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Abstract—Nowadays, cloud computing and IoT devices are 

widely used and involved in our life. However, the current 

cloud computing paradigm still have some limitation mainly 

related to the latency, location, and mobility. Thus, to overcome 

such limitations, Fog Computing was introduced as an 

intermediate layer between the IoT devices and cloud 

computing to providing multiple benefits such as low latency 

and mobility. However, the security of Fog Computing 

protocols is still a concern especially those related CoAP 

protocol. CoAP protocol is still does not have the reliable 

standards for securing its architecture and there is a huge lack of 

the main researches on how security can be managed or 

provided to CoAP. Hence, this paper surveys the CoAP protocol, 

its architecture, security and different proposed techniques to 

secure CoAP protocol.  The paper provides a solid reference for 

the Fog Computing and CoAP protocol security as well as it 

proposed a taxonomy for the literature review to ease 

understanding all available techniques to secure CoAP. 
 
Index Terms—Fog computing, IoT, CoAP, security, DTLS, 

wireless sensor networks  

I. INTRODUCTION

Currently cloud computing and IoT devices are widely 

used and it has significantly gotten more involved in our 

life. However, the current cloud computing paradigm still 

have some limitation, and it can’t satisfy the requirements 

of supporting mobility, location and low latency. 

Unacceptable latency may prevent some critical IoT 

applications and services such as disaster management 

applications of benefiting from cloud computing due to 

inherent problems [1]. The critical issue, is that as the 

size of cloud is growing, the network latency will 

increase as well which is not acceptable for critical IoT 

applications [2]. Thus, the Fog Computing concept has 

been introduced to address the cloud computing 

limitations. Fog Computing is an extension of the cloud 

computing, it has multiple benefits such as low latency, 

location awareness, and mobility. Also, it is an 

appropriate paradigm for many IoT services [3].  

The introduction of Fog Computing requires 

application protocols to ensure the interaction and 
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communication among the involved devices and 

applications. Among these application protocols are: 

Constrained Application Protocol (CoAP) [4], [5], 

Message Queue Telemetry Transport (MQTT) [6], 

Advanced Message Queuing Protocol (AMQP) [7], Data 

Distribution Services (DDS) [8], ZigBee [9], UPnP [10], 

DPWS [11]).  

However, CoAP is the most popular protocol used in 

IoT application due to its features such as: its simplicity 

when being used by developers, its lightweight style in 

terms of power consumptions and communication, 

mobility, portability, and having enough techniques to 

improve the data security and integrity [12]-[14]. Md. 

Motaharul et al. [15] proposed cloud based architecture 

for harmonizing IoT using CoAP protocol and their 

evaluation experiments showed that CoAP protocol is 

more suitable than MQTT in implementing the 

communication between sensors in cloud computing 

environment. Moreover, CoAP has rapidly gained the 

adoption and supports by large companies [16] and it has 

been introduced by researchers, due to its lightweight 

property, to be used in several domains ranging from 

smart homes to the industrial WSNs [17]-[22]. 

The security of Fog Computing protocols especially 

CoAP protocol is an important topic as it does not have 

the reliable standards for secure architectures. In CoAP, 

Datagram Transport Layer Security (DTLS) [23] is 

proposed to be implemented on top of UDP to secure its 

messages. However, DTLS does not suit the CoAP proxy 

and it was not designed initially for resource constrained 

devices; for example, in order to perform the handshake 

process DTLS need six flight messages which increases 

the communication overhead and consume constrained 

devices energy. DTLS has been studied by different 

researchers to find out how it secures CoAP 

communication messages. However, the main challenge 

which face CoAP is the lack of the key researches on how 

security can be managed and implemented [24], [25]. 

Thus, this paper surveys CoAP protocol, its architecture, 

security and security enhancement suggestions.  

Fog Computing is not a replacement to the cloud 

computing; however, it is considered as an extension or 

intermediate layer between cloud computing and IoT 

devices. The term Fog Computing was introduced by 

14

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications



Cisco Systems as a bridge between cloud computing and 

Internet of Things (IoT) devices to overcome the gap [26]. 

Using Fog Computing, the cloud services can be 

extended closer to IoT devices. It is a highly virtualized 

platform that provides different services such as storage, 

and networking services [27].   

Fog Computing offers flexible, inexpensive and 

portable in terms of both hardware and software [28]. It 

also provides location awareness, mobility of things, and 

bandwidth requirements for IoT devices. Moreover, it 

provides a low latency advantage by allowing processing 

functions to take place at the network edge [1] [29], [30]. 

Fog Computing have relatively small computing 

resources such as memory, processing and storage 

comparing to the cloud computing. However, it is able to 

process the data generated from diverse devices, and it 

can be installed on low specification devices such as 

switches [28]. 

According to [31], Fog Computing extends the 

capability of cloud by introducing its four layers.  Fig. 1 

shows the Fog Computing architecture. 

Fig.  1. Fog computing architecture [31]. 

As illustrated, the data centre layer provides the fog 

nodes with large volume of data, resources and services 

to the fog node. The second and third layers are the fog 

nodes and services, which provide the IoT devices with 

needed services and data, that reduces the latency and 

gaps between cloud and IoT devices. The fourth layer is 

IoT devices such as sensors, embedded systems, etc. [31]. 

Fig. 2. Application protocols in IoT, Fog and cloud networks [32]. 

Fog Computing is an extension of the cloud computing, 

it has multiple benefits such as low latency, location 

awareness, and mobility. Also, it is an appropriate 

paradigm for many IoT services. The main protocols that 

have been considered for communication between cloud 

and fog, and Fog and IoT devices are illustrated in Fig. 2. 

The communication between Fog Computing and IoT 

devices are carried out using CoAP, MQTT, and XMPP 

protocols [32].  

The rest of the paper is organized as follows: Section 2 

presents the background of the related aspects of Fog 

Computing, In Section3, a literature review is presented. 

Section 4 shows the discussion and analysis of the related 

reviewed studies. Findings and recommendations are 

presented in Section 5 and finely the conclusion is given 

in Section 6. 

II. BACKGROUND

This section introduces a background on CoAP as an 

application layer protocol designed for resource-

constrained devices.  

CoAP is adopting the User Datagram Protocol (UDP) 

protocol to be adopted by low-bandwidth connections and 

low-computational-power devices [33], [34]. Unlike 

HTTP, CoAP supports multicast. CoAP uses Efficient 

XML Interchanges (EXI) format which consume less 

space compared to XML/HTML binary format [35]. In 

general, Fig. 3 shows the comparison between HTTP and 

CoAP protocols. 

