
Securing Communication between Fog Computing and IoT

Using Constrained Application Protocol (CoAP): A Survey

Fahd A. Alhaidari
1
 and Ebtesam J. Alqahtani

2

1
Department of Computer Information System, College of Computer Science and Information Technology, Imam

Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
2
Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman

Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
Email: faalhaidari@iau.edu.sa;

ebtesam.j.alqahtani@gmail.com

Abstract—Nowadays, cloud computing and IoT devices are

widely used and involved in our life. However, the current

cloud computing paradigm still have some limitation mainly

related to the latency, location, and mobility. Thus, to overcome

such limitations, Fog Computing was introduced as an

intermediate layer between the IoT devices and cloud

computing to providing multiple benefits such as low latency

and mobility. However, the security of Fog Computing

protocols is still a concern especially those related CoAP

protocol. CoAP protocol is still does not have the reliable

standards for securing its architecture and there is a huge lack of

the main researches on how security can be managed or

provided to CoAP. Hence, this paper surveys the CoAP protocol,

its architecture, security and different proposed techniques to

secure CoAP protocol. The paper provides a solid reference for

the Fog Computing and CoAP protocol security as well as it

proposed a taxonomy for the literature review to ease

understanding all available techniques to secure CoAP.

Index Terms—Fog computing, IoT, CoAP, security, DTLS,

wireless sensor networks

I. INTRODUCTION

Currently cloud computing and IoT devices are widely

used and it has significantly gotten more involved in our

life. However, the current cloud computing paradigm still

have some limitation, and it can’t satisfy the requirements

of supporting mobility, location and low latency.

Unacceptable latency may prevent some critical IoT

applications and services such as disaster management

applications of benefiting from cloud computing due to

inherent problems [1]. The critical issue, is that as the

size of cloud is growing, the network latency will

increase as well which is not acceptable for critical IoT

applications [2]. Thus, the Fog Computing concept has

been introduced to address the cloud computing

limitations. Fog Computing is an extension of the cloud

computing, it has multiple benefits such as low latency,

location awareness, and mobility. Also, it is an

appropriate paradigm for many IoT services [3].

The introduction of Fog Computing requires

application protocols to ensure the interaction and

Manuscript received April 5, 2019; revised December 5, 2019.

Corresponding author email: faalhaidari@iau.eduu.sa.

doi:10.12720/jcm.15.1.14-30

communication among the involved devices and

applications. Among these application protocols are:

Constrained Application Protocol (CoAP) [4], [5],

Message Queue Telemetry Transport (MQTT) [6],

Advanced Message Queuing Protocol (AMQP) [7], Data

Distribution Services (DDS) [8], ZigBee [9], UPnP [10],

DPWS [11]).

However, CoAP is the most popular protocol used in

IoT application due to its features such as: its simplicity

when being used by developers, its lightweight style in

terms of power consumptions and communication,

mobility, portability, and having enough techniques to

improve the data security and integrity [12]-[14]. Md.

Motaharul et al. [15] proposed cloud based architecture

for harmonizing IoT using CoAP protocol and their

evaluation experiments showed that CoAP protocol is

more suitable than MQTT in implementing the

communication between sensors in cloud computing

environment. Moreover, CoAP has rapidly gained the

adoption and supports by large companies [16] and it has

been introduced by researchers, due to its lightweight

property, to be used in several domains ranging from

smart homes to the industrial WSNs [17]-[22].

The security of Fog Computing protocols especially

CoAP protocol is an important topic as it does not have

the reliable standards for secure architectures. In CoAP,

Datagram Transport Layer Security (DTLS) [23] is

proposed to be implemented on top of UDP to secure its

messages. However, DTLS does not suit the CoAP proxy

and it was not designed initially for resource constrained

devices; for example, in order to perform the handshake

process DTLS need six flight messages which increases

the communication overhead and consume constrained

devices energy. DTLS has been studied by different

researchers to find out how it secures CoAP

communication messages. However, the main challenge

which face CoAP is the lack of the key researches on how

security can be managed and implemented [24], [25].

Thus, this paper surveys CoAP protocol, its architecture,

security and security enhancement suggestions.

Fog Computing is not a replacement to the cloud

computing; however, it is considered as an extension or

intermediate layer between cloud computing and IoT

devices. The term Fog Computing was introduced by

14

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

Cisco Systems as a bridge between cloud computing and

Internet of Things (IoT) devices to overcome the gap [26].

Using Fog Computing, the cloud services can be

extended closer to IoT devices. It is a highly virtualized

platform that provides different services such as storage,

and networking services [27].

Fog Computing offers flexible, inexpensive and

portable in terms of both hardware and software [28]. It

also provides location awareness, mobility of things, and

bandwidth requirements for IoT devices. Moreover, it

provides a low latency advantage by allowing processing

functions to take place at the network edge [1] [29], [30].

Fog Computing have relatively small computing

resources such as memory, processing and storage

comparing to the cloud computing. However, it is able to

process the data generated from diverse devices, and it

can be installed on low specification devices such as

switches [28].

According to [31], Fog Computing extends the

capability of cloud by introducing its four layers. Fig. 1

shows the Fog Computing architecture.

Fig. 1. Fog computing architecture [31].

