.9 

300000 >99 <1 85 15 87 13 90.5 

OA
1
: Overall accuracy 

CM: Classification methods 

WKNN: Weighted KNN 

FKNN: Fine KNN 

MKNN: Medium KNN 

CKNN: Cubic KNN 

CTree: Complex tree 

TPR: True positive rate  

FNR: False-negative rate 

V. DISCUSSION

Fig. 3 revealed that detection sensitivity reduces as 

SNR reduced from -15 dB to -25 dB. It exposed the 

weakness of ED in low SNR operating conditions. It 

confirms the need for improved sensitivity detection in 

low SNR operating conditions.  The improvement effort 

was made with the incorporation of ML algorithms to 

learn the network operating characteristics. The results 

presented in Fig. 4-6 show a reduction in the probabilities 

of false alarm and missed detections. In Fig. 4, the ROC 

for -15 dB using ML was compared with that of the CED. 

Fig. 5 showed the ROC for -20dB while Fig. 6 displays 

the ROC at -20dB. It was observed from these results that 

the detection sensitivity improved using ML when 

compared to CED. 

Results from Table VI showed that the detection 

sensitivity and accuracy of the CR improved with an 

increased sample size. The overall accuracy of detection 

for the PU remained steady at 3000 to 300000 samples. 

However, the TPR of the other classes improved as the 

sample size increased. 

These results reveal that the detection sensitivity of 

ED-based CRS can be improved upon by incorporating 

the ML algorithms while preserving the low 

computational complexity and requirements of the CRS. 

The CRS could thus be sensitive enough to differentiate 

between the signals of the PU in the channel being sensed, 

SU’s signals, other random transmissions, and noise even 

in low-SNR conditions. 

Authors in [29] used ML to determine if the channel is 

occupied or not. This work enabled the CR to detect and 

differentiate between channel users. It gave a clearer 

discussion of channel occupancy. Furthermore, it is an 

improvement on other studies that utilize ML it does not 

just focus on sensitivity. Instead, it helps to act as a 

discriminator to differentiate between PU, SU, and a 

potential interferer.  

This, therefore, fulfills the aim of minimizing 

interference without compromising the sensitivity of an 

ED-based CRS. It is a further step towards the 

improvement of energy detectors in CRS using ML. 

VI. CONCLUSIONS

This study provides a solution to the demand for 

improved detection sensitivity in areas of low SNR 

conditions for CRS without increasing the computational 

complexity and overhead of the communication system. 

This was carried out with the incorporation of ML 

algorithms in ED-based CRS. The ML-improved CRS 

learns the patterns in unknown noise characteristics as 

well as other operating characteristics of the network in a 

semi-supervised form of learning. This makes it robust 

enough to perform efficiently in different noisy channels. 

On the whole, it contributes significantly to better 

interference management.  

The limitation of this work is that it was carried out 

only in an AWGN channel. Future work will evaluate the 

development in other noisy channels with varying noise 

characteristics. 
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