Fig. 3. HTTP and CoAP comparison [36]. 

A. CoAP Architecture

CoAP is a stateless protocol relying on the client-

server architecture with the usage of request- response 

model for exchanging messages. Like HTTP, CoAP uses 

Representational State Transfer (REST) model, where it 

addresses the server resources by Uniform Resource 

Identifier (URI) that can be accessed from a client by 

sending a request (GET, POST, PUT and DELETE) to 

the server referring to such URLs [34]. 

CoAP includes two layers which are messaging layer 

and request/ response layer. The message layer 

responsible about the redundancy and consistency of any 

message, while the request/response layer is responsible 

about the connectivity and communication [35].  
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There are four types of messages which is supported 

by CoAP which are [35]:  

Confirmable Messages (CON): which are all 

messages marked as confirmable messages (reliable 

messaging mode). CON messages are sent out based on 

the default timeout and exponential back-off mechanism, 

until receiving the acknowledgment message (ACK) that 

must hold the same message ID sent by the sender. If the 

reply was not successful, the recipient will send a reset 

message (RST) to reset the communication. Fig. 4 shows 

the CON and ACK messages between the client and the 

server. 

Fig. 4. Confirmable messages communication 

Non-Confirmable Messages (NON): which are all 

messages marked as not confirmable messages 

(unreliable messaging mode). The recipient is able only 

to send reset message if it is unable to respond to the 

NON message. Fig. 5 shows the NON-message between 

the client and the server. 

Fig. 5. Non-confirmable messages communication. 

Acknowledgment Messages (ACK): which is the 

message sent back to the sender by the recipient in the 

reliable messaging mode. It must contain the same 

message ID sent in the CON message by the sender as 

shown in Fig. 4.  

Reset Messages (RST): Which is the message sent 

back to the sender by the recipient to reset the 

communication between the client and the server. 

Messages in request/response layer can be described as 

followings [35]-[37]: 

Piggy-Backed Message: Which is sent immediately 

by the server after receiving CON or NON messages. In 

general, the message is called ACK message. Fig. 6 and 

Fig. 7 show the successful and failure responses which 

contain sucess and failure codes respectively.  

Separate Message: Which is an empty message sent 

by the server to stop the client from resending the 

message. In general, it is sent when the server can’t 

respond to the client immediately and once the server 

become ready, an ACK message will be sent. This type of 

message takes some time to be delivered. Fig. 8 illustrates 

the separate message communication. 

Non-Confirmable Message: When a non-confirmable 

message is sent by the client, the server could respond by 

NON or CON messages as shown in Fig. 9. 

Fig. 6. The successful response results of GET method. 

Fig. 6. The failure response results of GET method 

Fig. 7. Get request with a separate response. 

CoAP message follows RESTful architecture making it 

suitable to be used on constrained devices that required 

lightweight protocols. The messages have a simple binary 

format of a 4-byte header that holds the required 

information of each message including the payload 

options as shown in Fig. 10, where,  

- Version (V) holds to CoAP version number.

- Type (T) holds the message type.

- Token Length (TKL) holds the length of the

token.
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- Code holds the request or response code.

- Message ID is used to identify the message for

the purpose of matching and detecting the

redundancy.

- Token might be used as an association for all

requests and responses.

- Options are attached at the end of a message

with the possibility to have several options and

can hold a payload.

- Payload is mainly added to the  end of the UDP

datagram and its value determined based on the

size of the datagram [35].

Fig. 8. Non-confirmable request and response. 

Fig. 9. CoAP message header [35]  

B. Security in CoAP

The security of CoAP is an important aspect due to not

having the reliable standards to secure CoAP architecture. 

Thus, Datagram Transport Layer Security (DTLS) has 

been proposed to be used on top of UDP to secure its 

messages communications. DTLS provides the security 

services including confidentiality, integrity, 

authentication, and non-repudiation services utilizing the 

fundamentals of AES/CCM [24].  

According to [25], [35], DTLS manages crucial 

security factors such as authentication, confidentiality, 

key management, and data integrity of the messages. 

DTLS has four modes of security which is used by CoAP 

with several applications as described below: 

NoSec Mode: Where it assumes that another protocol 

layer will implement the security mechanism, and hence 

messages are transfered with no security.  

PreSharedKey Mode: Where the devices that are 

allowed to use the same system are already programmed 

with single symmetric key which help in communication 

with other devices.  

RawPublicKey Mode: it is considered as an essential 

in the implementation of CoAP and generally is adopted 

by the devices that required authentication, which uses 

asymmetric key for each device to help in identifying 

these devices and interact with them.  

Certificates Mode: it is considered as an 

authentication technique for devices that implement 

CoAP with an X.509 certificate. 

Fig. 10. Taxonomy of the literature review 
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DTLS proposed by some researchers to be be 

implemented in CoAP to provide the security. However, 

applying DTLS has some limitations such as: large 

message and handshake process which uses six flight 

messages to complete the handshake process which will 

increase the number of the transmitted bytes, and 

consumed energy. Also, the main importamt limitation is 

that, DTLS was not designed for resource constrained 

devices; and it uses [38]. 

DTLS has been studied by some researchers to find out 

how does DTLS applied on CoAP to provide security. 

However, there is a huge lack of the main researches on 

how security can be managed or provided to CoAP [24] 

[38]. The biggest challenges which face CoAP are the 

lack of the important researches related to the security 

aspects along with keeping the high performance after 

providing the needed protection to the communications. 

III. LITERATURE REVIEW

CoAP security mechanisms have been studied by 

different researchers to find out how the CoAP 

communications are secured against different types of 

attacks. The main researches in this filed have been 

surveyed; however, there is a major lack of the researches 

which focused on CoAP and its security. Accordingly, in 

this section the key researches which focused on CoAP 

security analysis, improvements and weaknesses have 

been surveyed. After that different lightweight protocols 

which are suitable for limited resources devices have 

been reviewed. 

Fig. 11. LSPWSN Messages [38]. 

The literature in general is divided into two main 

categories which is either enhancing CoAP security or 

proposing a new lightweight protocol to secure the 

communications between IoT devices and fog nodes. Fig. 

11 shows the proposed taxonomy of the main studied 

literature review. Other studies have been explored in the 

following subsections. 