As illustrated, the data centre layer provides the fog

nodes with large volume of data, resources and services

to the fog node. The second and third layers are the fog

nodes and services, which provide the IoT devices with

needed services and data, that reduces the latency and

gaps between cloud and IoT devices. The fourth layer is

IoT devices such as sensors, embedded systems, etc. [31].

Fig. 2. Application protocols in IoT, Fog and cloud networks [32].

Fog Computing is an extension of the cloud computing,

it has multiple benefits such as low latency, location

awareness, and mobility. Also, it is an appropriate

paradigm for many IoT services. The main protocols that

have been considered for communication between cloud

and fog, and Fog and IoT devices are illustrated in Fig. 2.

The communication between Fog Computing and IoT

devices are carried out using CoAP, MQTT, and XMPP

protocols [32].

The rest of the paper is organized as follows: Section 2

presents the background of the related aspects of Fog

Computing, In Section3, a literature review is presented.

Section 4 shows the discussion and analysis of the related

reviewed studies. Findings and recommendations are

presented in Section 5 and finely the conclusion is given

in Section 6.

II. BACKGROUND

This section introduces a background on CoAP as an

application layer protocol designed for resource-

constrained devices.

CoAP is adopting the User Datagram Protocol (UDP)

protocol to be adopted by low-bandwidth connections and

low-computational-power devices [33], [34]. Unlike

HTTP, CoAP supports multicast. CoAP uses Efficient

XML Interchanges (EXI) format which consume less

space compared to XML/HTML binary format [35]. In

general, Fig. 3 shows the comparison between HTTP and

CoAP protocols.

Fig. 3. HTTP and CoAP comparison [36].

A. CoAP Architecture

CoAP is a stateless protocol relying on the client-

server architecture with the usage of request- response

model for exchanging messages. Like HTTP, CoAP uses

Representational State Transfer (REST) model, where it

addresses the server resources by Uniform Resource

Identifier (URI) that can be accessed from a client by

sending a request (GET, POST, PUT and DELETE) to

the server referring to such URLs [34].

CoAP includes two layers which are messaging layer

and request/ response layer. The message layer

responsible about the redundancy and consistency of any

message, while the request/response layer is responsible

about the connectivity and communication [35].

15

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

There are four types of messages which is supported

by CoAP which are [35]:

Confirmable Messages (CON): which are all

messages marked as confirmable messages (reliable

messaging mode). CON messages are sent out based on

the default timeout and exponential back-off mechanism,

until receiving the acknowledgment message (ACK) that

must hold the same message ID sent by the sender. If the

reply was not successful, the recipient will send a reset

message (RST) to reset the communication. Fig. 4 shows

the CON and ACK messages between the client and the

server.

Fig. 4. Confirmable messages communication

Non-Confirmable Messages (NON): which are all

messages marked as not confirmable messages

(unreliable messaging mode). The recipient is able only

to send reset message if it is unable to respond to the

NON message. Fig. 5 shows the NON-message between

the client and the server.

Fig. 5. Non-confirmable messages communication.

Acknowledgment Messages (ACK): which is the

message sent back to the sender by the recipient in the

reliable messaging mode. It must contain the same

message ID sent in the CON message by the sender as

shown in Fig. 4.

Reset Messages (RST): Which is the message sent

back to the sender by the recipient to reset the

communication between the client and the server.

Messages in request/response layer can be described as

followings [35]-[37]:

Piggy-Backed Message: Which is sent immediately

by the server after receiving CON or NON messages. In

general, the message is called ACK message. Fig. 6 and

Fig. 7 show the successful and failure responses which

contain sucess and failure codes respectively.

Separate Message: Which is an empty message sent

by the server to stop the client from resending the

message. In general, it is sent when the server can’t

respond to the client immediately and once the server

become ready, an ACK message will be sent. This type of

message takes some time to be delivered. Fig. 8 illustrates

the separate message communication.

Non-Confirmable Message: When a non-confirmable

message is sent by the client, the server could respond by

NON or CON messages as shown in Fig. 9.

Fig. 6. The successful response results of GET method.

Fig. 6. The failure response results of GET method

Fig. 7. Get request with a separate response.

CoAP message follows RESTful architecture making it

suitable to be used on constrained devices that required

lightweight protocols. The messages have a simple binary

format of a 4-byte header that holds the required

information of each message including the payload

options as shown in Fig. 10, where,

- Version (V) holds to CoAP version number.

- Type (T) holds the message type.

- Token Length (TKL) holds the length of the

token.

C
li

en
t

S
er

v
er

CON (MessgaeID)

Get temperature

(token 0x22)

ACK (MessgaeID)

CON (MessgaeID)

2.05 content
(token 0x22)

“20.0 C”

ACK (MessgaeID)

After some time

C
li

en
t

S
er

v
er

CON (MessgaeID)

ACK (MessgaeID)

C
li

en
t

S
er

v
er

 NON (MessgaeID)

C
li

en
t

S
er

v
er

CON (MessgaeID)

Get temperature

(token 0x22)

ACK (MessgaeID)

2.05 content

(token 0x22)

“20.0 C”

C
li

en
t

S
er

v
er

CON (MessgaeID)

Get temperature

(token 0x22)

ACK (MessgaeID)

4.04 Not Found
(token 0x22)

“Not Found”

16

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

- Code holds the request or response code.

- Message ID is used to identify the message for

the purpose of matching and detecting the

redundancy.

- Token might be used as an association for all

requests and responses.

- Options are attached at the end of a message

with the possibility to have several options and

can hold a payload.

- Payload is mainly added to the end of the UDP

datagram and its value determined based on the

size of the datagram [35].

Fig. 8. Non-confirmable request and response.

Fig. 9. CoAP message header [35]

B. Security in CoAP

The security of CoAP is an important aspect due to not

having the reliable standards to secure CoAP architecture.

Thus, Datagram Transport Layer Security (DTLS) has

been proposed to be used on top of UDP to secure its

messages communications. DTLS provides the security

services including confidentiality, integrity,

authentication, and non-repudiation services utilizing the

fundamentals of AES/CCM [24].

According to [25], [35], DTLS manages crucial

security factors such as authentication, confidentiality,

key management, and data integrity of the messages.

DTLS has four modes of security which is used by CoAP

with several applications as described below:

NoSec Mode: Where it assumes that another protocol

layer will implement the security mechanism, and hence

messages are transfered with no security.

PreSharedKey Mode: Where the devices that are

allowed to use the same system are already programmed

with single symmetric key which help in communication

with other devices.

RawPublicKey Mode: it is considered as an essential

in the implementation of CoAP and generally is adopted

by the devices that required authentication, which uses

asymmetric key for each device to help in identifying

these devices and interact with them.

Certificates Mode: it is considered as an

authentication technique for devices that implement

CoAP with an X.509 certificate.

Fig. 10. Taxonomy of the literature review

C
li

en
t

S
er

v
er

NON (MessgaeID)

Get temperature
(token 0x22)

NON (MessgaeID)

2.05 content

(token 0x22)
“20.0 C”

17

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

DTLS proposed by some researchers to be be

implemented in CoAP to provide the security. However,

applying DTLS has some limitations such as: large

message and handshake process which uses six flight

messages to complete the handshake process which will

increase the number of the transmitted bytes, and

consumed energy. Also, the main importamt limitation is

that, DTLS was not designed for resource constrained

devices; and it uses [38].

DTLS has been studied by some researchers to find out

how does DTLS applied on CoAP to provide security.

However, there is a huge lack of the main researches on

how security can be managed or provided to CoAP [24]

[38]. The biggest challenges which face CoAP are the

lack of the important researches related to the security

aspects along with keeping the high performance after

providing the needed protection to the communications.

III. LITERATURE REVIEW

CoAP security mechanisms have been studied by

different researchers to find out how the CoAP

communications are secured against different types of

attacks. The main researches in this filed have been

surveyed; however, there is a major lack of the researches

which focused on CoAP and its security. Accordingly, in

this section the key researches which focused on CoAP

security analysis, improvements and weaknesses have

been surveyed. After that different lightweight protocols

which are suitable for limited resources devices have

been reviewed.

Fig. 11. LSPWSN Messages [38].

The literature in general is divided into two main

categories which is either enhancing CoAP security or

proposing a new lightweight protocol to secure the

communications between IoT devices and fog nodes. Fig.

11 shows the proposed taxonomy of the main studied

literature review. Other studies have been explored in the

following subsections.

A. Lightweight and Secure Protocol for Wireless Sensor

Networks (LSPWSN)

Figueroa P. et al. in [38] presented a lightweight,

efficient and secure protocol named Lightweight and

Secure Protocol for Wireless Sensor Networks (LSPWSN)

to be used for the Web Services in wireless sensors. It is

proposed to work over TCP and IPv6 protocols, using the

6LoWPAN standard. Another study presented in [39]

introduced a compression method on IPSec protocol

headers to provide more flexibility and extendibility to

6LoWPAN. Also, R. Garg and S Sharma in [40]

presented a new compression method for IPv6 header in

6LoWPAN environment providing more efficiency of the

protocol.

Web services can’t be easily available to the limited

resources such as sensor nodes. Thus, LSPWSN is

designed to overcome this issue and to provide secure

web services for limited resources. In general, it follows

the RESTful approach and it uses binary encoding to

encode headers and payload. It uses three messages types

which are request, response and publication messages.

Fig. 12 illustrates the three messages where (a) is the

request message, (b) is the response message and (c) is

the publication message.

LSPWSN is considered as point-to-point protocol, end-

to-end protocol, stateless protocol, and secure protocol. It

uses a lightweight stream cipher to provide needed

security. Using the lightweight stream cipher is more

efficient than using DTLS or IPsec to secure CoAP in

terms of performance and complexity. According to the

authors, IPSec cannot be applied directly in WSN

because it does not provide neither data aggregation nor

in-network processing. Nevertheless, LSPWSN protocol

proposes using a lightweight stream cipher called SNOW

version 2 to secure the communication [38].

In order to evaluate the performance of LSPWSN and

CoAP an experiment have been carried out and executed

using on “Zolertia Z1” platform which is emulated

through Contiki Cooja Network Simulator. The main goal

of the experiment is to prove that LSPWSN is energy

efficient even when using TCP as transport layer.

LSPWSN has been evaluated via a quantitative analysis

which is carried out using four metrics: memory footprint,

transferred bytes per client-server transaction, service

response time, and energy consumption [38].