A. Lightweight and Secure Protocol for Wireless Sensor

Networks (LSPWSN)

Figueroa P. et al. in [38] presented a lightweight, 

efficient and secure protocol named Lightweight and 

Secure Protocol for Wireless Sensor Networks (LSPWSN) 

to be used for the Web Services in wireless sensors. It is 

proposed to work over TCP and IPv6 protocols, using the 

6LoWPAN standard. Another study presented in [39] 

introduced a compression method on IPSec protocol 

headers to provide more flexibility and extendibility to 

6LoWPAN. Also, R. Garg and S Sharma in [40] 

presented a new compression method for IPv6 header in 

6LoWPAN environment providing more efficiency of the 

protocol. 

Web services can’t be easily available to the limited 

resources such as sensor nodes. Thus, LSPWSN is 

designed to overcome this issue and to provide secure 

web services for limited resources. In general, it follows 

the RESTful approach and it uses binary encoding to 

encode headers and payload. It uses three messages types 

which are request, response and publication messages. 

Fig. 12 illustrates the three messages where (a) is the 

request message, (b) is the response message and (c) is 

the publication message. 

LSPWSN is considered as point-to-point protocol, end-

to-end protocol, stateless protocol, and secure protocol. It 

uses a lightweight stream cipher to provide needed 

security. Using the lightweight stream cipher is more 

efficient than using DTLS or IPsec to secure CoAP in 

terms of performance and complexity. According to the 

authors, IPSec cannot be applied directly in WSN 

because it does not provide neither data aggregation nor 

in-network processing. Nevertheless, LSPWSN protocol 

proposes using a lightweight stream cipher called SNOW 

version 2 to secure the communication [38]. 

In order to evaluate the performance of LSPWSN and 

CoAP an experiment have been carried out and executed 

using on “Zolertia Z1” platform which is emulated 

through Contiki Cooja Network Simulator. The main goal 

of the experiment is to prove that LSPWSN is energy 

efficient even when using TCP as transport layer. 

LSPWSN has been evaluated via a quantitative analysis 

which is carried out using four metrics: memory footprint, 

transferred bytes per client-server transaction, service 

response time, and energy consumption [38]. 
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The results showed that LSPWSN RAM and ROM 

consumptions are better than CoAP by 11.37% and 

4.27% respectively. In terms of the bandwidth usage or 

the transferred bytes per client-server transaction, the 

LSPWSN transaction is larger than CoAP by nearly five 

times, and it needs nearly four times more packets than 

CoAP. These bytes and packets are required to provide 

required security and reliability. Evaluating the service 

response time has been executed through 1000 requests. 

The results showed that the average service response time 

of all 1000 requests is 0.95 seconds with LSPWSN and 

0.47 seconds with CoAP. Lastly, the average total energy 

consumption of the 1000 requests for LSPWSN and 

CoAP 1000 is 0.478 and 0.446 mW respectively. Since 

LSPWSN uses TCP, the LSPWSN web server handle 

seven more packets than the CoAP web server does and 

this increases the service response time as well as the 

energy consumption. In general, LSPWSN protocol 

presents a more stable behaviour than CoAP. Since CoAP 

uses UDP, there is no guarantee of message delivery [38]. 

B. Optimized Implementation of DTLS for CoAP

In [41], Capossele A. et al. have developed an

optimized implementation of DTLS for CoAP, by 

integrating DTLS protocol inside the CoAP and 

combining existing and Elliptic Curve Cryptography 

(ECC) optimizations, as well as minimizing ROM 

utilization.  DTLS has been optimized by combining the 

connection-oriented communication and the 

fragmentation. The connection-oriented communication 

is provided by CoAP message layer while the 

fragmentation is obtainable using block-wise transfer 

feature provided by CoAP. Combining both mechanisms 

guarantees that DTLS is compliant to the security 

standard as well as lighter than the standard 

implementation [41]. 

Moreover, the authors developed a RESTful DTLS 

connection to be a CoAP resource to allow large re-use of 

CoAP functionalities and code, as well as providing 

CoAP with the abilities to optimize the resources usage. 

This connection is created once a new secure session is 

requested by the client. To avoid consuming server 

resources in case of  DoS attack, a stateless cookie 

technique has been applied where all the clients are 

enforced to re-transmit the Client Hello message with the 

attached cookie and based on the cookie validation, the 

server will decide whether to continue the handshake 

process or not [41]. 

In general, the proposed method ensures the 

communication reliability by CON and ACK messages 

and consequently, a new DTLS session is created on the 

server. The Client Hello messages are sent respectively 

by the server and the client to increase the security and 

mitigate the DoS attack. The proposed DTLS 

enhancement utilizes the efficiency of CoAP block-wise 

transmission to perform all the fragmentation tasks. 

When both client and server receive Finished messages, 

the secure session is established [41]. 

To demonstrate the viability of their solution, the 

authors applied their proposed solution on the MagoNode 

and compared it to the standard implementation of DTLS. 

The experiments results show that the optimized ECC 

solution outperform the standard implementation and it 

improves network lifetime by a factor of up to 6.5 [41]. 

C. Security Service Proxy (SSP) in RESTful

Environments

In [42], Abeele F. et al. proposed reverse proxy 

approach to overcome end to end security and 

performance issues in constrained RESTful environments 

that were identified in many studies including their study 

[42] as well as other studies such as [43], [44]. The

authors argue that the identified issues can be overcame

using reverse proxy approach which splits the end-to-end

security at the proxy. Accordingly, Secure Service Proxy

(SSP) has been proposed which offers additional

functionality and services on behalf of the constrained

networks and nodes. The main goal of SSP is to reduce

the load and improve the constrained RESTful

environments performance and functionalities.

The proposed SSP is extending the constrained devices 

with wide range of features. It uses virtual devices which 

is associated with one or more endpoints and each 

endpoint is linked to the application or transport layer. 

Each virtual device has a unique IP address to allow the 

proxy to listen to its associated endpoints’ traffic. Fig. 13 

illustrates the SSP design [42]. 

Even though the communication will not be an end to 

end communication, the SSP will provide both parties 

with DTLS security contexts as well as translating all 

CoAP messages. Overall, the proposed SSP have benefits 

such as overcoming end to end security issues in 

constrained RESTful environments and allowing reverse 

proxy by implementing a virtual device for every 

constrained device [42]. 

Fig. 12.  SSP Design [42]. 