18

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

The results showed that LSPWSN RAM and ROM

consumptions are better than CoAP by 11.37% and

4.27% respectively. In terms of the bandwidth usage or

the transferred bytes per client-server transaction, the

LSPWSN transaction is larger than CoAP by nearly five

times, and it needs nearly four times more packets than

CoAP. These bytes and packets are required to provide

required security and reliability. Evaluating the service

response time has been executed through 1000 requests.

The results showed that the average service response time

of all 1000 requests is 0.95 seconds with LSPWSN and

0.47 seconds with CoAP. Lastly, the average total energy

consumption of the 1000 requests for LSPWSN and

CoAP 1000 is 0.478 and 0.446 mW respectively. Since

LSPWSN uses TCP, the LSPWSN web server handle

seven more packets than the CoAP web server does and

this increases the service response time as well as the

energy consumption. In general, LSPWSN protocol

presents a more stable behaviour than CoAP. Since CoAP

uses UDP, there is no guarantee of message delivery [38].

B. Optimized Implementation of DTLS for CoAP

In [41], Capossele A. et al. have developed an

optimized implementation of DTLS for CoAP, by

integrating DTLS protocol inside the CoAP and

combining existing and Elliptic Curve Cryptography

(ECC) optimizations, as well as minimizing ROM

utilization. DTLS has been optimized by combining the

connection-oriented communication and the

fragmentation. The connection-oriented communication

is provided by CoAP message layer while the

fragmentation is obtainable using block-wise transfer

feature provided by CoAP. Combining both mechanisms

guarantees that DTLS is compliant to the security

standard as well as lighter than the standard

implementation [41].

Moreover, the authors developed a RESTful DTLS

connection to be a CoAP resource to allow large re-use of

CoAP functionalities and code, as well as providing

CoAP with the abilities to optimize the resources usage.

This connection is created once a new secure session is

requested by the client. To avoid consuming server

resources in case of DoS attack, a stateless cookie

technique has been applied where all the clients are

enforced to re-transmit the Client Hello message with the

attached cookie and based on the cookie validation, the

server will decide whether to continue the handshake

process or not [41].

In general, the proposed method ensures the

communication reliability by CON and ACK messages

and consequently, a new DTLS session is created on the

server. The Client Hello messages are sent respectively

by the server and the client to increase the security and

mitigate the DoS attack. The proposed DTLS

enhancement utilizes the efficiency of CoAP block-wise

transmission to perform all the fragmentation tasks.

When both client and server receive Finished messages,

the secure session is established [41].

To demonstrate the viability of their solution, the

authors applied their proposed solution on the MagoNode

and compared it to the standard implementation of DTLS.

The experiments results show that the optimized ECC

solution outperform the standard implementation and it

improves network lifetime by a factor of up to 6.5 [41].

C. Security Service Proxy (SSP) in RESTful

Environments

In [42], Abeele F. et al. proposed reverse proxy

approach to overcome end to end security and

performance issues in constrained RESTful environments

that were identified in many studies including their study

[42] as well as other studies such as [43], [44]. The

authors argue that the identified issues can be overcame

using reverse proxy approach which splits the end-to-end

security at the proxy. Accordingly, Secure Service Proxy

(SSP) has been proposed which offers additional

functionality and services on behalf of the constrained

networks and nodes. The main goal of SSP is to reduce

the load and improve the constrained RESTful

environments performance and functionalities.

The proposed SSP is extending the constrained devices

with wide range of features. It uses virtual devices which

is associated with one or more endpoints and each

endpoint is linked to the application or transport layer.

Each virtual device has a unique IP address to allow the

proxy to listen to its associated endpoints’ traffic. Fig. 13

illustrates the SSP design [42].

Even though the communication will not be an end to

end communication, the SSP will provide both parties

with DTLS security contexts as well as translating all

CoAP messages. Overall, the proposed SSP have benefits

such as overcoming end to end security issues in

constrained RESTful environments and allowing reverse

proxy by implementing a virtual device for every

constrained device [42].

Fig. 12. SSP Design [42].

The authors evaluated the proposed SSP using two

scenarios: In the first scenario, they allocated the proxy

near to the constrained devices through assigning

19

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

addresses from a neighboring LAN network to the virtual

devices. The second scenario is residing the proxy in an

upper level of the constrained devices such as on the

cloud. The experimental results in both scenarios showed

that using SSP reduces the load significantly by reducing

the processing time, network traffic, power consumption,

network delay and packet loss rates for constrained

devices. Thus, SSP helps to guarantee the proper

operation of constrained networks and nodes. Although,

SSP showed impressive results, it has some limitation.

SSP is introducing Single point of failure in terms of

security and operation. Also, SSP is vulnerable to lose all

session, public and private key in case of compromising

[42].

In [45], authors proposed a communication framework

called Atlas for enabling interoperability among IoT

devices speaking different languages by offering

lightweight IoT protocol translator connecting

heterogeneous devices via well-defined interfaces. The

proposed framework introduces a lightweight

communication on CoAP, REST protocols over HTTP,

and MQTT.

G. Tanganelli et al. in [46] presented an edge-centric

distributed architecture based on both the CoRE Resource

Directory interface and (CoAP) to provide a discovery

and access services in IoT and Fog Computing

environment. In this study, the CoAP protocol has been

implemented at gateway as a reverse-proxy such that all

client CoAP requests are sent to the intermediary gateway

rather than directly to IoT devices.

Fig. 13. X.805 security standard architecture [47].

D. DTLS and IPSec Implementations Using X.805

Security Standard

In [47], the authors evaluated DTLS and IPsec

protocols which is proposed to be used to secure CoAP.

Both DTLS and IPsec implementation have been

analysed using X.805 security standard. X.805

architecture is a top-down systematic approach which is

utilized to detect, predict, and correct the security

vulnerabilities. It can be applied to any network element,

service, and applications in order to investigate its

vulnerabilities. Generally, it is defining three security

layers, three security planes and eight security

dimensions which are identified to address the general

system vulnerabilities based on the network activities. Fig.

14 mentions all layers, planes and dimensions in details

[47].

The experiments showed that using DTLS to secure

CoAP is failed to meet some security requirements. First,

even though the multicast communication is an essential

feature of CoAP, it is not supported by DTLS. Second,

DTLS handshake protocol can cause exhaustion attack

which make the nodes lose their roles in the network

which will lead to a complete disruption to the entire

communication. Thirdly, DTLS countermeasure against

replay attack is not guaranteed in all scenarios; thus, it is

vulnerable to replay attack which will consume the

resources. Lastly, DTLS handshake protocol is not

provide end to end authentication [47].

In the other hand, IPSec provides different security

services such as integrity, access control, data

authentication, confidentiality, anti-replay mechanism,

and limited traffic flow confidentiality. Encapsulating

Security Payload Protocol (IPSec-ESP) is used to secure

CoAP using IPSec. However, beside the drawbacks and

problems of IPSec respect to Network Address

Translation (NAT) and Port Address Translation (PAT),

the encryption process of the small packets generates a

large overhead to the network. Furthermore, kernel level

modifications are needed to apply any modifications to

IPSec because it is embedded in the IP stack.

Additionally, configuring, managing or troubleshooting

IPSec and Internet Key Exchange (IKE) are complex

tasks and as the number of the constrained devices is

increase the complexity will increase accordingly. Also,

supporting multicast communication is difficult using

IPSec [47]. Since IPSec and DTLS were not designed for

constrained devices and environment, the investigating of

both protocols implementations in the CoAP highlights

20

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

that both protocols failed to meet some security

requirements as illustrated in Fig. 15.

Fig. 14. DTLS and IPSec analyses using X.805 [47].

E. Optimized DTLS and CoAP for IoT

In [48], Maleh Y. developed an optimized version of

DTLS in terms of performance. It reduces the cost of

DTLS communication and improve its weaknesses such

as cookie exchange in the handshake process by

integrating the DTLS inside CoAP. The integration of

different encryption elements within the CoAP message

added more security layer in addition to save energy and

time when establishing the connection between the client

and the server. To mitigate DoS attack, DTLS handshake

process is extended with a cookie exchange technique.

Toward avoid consuming the resources by DoS attacks,

the client must demonstrate its capabilities to the server

before it allocates the needed resources to the client. The

experiment results showed that the proposed

enhancement lead to better performance due to

simplification of handshake process. Generally, the

packet overhead and the energy consumption have been

reduced as well as the ROM usage which is reduced by

almost 23% [48].

In [49], they introduced a mechanism that optimized

the latency of CoAP transportation in RTIoT based on

forward error correction (FEC). The approach showed a

compromising between loss and latency and according to

their experiments the proposed model considerably

lowers the application layer loss and hence increased the

throughput of the communication in the domain of IoT.

Other studies have proposed enhancements to DTLS

by working around its delegation mechanism [50]-[53].

For example, researchers in [50] proposed an

enhancement to the DTLS when being used with CoAP

protocol by separating the DTLS handshake phase and

data encryption phase to solve the delay, overhead, loss

problems caused by handshake packets and

communication processes. The core idea in their

approach is to use Secure Service Manager (SSM) to

delegate the handshake phase and thus eliminating the

space and power required by the constrained devices to

do such handshake. To ensure the end-to-end security, the

end node is responsible of doing the encryption and

decryption of the data.

F. Security Aspect of CoAP-HTTP Proxy

In [54], the authors have been studied the security

aspect of CoAP-HTTP proxy in details. Since CoAP

allows cross protocol proxies between CoAP and HTTP,

the security of CoAP has been analysed by performing

vulnerability analyses of CoAP.

In order to analyse CoAP security, a lab has been

configured using CoAP Python with Eclipse IDE,

Californium (Cf), CoAP framework and Copper (Cu)

Firefox add-on for security. First, Cooja simulator is used

to create the virtual testing environment for CoAP.

Similarly, Python and CoAPthon library have been used

to develop the CoAP client, CoAP server with caching

and observer, HTTP to CoAP forward proxy feature.

Likewise, CoAP services are developed using

Californium (Cf) which is an open source CoAP. The

Copper (Cu) which is a user agent has been installed in

the Firefox browser and it is interacting with other IoT

services using ‘CoAP’ URI [54].

Once the environment has been configured and

simulated, the CoAP security has been tested by running

the CoAP client (Cu) in Firefox and Cf proxy in Eclipse

IDE. After that, the CoAP client (cu) will access the

CoAP server over the cf-proxy [CoAP to HTTP]

conversion. Once the cu started the communication with

Cf proxy, the communication will be intercepted using

Burp Suite. Both Firefox and Burp Suite will be

configured with port 8081. Once the packet is captured,

its information can be analysed [54].