The authors evaluated the proposed SSP using two 

scenarios: In the first scenario, they allocated the proxy 

near to the constrained devices through assigning 
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addresses from a neighboring LAN network to the virtual 

devices. The second scenario is residing the proxy in an 

upper level of the constrained devices such as on the 

cloud. The experimental results in both scenarios showed 

that using SSP reduces the load significantly by reducing 

the processing time, network traffic, power consumption, 

network delay and packet loss rates for constrained 

devices. Thus, SSP helps to guarantee the proper 

operation of constrained networks and nodes. Although, 

SSP showed impressive results, it has some limitation. 

SSP is introducing Single point of failure in terms of 

security and operation. Also, SSP is vulnerable to lose all 

session, public and private key in case of compromising 

[42]. 

In [45], authors proposed a communication framework 

called Atlas for enabling interoperability among IoT 

devices speaking different languages by offering 

lightweight IoT protocol translator connecting 

heterogeneous devices via well-defined interfaces. The 

proposed framework introduces a lightweight 

communication on CoAP, REST protocols over HTTP, 

and MQTT.  

G. Tanganelli et al. in [46] presented an edge-centric

distributed architecture based on both the CoRE Resource 

Directory interface and (CoAP) to provide a discovery 

and access services in IoT and Fog Computing 

environment. In this study, the CoAP protocol has been 

implemented at gateway as a reverse-proxy such that all 

client CoAP requests are sent to the intermediary gateway 

rather than directly to IoT devices.  

Fig. 13. X.805 security standard architecture [47]. 

D. DTLS and IPSec Implementations Using X.805

Security Standard

In [47], the authors evaluated DTLS and IPsec 

protocols which is proposed to be used to secure CoAP. 

Both DTLS and IPsec implementation have been 

analysed using X.805 security standard. X.805 

architecture is a top-down systematic approach which is 

utilized to detect, predict, and correct the security 

vulnerabilities. It can be applied to any network element, 

service, and applications in order to investigate its 

vulnerabilities. Generally, it is defining three security 

layers, three security planes and eight security 

dimensions which are identified to address the general 

system vulnerabilities based on the network activities. Fig. 

14 mentions all layers, planes and dimensions in details 

[47]. 

The experiments showed that using DTLS to secure 

CoAP is failed to meet some security requirements. First, 

even though the multicast communication is an essential 

feature of CoAP, it is not supported by DTLS. Second, 

DTLS handshake protocol can cause exhaustion attack 

which make the nodes lose their roles in the network 

which will lead to a complete disruption to the entire 

communication. Thirdly, DTLS countermeasure against 

replay attack is not guaranteed in all scenarios; thus, it is 

vulnerable to replay attack which will consume the 

resources. Lastly, DTLS handshake protocol is not 

provide end to end authentication [47]. 

In the other hand, IPSec provides different security 

services such as integrity, access control, data 

authentication, confidentiality, anti-replay mechanism, 

and limited traffic flow confidentiality. Encapsulating 

Security Payload Protocol (IPSec-ESP) is used to secure 

CoAP using IPSec. However, beside the drawbacks and 

problems of IPSec respect to Network Address 

Translation (NAT) and Port Address Translation (PAT), 

the encryption process of the small packets generates a 

large overhead to the network. Furthermore, kernel level 

modifications are needed to apply any modifications to 

IPSec because it is embedded in the IP stack. 

Additionally, configuring, managing or troubleshooting 

IPSec and Internet Key Exchange (IKE) are complex 

tasks and as the number of the constrained devices is 

increase the complexity will increase accordingly. Also, 

supporting multicast communication is difficult using 

IPSec [47]. Since IPSec and DTLS were not designed for 

constrained devices and environment, the investigating of 

both protocols implementations in the CoAP highlights 
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that both protocols failed to meet some security 

requirements as illustrated in Fig. 15. 

Fig. 14. DTLS and IPSec analyses using X.805 [47]. 

E. Optimized DTLS and CoAP for IoT

In [48], Maleh Y. developed an optimized version of

DTLS in terms of performance. It reduces the cost of 

DTLS communication and improve its weaknesses such 

as cookie exchange in the handshake process by 

integrating the DTLS inside CoAP. The integration of 

different encryption elements within the CoAP message 

added more security layer in addition to save energy and 

time when establishing the connection between the client 

and the server. To mitigate DoS attack, DTLS handshake 

process is extended with a cookie exchange technique. 

Toward avoid consuming the resources by DoS attacks, 

the client must demonstrate its capabilities to the server 

before it allocates the needed resources to the client. The 

experiment results showed that the proposed 

enhancement lead to better performance due to 

simplification of handshake process. Generally, the 

packet overhead and the energy consumption have been 

reduced as well as the ROM usage which is reduced by 

almost 23% [48]. 

In [49], they introduced a mechanism that optimized 

the latency of CoAP transportation in RTIoT based on 

forward error correction (FEC). The approach showed a 

compromising between loss and latency and according to 

their experiments the proposed model considerably 

lowers the application layer loss and hence increased the 

throughput of the communication in the domain of IoT.   

Other studies have proposed enhancements to DTLS 

by working around its delegation mechanism [50]-[53]. 

For example, researchers in [50] proposed an 

enhancement to the DTLS when being used with CoAP 

protocol by separating the DTLS handshake phase and 

data encryption phase to solve the delay, overhead, loss 

problems caused by handshake packets and 

communication processes. The core idea in their 

approach is to use Secure Service Manager (SSM) to 

delegate the handshake phase and thus eliminating the 

space and power required by the constrained devices to 

do such handshake. To ensure the end-to-end security, the 

end node is responsible of doing the encryption and 

decryption of the data. 

F. Security Aspect of CoAP-HTTP Proxy

In [54], the authors have been studied the security

aspect of CoAP-HTTP proxy in details. Since CoAP 

allows cross protocol proxies between CoAP and HTTP, 

the security of CoAP has been analysed by performing 

vulnerability analyses of CoAP.  

In order to analyse CoAP security, a lab has been 

configured using CoAP Python with Eclipse IDE, 

Californium (Cf), CoAP framework and Copper (Cu) 

Firefox add-on for security. First, Cooja simulator is used 

to create the virtual testing environment for CoAP. 

Similarly, Python and CoAPthon library have been used 

to develop the CoAP client, CoAP server with caching 

and observer, HTTP to CoAP forward proxy feature. 

Likewise, CoAP services are developed using 

Californium (Cf) which is an open source CoAP. The 

Copper (Cu) which is a user agent has been installed in 

the Firefox browser and it is interacting with other IoT 

services using ‘CoAP’ URI [54]. 