The results showed that, the data is transmitted in a

plaintext format which is vulnerable for attacks. This

proves that CoAP proxy is vulnerable to different types of

attacks and data manipulation [54].

G. Lightweight Security Scheme for IoT Applications

Using CoAP

Arijit U. et al. in [55], proposed a lightweight security

scheme in CoAP for IoT application. The scheme is

based on Advanced Encryption Standard (AES)

algorithm with key length equals to 128. The scheme has

two components: CoAPs-Lite which enables the

lightweight security in CoAP, and Auth-Lite component

which enables the lightweight authentication process in

IoT devices.

The proposed scheme provides authentication and

confidentiality. The authentication is carried out with

symmetric key-based authentication in integration with

key management. The shared key is exchanged using

AES Cipher Block Chaining (CBC) mode. To avoid the

handshake overhead, it is embedded in the payload and

consist of two roundtrips only which consist secret

distribution, session initiation, server challenge and

sensor response phases. Also, to secure the authentication

scheme against different attacks, the challenge-response

process (nonce) technique has been applied. It is

21

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

generated using Random Number Generator appended

with a counter[55].

In order to adopt the security scheme into CoAP, a few

modifications to the header has been proposed to improve

the security operations and minimize the overall

communication overhead. A new option in CoAP header

is introduced which is called “AUTH” to enable the

secure mode which uses option to indicate the critical

option class. Moreover, “AUTH_MSG_TYPE” option is

introduced to provide variety in terms of the messages

that can be used for establishing an authentication session

[55].

To embed the authentication within CoAP; first the

sensor-gateway will send a POST message with

confirmable mode, “AUTH” option,

“AUTH_MSG_TYPE” and device ID parameters in the

payload. Then, the server will drive the device ID from

payload and determine its pre-shared secret associated

with this ID. Once the “AUTH”, “AUTH_MSG_TYPE”

options are received, the nonce and the session key will

be generated, and the server will generate the encrypted

payload, and the response will be sent back to sensor-

gateway. Once the sensor-gateway received the response,

it will decrypt it using the shared secret key. Then it will

generate another nonce to send it back to the server and it

will generate the encrypted payload using session key

“K”. Encrypted payload will be sent to the server with

POST message. Both POST messages sent be the server

and the sensor gate to authenticate must have the same

token value. Once the server received the payload, it will

decrypt it using “K” and checks the received nonce_1. If

it is correct, the client will be authenticated and a

response message with code “client authenticated” will be

sent. Otherwise, the server will send “client not

authenticated” message [55].

Correspondingly, once the client is authenticated, the

confidentiality process will be embedded to all

communications. The data will be encrypted and

decrypted using the key “k”, encrypted data will be

posted using POST with option type “DEC_CONF” in

the header. The server will send the status of the

decryption process using response message to the client

based on the value of “DEC_CONF” option. If it is true,

the status will be sent; otherwise, not. According to the

status of the decryption process, the client will decide to

re-send the message or not. The experiment showed that

the average decryption time in the server is 0.67 seconds

which is much less that the re-transmission timeout of

CoAP [55].

Since there are no public key crypto component, the

proposed scheme considered as a faster than the public

key-based systems. In general, the proposed system is

efficient, generic, applicable to different IoT applications

and resilient against replay and Man in the Middle attacks.

Also, it has low overhead due to embedding the

symmetric key-based authentication with integrated key

management [55].

There are several studies to leverage the lightweight

security scheme in CoAP such as in [56] where they

proposed a lightweight security schema on CoAP that

relies on enhancing the mechanism of authentication and

key management for vehicle tracking systems. The main

idea of their work is to utilize some unused CoAP header

options to embed the authentication mode as well as to

create a secure channel with a low communication cost

for messages exchange in vehicle tracking systems.

H. Lightweight Security Protocol in Wireless Sensor

Networks

In [57], Roh J. H. et al. designed lightweight security

protocol which is utilizing the binary CDMA security

codes in sensors networks. It is suitable for low power

sensors and it is designed mainly for wireless network

sensors where the transmitted data must be confidential.

The authors discussed binary CDMA and its security

requirements and how to apply it in sensors networks to

prevent attacks. The designed protocol is efficient

cryptographic protocol which provides block cipher

algorithm, CDMA security, authentication, timestamp,

monitoring and detection countermeasures. All these

countermeasures have been added to the designed

protocol to prevent possible attacks such as replay, sybil,

sinkhole attacks and hello flooding.

The architecture of the sensor network consists of three

node types in hierarchical structure which are Member

node (MN), Cluster header (CH) and Base station (BS).

MNs are classified into different clusters which is headed

by CH. One of the main responsibilities of CH is time

synchronization. As illustrated in Fig. 16, BS acts as a

gateway between two or more clusters [57].

The designed protocol has been tested using 128 bits

key size, different hash and block cipher algorithms have

been tested to choose the most suitable algorithms. After

testing MD5, SHA-1, SHA-256, SHA-512, RC5, IDEA,

DES, 3DES/EDE and AES/CTR algorithms, MD5 and

AES algorithms have been used for message

authentication and encryption respectively. Both

algorithms showed the lowest cycles per bytes with high

performance comparing to other algorithms [57].

With the same goal, authors in [58] proposed a

lightweight implementation of Internet Key Exchange

protocol (IKEv2) to provide key agreement and

authentication for IoT in the domain of Wireless Sensor

Networks where it optimizes the communication

overhead and the consumption of the energy at sensors.

The main idea of the proposed technique is to calculate

the hash value of both IP address and the ID instead of a

digital certificate, hence, having a variant of IKEv2 that is

a certificate-free implementation. The evaluation has

been conducted on NS-2 and the results showed that the

proposed algorithm outperforms the original version of

IKEv2 in terms of energy consumptions and overall

communication cost.

22

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

Fig. 15. Sensor network architecture [57].

I. Suite of Lightweight Security Protocols for IoT

Wu X. et al. in [59], presented a suite of lightweight

security protocols which provides encryption, key

management, identity authentication, and data integrity

services. For encryption and instead of using the pre-

shared cryptographic keys, the probabilistic encryption

procedure or hashed keys are used in the encryption and

decryption procedures to avoid compromising encrypted

data in case if the keys are compromised. Although the

encryption protocol is used, the key-for-one-file

encryption is applied to ensure security which is

illustrated by using One Time Pad (OTP). A random key

will be used for every file or data item will to apply key-

for-one-file encryption. Applying key-for-one-file

encryption eliminates the ciphertext only attack, while

applying probabilistic or hashed key is eliminating the

chosen plaintext attack [59].

The key is chosen randomly by legitimate devices only

from the key store which is large pool of random keys.

The key is generated using key store seed which is pre-

shared between the legitimate devices and stored in the

device Hardware Security Module (HSM). Thus, when

the attacker compromises the device and tries to extract

the seed without passing the authentication, the device

will automatically delete the seed to maintain the secrecy

of keys. No two keys will be used repetitively, and all

keys are uniquely determined by the key store seed. Also,

the distribution of the key index doesn’t disclose any

information about the key itself which make it more

secure [59].

The data integrity and originality are ensured using

message authentication code (MAC) which is generated

using the proposed cipher-based MAC algorithm. The

identity authentication will be done during the

configuration system for the new legitimate device when

it requests joining the network for the first time. It will

share its identity with the hub and other devices in the

same network. First, device1 (the new device) will send

w1 which is random selected key to device2 (in the same

network) associated with encrypted time stamp and its ID.

After that, device2 will generate k(w1) and verifies

device1 by decrypting the received ID and time stamp in

addition to compare it with the ID obtained from the hub.

Then, device2 will randomly choose a new key w2 to

send to device1 along with its encrypted ID and

timestamp. Lastly, device1 will decrypt the ID of device2

and generate k(w2). Once the both devices are

authenticated to each other, the communication can be

started successfully. In order to ensure transmitted data

integrity, the Cipher-based Message Authentication Code

(CMAC) is used [59].

The proposed protocols performance has been tested

and compared against to IPsec which needs

computationally intensive resources. IPsec uses AES 128,

SHA-1, DH, and RSA to ensure security; however, SHA-

1 broken recently, while the security aspects of Diffie-

Hellman and RSA algorithms mainly rely on the

complexity and hardness of both discrete logarithm and

integer factorization problems. In general, the proposed

protocol achieves a higher level of security with a very

low resources consumption. Fig. 17 presents a

comparison between IPSec and proposed suit protocols

[59].

In [60], they proposed a secure key management and

user authentication scheme for Fog Computing

environment by utilizing lightweight operations such as

cryptographic hash function and bitwise exclusive-OR.

The proposed approach has been implemented and

evaluated using NS2 simulator and results showed its

efficiency.

Fig. 17. Comparison between IPSec and proposed suit protocols [59].

In [61], a key exchange protocol based on attribute-

based encryption has been proposed to secure the

communication between fog nodes. In this approach, they

involved digital signature techniques with attribute-based

encryption to achieve an efficient and effective secure

communication system among fog nodes. The proposed

23

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

protocol has been evaluated and analyzed in terms of

communication overhead, message sizes, and security

aspects and results showed that it outperforms the

certificate-based protocol.

J. Network Coding Technique for a Communication of

Fog nodes

In [62], Marques B. et al. applied network coding

technique to the Dissemination of Small Values data

communication protocol between fog nodes of wireless

sensors. The network coding technique can adopt

different layers and network classes to improve the data

flow. This protocol is a communication protocol used by

network sensors to communicate. When there is an

information on a sensor x which needs to be sent to

neighboring nodes, the protocol is used to send the

information in periods. It starts with shorter periods then

the long periods and the same process will be carried out

for all neighboring nodes.

In order to simulate the proposed protocol and evaluate

its performance, the environment was simulated using

TOSSIN simulator along with two applications which are

any Dissemination of Small Values protocol application

based and TrickleTimer timer. All the nodes have the

same hardware and software characteristics and each

sensor has unique ID starting from zero to the last

topology ID. Two different topologies have been used

which is Square and Tree. Both topologies have different

number of nodes to evaluate its performance.

Dissemination of Small Values protocol has been tested

using two applications with and without Network Coding

technique to compare the communication performance

[62].

The proposed protocol obtained excellent results by

optimizing the data flow, reducing the latency, and the

data transmission. Also, the used bandwidth has been

reduced when applying the network coding on the

Dissemination of Small Values protocol. In general,

applying Network Coding increases the protocol

performance by 50%-60% of the original protocol [62].