Once the environment has been configured and 

simulated, the CoAP security has been tested by running 

the CoAP client (Cu) in Firefox and Cf proxy in Eclipse 

IDE. After that, the CoAP client (cu) will access the 

CoAP server over the cf-proxy [CoAP to HTTP] 

conversion. Once the cu started the communication with 

Cf proxy, the communication will be intercepted using 

Burp Suite. Both Firefox and Burp Suite will be 

configured with port 8081. Once the packet is captured, 

its information can be analysed [54].  

The results showed that, the data is transmitted in a 

plaintext format which is vulnerable for attacks. This 

proves that CoAP proxy is vulnerable to different types of 

attacks and data manipulation [54]. 

G. Lightweight Security Scheme for IoT Applications

Using CoAP

Arijit U. et al. in [55], proposed a lightweight security 

scheme in CoAP for IoT application. The scheme is 

based on Advanced Encryption Standard (AES) 

algorithm with key length equals to 128. The scheme has 

two components: CoAPs-Lite which enables the 

lightweight security in CoAP, and Auth-Lite component 

which enables the lightweight authentication process in 

IoT devices.  

The proposed scheme provides authentication and 

confidentiality. The authentication is carried out with 

symmetric key-based authentication in integration with 

key management. The shared key is exchanged using 

AES Cipher Block Chaining (CBC) mode. To avoid the 

handshake overhead, it is embedded in the payload and 

consist of two roundtrips only which consist secret 

distribution, session initiation, server challenge and 

sensor response phases. Also, to secure the authentication 

scheme against different attacks, the challenge-response 

process (nonce) technique has been applied. It is 
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generated using Random Number Generator appended 

with a counter[55].  

In order to adopt the security scheme into CoAP, a few 

modifications to the header has been proposed to improve 

the security operations and minimize the overall 

communication overhead. A new option in CoAP header 

is introduced which is called “AUTH” to enable the 

secure mode which uses option to indicate the critical 

option class. Moreover, “AUTH_MSG_TYPE” option is 

introduced to provide variety in terms of the  messages 

that can be used for establishing an authentication session 

[55]. 

To embed the authentication within CoAP; first the 

sensor-gateway will send a POST message with 

confirmable mode, “AUTH” option, 

“AUTH_MSG_TYPE” and device ID parameters in the 

payload. Then, the server will drive the device ID from 

payload and determine its pre-shared secret associated 

with this ID. Once the “AUTH”, “AUTH_MSG_TYPE” 

options are received, the nonce and the session key will 

be generated, and the server will generate the encrypted 

payload, and the response will be sent back to sensor-

gateway. Once the sensor-gateway received the response, 

it will decrypt it using the shared secret key. Then it will 

generate another nonce to send it back to the server and it 

will generate the encrypted payload using session key 

“K”. Encrypted payload will be sent to the server with 

POST message. Both POST messages sent be the server 

and the sensor gate to authenticate must have the same 

token value. Once the server received the payload, it will 

decrypt it using “K” and checks the received nonce_1. If 

it is correct, the client will be authenticated and a 

response message with code “client authenticated” will be 

sent. Otherwise, the server will send “client not 

authenticated” message [55]. 

Correspondingly, once the client is authenticated, the 

confidentiality process will be embedded to all 

communications. The data will be encrypted and 

decrypted using the key “k”, encrypted data will be 

posted using POST with option type “DEC_CONF” in 

the header. The server will send the status of the 

decryption process using response message to the client 

based on the value of “DEC_CONF” option. If it is true, 

the status will be sent; otherwise, not. According to the 

status of the decryption process, the client will decide to 

re-send the message or not. The experiment showed that 

the average decryption time in the server is 0.67 seconds 

which is much less that the re-transmission timeout of 

CoAP [55]. 

Since there are no public key crypto component, the 

proposed scheme considered as a faster than the public 

key-based systems. In general, the proposed system is 

efficient, generic, applicable to different IoT applications 

and resilient against replay and Man in the Middle attacks. 

Also, it has low overhead due to embedding the 

symmetric key-based authentication with integrated key 

management [55]. 

There are several studies to leverage the lightweight 

security scheme in CoAP such as in [56] where they 

proposed a lightweight security schema on CoAP that 

relies on enhancing the mechanism of authentication and 

key management for vehicle tracking systems. The main 

idea of their work is to utilize some unused CoAP header 

options to embed the authentication mode as well as to 

create a secure channel with a low communication cost 

for messages exchange in vehicle tracking systems.   

H. Lightweight Security Protocol in Wireless Sensor

Networks

In [57], Roh J. H. et al. designed lightweight security 

protocol which is utilizing the binary CDMA security 

codes in sensors networks. It is suitable for low power 

sensors and it is designed mainly for wireless network 

sensors where the transmitted data must be confidential. 

The authors discussed binary CDMA and its security 

requirements and how to apply it in sensors networks to 

prevent attacks. The designed protocol is efficient 

cryptographic protocol which provides block cipher 

algorithm, CDMA security, authentication, timestamp, 

monitoring and detection countermeasures.  All these 

countermeasures have been added to the designed 

protocol to prevent possible attacks such as replay, sybil, 

sinkhole attacks and hello flooding. 

The architecture of the sensor network consists of three 

node types in hierarchical structure which are Member 

node (MN), Cluster header (CH) and Base station (BS). 

MNs are classified into different clusters which is headed 

by CH. One of the main responsibilities of CH is time 

synchronization. As illustrated in Fig. 16, BS acts as a 

gateway between two or more clusters [57]. 

The designed protocol has been tested using 128 bits 

key size, different hash and block cipher algorithms have 

been tested to choose the most suitable algorithms. After 

testing MD5, SHA-1, SHA-256, SHA-512, RC5, IDEA, 

DES, 3DES/EDE and AES/CTR algorithms, MD5 and 

AES algorithms have been used for message 

authentication and encryption respectively. Both 

algorithms showed the lowest cycles per bytes with high 

performance comparing to other algorithms [57].  

With the same goal, authors in [58] proposed  a 

lightweight implementation of Internet Key Exchange 

protocol (IKEv2) to provide key agreement and 

authentication for IoT in the domain of Wireless Sensor 

Networks where it optimizes the communication 

overhead and the consumption of the energy at sensors. 

The main idea of the proposed technique is to calculate 

the hash value of both IP address and the ID instead of a 

digital certificate, hence, having a variant of IKEv2 that is 

a certificate-free implementation. The evaluation has 

been conducted on NS-2 and the results showed that the 

proposed algorithm outperforms the original version of 

IKEv2 in terms of energy consumptions and overall 

communication cost. 
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Fig. 15. Sensor network architecture [57]. 

I. Suite of Lightweight Security Protocols for IoT

Wu X. et al. in [59], presented a suite of lightweight

security protocols which provides encryption, key 

management, identity authentication, and data integrity 

services. For encryption and instead of using the pre-

shared cryptographic keys, the probabilistic encryption 

procedure or hashed keys are used in the encryption and 

decryption procedures to avoid compromising encrypted 

data in case if the keys are compromised. Although the 

encryption protocol is used, the key-for-one-file 

encryption is applied to ensure security which is 

illustrated by using One Time Pad (OTP). A random key 

will be used for every file or data item will to apply key-

for-one-file encryption. Applying key-for-one-file 

encryption eliminates the ciphertext only attack, while 

applying probabilistic or hashed key is eliminating the 

chosen plaintext attack [59]. 

The key is chosen randomly by legitimate devices only 

from the key store which is large pool of random keys. 

The key is generated using key store seed which is pre-

shared between the legitimate devices and stored in the 

device Hardware Security Module (HSM). Thus, when 

the attacker compromises the device and tries to extract 

the seed without passing the authentication, the device 

will automatically delete the seed to maintain the secrecy 

of keys. No two keys will be used repetitively, and all 

keys are uniquely determined by the key store seed. Also, 

the distribution of the key index doesn’t disclose any 

information about the key itself which make it more 

secure [59].  

The data integrity and originality are ensured using 

message authentication code (MAC) which is generated 

using the proposed cipher-based MAC algorithm. The 

identity authentication will be done during the 

configuration system for the new legitimate device when 

it requests joining the network for the first time. It will 

share its identity with the hub and other devices in the 

same network. First, device1 (the new device) will send 

w1 which is random selected key to device2 (in the same 

network) associated with encrypted time stamp and its ID. 

After that, device2 will generate k(w1) and verifies 

device1 by decrypting the received ID and time stamp in 

addition to compare it with the ID obtained from the hub. 

Then, device2 will randomly choose a new key w2 to 

send to device1 along with its encrypted ID and 

timestamp. Lastly, device1 will decrypt the ID of device2 

and generate k(w2). Once the both devices are 

authenticated to each other, the communication can be 

started successfully. In order to ensure transmitted data 

integrity, the Cipher-based Message Authentication Code 

(CMAC) is used [59]. 

The proposed protocols performance has been tested 

and compared against to IPsec which needs 

computationally intensive resources. IPsec uses AES 128, 

SHA-1, DH, and RSA to ensure security; however, SHA-

1 broken recently, while the security aspects of Diffie-

Hellman and RSA algorithms mainly rely on the 

complexity and hardness of both discrete logarithm and 

integer factorization problems. In general, the proposed 

protocol achieves a higher level of security with a very 

low resources consumption. Fig. 17 presents a 

comparison between IPSec and proposed suit protocols 

[59]. 

In [60], they proposed a secure key management and 

user authentication scheme for Fog Computing 

environment by utilizing lightweight operations such as 

cryptographic hash function and bitwise exclusive-OR. 

The proposed approach has been implemented and 

evaluated using NS2 simulator and results showed its 

efficiency. 

Fig. 17. Comparison between IPSec and proposed suit protocols [59]. 

In [61], a key exchange protocol based on attribute-

based encryption has been proposed to secure the 

communication between fog nodes. In this approach, they 

involved digital signature techniques with attribute-based 

encryption to achieve an efficient and effective secure 

communication system among fog nodes. The proposed 
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protocol has been evaluated and analyzed in terms of 

communication overhead, message sizes, and security 

aspects and results showed that it outperforms the 

certificate-based protocol. 

J. Network Coding Technique for a Communication of

Fog nodes

In [62], Marques B. et al. applied network coding 

technique to the Dissemination of Small Values data 

communication protocol between fog nodes of wireless 

sensors. The network coding technique can adopt 

different layers and network classes to improve the data 

flow. This protocol is a communication protocol used by 

network sensors to communicate. When there is an 

information on a sensor x which needs to be sent to 

neighboring nodes, the protocol is used to send the 

information in periods. It starts with shorter periods then 

the long periods and the same process will be carried out 

for all neighboring nodes. 

In order to simulate the proposed protocol and evaluate 

its performance, the environment was simulated using 

TOSSIN simulator along with two applications which are 

any Dissemination of Small Values protocol application 

based and TrickleTimer timer. All the nodes have the 

same hardware and software characteristics and each 

sensor has unique ID starting from zero to the last 

topology ID. Two different topologies have been used 

which is Square and Tree. Both topologies have different 

number of nodes to evaluate its performance. 

Dissemination of Small Values protocol has been tested 

using two applications with and without Network Coding 

technique to compare the communication performance 

[62]. 

The proposed protocol obtained excellent results by 

optimizing the data flow, reducing the latency, and the 

data transmission. Also, the used bandwidth has been 

reduced when applying the network coding on the 

Dissemination of Small Values protocol. In general, 

applying Network Coding increases the protocol 

performance by 50%-60% of the original protocol [62]. 

K. Elliptic Curve Cryptography (ECC) Based Proxy for

Fog Computing and IoT

Diro A. A. et al. [63] analyzed Fog Computing security 

challenges in general as well as proposing a novel 

encryption scheme which is Elliptic Curve Cryptography 

(ECC) based proxy re-encryption as a lightweight 

encryption scheme for communications between Fog 

Computing and IoT devices. It consists of five procedures 

which are: key generation, client encryption, fog 

encryption, fog decryption, and client decryption [63].  

Among all distributed fog nodes, one fog node should 

be selected as a trusted authority or coordinator for the 

key generation procedure to produce the public curve 

parameters, public and private keys of the coordinator. 

Then the public elliptic curve parameters are distributed 

to all fog nodes and IoT devices. The trusted authority 

(chosen node) will send the KCi1 to IoT devices as a 

private key and Kci2 to other fog nodes, where ci is the 

identity of IoT device. After that, the IoT device will 

encrypt the message using its private key (KIDi1). Then, 

the corresponding fog node will re-encrypt the IoT device 

ciphertext using the fog node key (KCi2). The fourth 

procedure is decrypting the ciphertext by the 

corresponding fog node and convert it to an intermediate 

ciphertext that can by fully decrypted only by the 

corresponding IoT device. Lastly, IoT device Ci will fully 

decrypt the message using its private key KCi1 [63]. 

To evaluate the performance, the proposed scheme has 

been implemented using Java on top of nics-crypto to 

support proxy re-encryption. The execution time, 

throughput and ciphertext expansion are used to compare 

the performance of the proposed scheme and the RSA. 

Based on the experiment, it can be observed that using 

proxy ECC is faster than RSA in encryption and 

decryption processes of messages with different sizes. 

The RSA decryption process is considered as the slowest 

process while proxy ECC is much faster in decryption 

computations. Moreover, proxy ECC produces smaller 

ciphertext than RSA and its encryption throughput is 

higher than the corresponding RSA over various data 

seizes. As the message size increase, the encryption 

throughput of proxy ECC increases while RSA 

throughput is decreased. In general, the experiment has 

been proved the effectiveness and efficiency of the proxy 

ECC scheme as a cryptographic mechanism for the fog to 

things communication security 63]. 

In [64], authors proposed a novel lightweight security 

solution for publish-subscribe Fog Computing based on 

ECC protocol for key exchange and encryption. They 

analyzed the application of such lightweight schema in 

terms of scalability, overhead, and security metrics in Fog 

Computing environment. The study showed the 

applicability of using such protocol to secure the 

communication of Fog Computing due to the ECC 

properties: short key lengths, small message sizes, and 

low computation power requirements. 

IV. DISCUSSION AND ANALYSIS 

Table I summarizes all proposed techniques to secure 

the communication between fog and IoT devices. The 

comparison has been carried out by comparing the used 

technique, study objectives, results and limitations for 

each paper. If “N/A” term is used it indicates that the 

limitation column is not applicable for the study. 

As illustrated in the table and even though there were 

hard work to enhance CoAP security by optimizing 

DTLS implementations, introducing SSP, or compressing 

DTLS header in [41], [48], [42] respectively, these 

enhancements have limitations such as degrading the 

overall performance or testing it within simulated 

environments which differs than the real one.  

Initially, DTLS was not designed specifically to be 

worked over constrained devices and authors in [65] 

demonstrated and proved by their conducted experiments 
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that DTLS and TLS implementations are feasible to 

different attacks in real environments. Moreover, authors 

in [47] investigated DTLS security based on X.805 

security standard, and the results showed that DTLS has 

been failed to meet some important security aspects. 

Furthermore, DTLS does not suit the CoAP proxy and it 

is handshake process need six messages which overhead 

the communication channel and increases the number of 

transmitted bytes which consumes the energy. Energy 

parameter has significant impact for any constrained 

device because it has limited resources. Same issues have 

been faced with IPSec and HTTP protocols which is 

proposed to enhance CoAP security in [47], [54]. Thus, 

introducing new suit security protocols are much better to 

consider the constrained devices characteristics and 

parameters when designing these protocols. 

TABLE I: SUMMARY OF RELATED WORK 

P
ap

er
 

Technique Study Goals Results Limitations 

[38] LSPWSN Proposing lightweight protocol to 

secure communication for Web 

Services in wireless sensors 

In general, LSPWSN protocol presents a 

more stable behavior than CoAP. 

Performance of LSPWSN 

is lower than CoAP due to 

TCP which is used without 

any compression 

mechanism 

[41] An optimized implementation 

of DTLS for CoAP, by 

integrating the DTLS protocol 

inside the CoAP. 

Optimized implementation of DTLS 

for CoAP. 

The experiments results show that the 

optimized ECC solution outperform the 

standard implementation and it improve 

network lifetime by a factor of up to 6.5. 

Not tested in real 

environments. 

[42] Security Service Proxy (SSP). To offer additional functionality and 

services on behalf of the constrained 

networks and nodes as well as 

improving the constrained 

environments performance. 

Applying SSP reduces a significant 

processing, network traffic, power 

consumption, network delay and packet loss 
rates for constrained devices. Also, it 

guarantees the proper operation of 
constrained networks and nodes. 

Introducing single failure 

point as well as its 

vulnerability to replay 
attacks. 

[47] Evaluating DTLS and IPSec 

implementations using X.805 
security standard. 

Investigating DTLS and IPsec 

implementations and effectiveness in 
securing CoAP. 

The experiment results highlight that both 

protocols failed to meet some security 
requirements.  

N/A. 

[50] Lightweight secure 
communication for CoAP-

enabled Internet of Things 

using delegated DTLS 
handshake 

Enhancing the DTLS by separating the 
DTLS handshake phase and data 

encryption phase by utilizing Secure 

Service Manager (SSM) as a mean for 
delegation. 

Reduces the delay, overhead, loss problems 
caused by handshake packets and 

communication processes.  

N/A. 

[54] Configuring a lap to study the 

security aspect of CoAP-
HTTP proxy. 

Analysing CoAP-HTTP proxy 

security. 

The experiment proves that the data is 

transmitted in a plaintext and the CoAP 
proxy is vulnerable to different types of 

attacks. 

N/A. 

[55] A lightweight security 
scheme in CoAP for IoT 

application. The scheme uses 

AES algorithm Cipher Block 

Chaining (CBC) mode with 

128 key length. 

Studying lightweight security scheme 
for IoT applications using CoAP. 

It is efficient, generic and resilient to 
number of security attacks like replay and 

meet-in-the-middle attacks. 

The pre-shared key must be 
hardcoded in the device 

otherwise this scheme will 

not work. 

[48] An optimized version of 

DTLS in terms of 

performance. Improving 
DTLS: cookie exchange in 

the handshake process by 
integrating the DTLS inside 

CoAP. 

Enhancing and optimizing the 

performance of the DTLS network for 

CoAP. 

The proposed enhancement lead to better 

performance in terms of packet overhead, 

handshake time processing, and energy 
consumption 

Not tested in real 

environments. 

[57] A lightweight security 
protocol which is utilizing the 

binary CDMA security codes 

in sensors networks.  

Designing a lightweight security 
protocol for sensors networks. 

MD5 and AES algorithms have been used 
for message authentication and encryption 

respectively. Both algorithms showed the 

lowest cycles per bytes with high 
performance. 

During the authentication 
and authorization phase. 

The neighboring nodes of 

the BS will suffer from high 
communication overhead 

due to forwarding request 

and response packets. 

[58] Lightweight key agreement 

protocol for IoT based on 

Providing lightweight key agreement 

and authentication based on a hashing 
technique of IP address and ID instead 

The evaluation has been conducted on NS-

2 and the results showed that the proposed 
algorithm outperforms the original version 

To prove the efficiency of 

the proposed algorithm, its 
required to conduct a 

25

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications



IKEv2 of a digital certificate to optimize 

communication and computation costs. 

of IKEv2 in terms of energy consumptions 

and overall communication cost. 

performance evaluation 

against other TLS-based 
frameworks. 

[59] A suite of lightweight 

security protocols which 

provides encryption, key 

management, identity 

authentication, and data 

integrity. 

Providing identity authentication, 
encryption, key management, and data 

integrity. 

It achieves a higher level of security with a 
very low resources consumption 

The authentication 
procedure in the proposed 

suit vulnerable to malicious 

insider attacks. 

[62] Appling a network coding 
technique to the 

Dissemination of Small 
Values data communication 

protocol between fog nodes 

composed of wireless sensors 

Increasing the protocol performance Applying Network Coding increases the 
protocol performance by 50%-60% of the 

original protocol. 

The timer overloads the 
communication channel 

with resending data for long 
periods. 

[63] A novel encryption scheme 

which is Elliptic Curve 

Cryptography (ECC) based 
proxy re-encryption for fog to 

things as a lightweight 
encryption scheme. 

Securing the communication by fast 

and robust cryptographic algorithm. 

The proposed technique proved its 

effectiveness and efficiency of the proxy 

ECC scheme as a cryptographic 
mechanism for the fog to things 

communication security. 

Not tested in real 

environments. 

Different researchers proposed different lightweight 

protocols to suit the constrained devices. In [38], the 

LSPWSN protocol is efficient and secure which is 

proposed to be used for the Web Services in wireless 

sensors. Generally, the memory consumption and 

bandwidth achieved better than CoAP. However, it 

degrades the overall performance and it is proposed only 

to be used for wireless sensor. Since sensors must send 

and receive data in real time, LSPWSN might be not 

applicable due to performance degradation. Further 

improvements are requested to enhance LSPWSN 

performance. 

In [55], the proposed a lightweight is based on AES 

algorithm with128 bits key length. It has excellent 

features such as speed, efficiency, applicability to 

different IoT applications, resilience against replay and 

Man in the Middle attacks, as well as its low overhead. 

However, authors assumed that the pre-shared key is 

hardcoded into each device at the time of manufacturing, 

which is not always applicable. Improving the scheme to 

make it work without this assumption is recommended to 

evaluate the proposed technique performance. 

In [57], the designed lightweight security protocol is 

utilizing the binary CDMA security codes in sensors 

networks. It is designed mainly for wireless network 

sensors where the transmitted data must be confidential. 

This proposed technique has problem with the BS, it will 

be overloaded with packets when neighboring nodes of 

BS are forwarding request and response packets.  

In [59], the lightweight security suite is proposed to 

provide encryption, key management, identity 

authentication, and data integrity services. The overall 

performance achieves a higher level of security with a 

very low resources consumption. However, there are a 

possibility of malicious insider attack in the 

authentication procedure. This possibility is low and 

unlikely to be happened; however, it is recommended to 

be reduced furthermore. In [62], authors applied network 

coding technique to the Dissemination of Small Values 

data communication protocol between fog nodes of 

wireless sensors. It is simulated to measure its 

performance; it is obtained excellent results by 

optimizing the bandwidth usage, data flow, reducing the 

latency, and the data transmission. However; sometime 

the used timer is overloading the communication channel. 

A novel encryption scheme based on ECC is proposed to 

encrypt the data. It produces smaller ciphertext in less 

time compared to RSA; however it’s not tested in real 

environments and it’s known that ECC is complex and 

hard to implement [63]. 

V. CONCLUSION

Fog Computing Concept has been introduced to 

address the cloud computing limitations and to provide 

multiple benefits such as low latency and mobility. 

However, the security of Fog Computing protocols is still 

a concern especially those related CoAP protocol. CoAP 

protocol does not have the reliable standards to secure its 

architecture. The biggest challenge faced by CoAP 

protocol is the lack of the main researches on how 

security can be managed or provided to the protocol. 

Although there were different studies to secure CoAP 

using DTLS and optimizes its implementations, it is 

proven that DTLS is not applicable and it was not 

designed for IoT devices. Thus, different researchers 

worked on proposing new lightweight protocols which 

are suitable for limited resources devices.  

This paper surveyed the main security mechanisms 

proposed to secure CoAP protocol, its architecture, 

security and performance evaluation. There are different 

techniques which must be improved furthermore and 

tested to evaluate their performance. In conclusion, all 

related studies and techniques have been surveyed and 

discussed in deep to provide a solid reference for the Fog 

Computing and CoAP protocol security. As a 
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contribution, all reviewed papers have been categorized 

into two categories and a taxonomy has been proposed to 

ease understanding all available techniques to secure 

CoAP. It is found that using DTLS to secure CoAP is not 

applicable at all and it is not designed for constrained 

devices. Even though there were excellent studies to 

optimize the DTLS implementations in CoAP, it is still 

not applicable. Thus, different researchers proposed 

different lightweight protocols to provide constrained 

devices with security services such as encryption, 

authentication, authorization, and integrity.  

LSPWSN performance in [38] must be improved 

furthermore to be at least equal to CoAP performance. In 

[55], the authors assumed that the pre-shared key is 

hardcoded into each device at the time of manufacturing, 

which is hard and not applicable at all. It is recommended 

to propose similar scheme without this assumption and 

evaluates its performance and security. It is 

recommended in [57] to solve BS problem by finding a 

technique to avoid packet overloading when sending too 

much packets between neighboring nodes. Also, It is 

recommended to test [58], [63] techniques in realistic 

environment to evaluate its performance and improve it 

furthermore if needed. Proposed technique in [63] 

showed impressive encryption results; however it is 

utilizing ECC which may be difficult to be implemented 

on IoT device. Among all reviewed studies, [58], [59], 

[62] showed robustness  performance with excellent 

security services. It is still need minor improvements such 

as testing in real environments and mitigating minor 

issues. Since DTLS is not designed for constrained 

devices, future researchers must focus on proposing new 

lightweight protocols or improving existing ones. IoT-

Fog communications must be secured, and different 

security services must be considered while designing 

these protocols. Also, the IoT devices characteristics such 

as resources limitations must be considered. As a future 

work, improvements and recommendations mentioned 

previously must be taken in consideration as well as 

evaluating other techniques [66]-[68] in securing 

constrained devices. 
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