K. Elliptic Curve Cryptography (ECC) Based Proxy for

Fog Computing and IoT

Diro A. A. et al. [63] analyzed Fog Computing security

challenges in general as well as proposing a novel

encryption scheme which is Elliptic Curve Cryptography

(ECC) based proxy re-encryption as a lightweight

encryption scheme for communications between Fog

Computing and IoT devices. It consists of five procedures

which are: key generation, client encryption, fog

encryption, fog decryption, and client decryption [63].

Among all distributed fog nodes, one fog node should

be selected as a trusted authority or coordinator for the

key generation procedure to produce the public curve

parameters, public and private keys of the coordinator.

Then the public elliptic curve parameters are distributed

to all fog nodes and IoT devices. The trusted authority

(chosen node) will send the KCi1 to IoT devices as a

private key and Kci2 to other fog nodes, where ci is the

identity of IoT device. After that, the IoT device will

encrypt the message using its private key (KIDi1). Then,

the corresponding fog node will re-encrypt the IoT device

ciphertext using the fog node key (KCi2). The fourth

procedure is decrypting the ciphertext by the

corresponding fog node and convert it to an intermediate

ciphertext that can by fully decrypted only by the

corresponding IoT device. Lastly, IoT device Ci will fully

decrypt the message using its private key KCi1 [63].

To evaluate the performance, the proposed scheme has

been implemented using Java on top of nics-crypto to

support proxy re-encryption. The execution time,

throughput and ciphertext expansion are used to compare

the performance of the proposed scheme and the RSA.

Based on the experiment, it can be observed that using

proxy ECC is faster than RSA in encryption and

decryption processes of messages with different sizes.

The RSA decryption process is considered as the slowest

process while proxy ECC is much faster in decryption

computations. Moreover, proxy ECC produces smaller

ciphertext than RSA and its encryption throughput is

higher than the corresponding RSA over various data

seizes. As the message size increase, the encryption

throughput of proxy ECC increases while RSA

throughput is decreased. In general, the experiment has

been proved the effectiveness and efficiency of the proxy

ECC scheme as a cryptographic mechanism for the fog to

things communication security 63].

In [64], authors proposed a novel lightweight security

solution for publish-subscribe Fog Computing based on

ECC protocol for key exchange and encryption. They

analyzed the application of such lightweight schema in

terms of scalability, overhead, and security metrics in Fog

Computing environment. The study showed the

applicability of using such protocol to secure the

communication of Fog Computing due to the ECC

properties: short key lengths, small message sizes, and

low computation power requirements.

IV. DISCUSSION AND ANALYSIS

Table I summarizes all proposed techniques to secure

the communication between fog and IoT devices. The

comparison has been carried out by comparing the used

technique, study objectives, results and limitations for

each paper. If “N/A” term is used it indicates that the

limitation column is not applicable for the study.

As illustrated in the table and even though there were

hard work to enhance CoAP security by optimizing

DTLS implementations, introducing SSP, or compressing

DTLS header in [41], [48], [42] respectively, these

enhancements have limitations such as degrading the

overall performance or testing it within simulated

environments which differs than the real one.

Initially, DTLS was not designed specifically to be

worked over constrained devices and authors in [65]

demonstrated and proved by their conducted experiments

24

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

that DTLS and TLS implementations are feasible to

different attacks in real environments. Moreover, authors

in [47] investigated DTLS security based on X.805

security standard, and the results showed that DTLS has

been failed to meet some important security aspects.

Furthermore, DTLS does not suit the CoAP proxy and it

is handshake process need six messages which overhead

the communication channel and increases the number of

transmitted bytes which consumes the energy. Energy

parameter has significant impact for any constrained

device because it has limited resources. Same issues have

been faced with IPSec and HTTP protocols which is

proposed to enhance CoAP security in [47], [54]. Thus,

introducing new suit security protocols are much better to

consider the constrained devices characteristics and

parameters when designing these protocols.

TABLE I: SUMMARY OF RELATED WORK

P
ap

er

Technique Study Goals Results Limitations

[38] LSPWSN Proposing lightweight protocol to

secure communication for Web

Services in wireless sensors

In general, LSPWSN protocol presents a

more stable behavior than CoAP.

Performance of LSPWSN

is lower than CoAP due to

TCP which is used without

any compression

mechanism

[41] An optimized implementation

of DTLS for CoAP, by

integrating the DTLS protocol

inside the CoAP.

Optimized implementation of DTLS

for CoAP.

The experiments results show that the

optimized ECC solution outperform the

standard implementation and it improve

network lifetime by a factor of up to 6.5.

Not tested in real

environments.

[42] Security Service Proxy (SSP). To offer additional functionality and

services on behalf of the constrained

networks and nodes as well as

improving the constrained

environments performance.

Applying SSP reduces a significant

processing, network traffic, power

consumption, network delay and packet loss
rates for constrained devices. Also, it

guarantees the proper operation of
constrained networks and nodes.

Introducing single failure

point as well as its

vulnerability to replay
attacks.

[47] Evaluating DTLS and IPSec

implementations using X.805
security standard.

Investigating DTLS and IPsec

implementations and effectiveness in
securing CoAP.

The experiment results highlight that both

protocols failed to meet some security
requirements.

N/A.

[50] Lightweight secure
communication for CoAP-

enabled Internet of Things

using delegated DTLS
handshake

Enhancing the DTLS by separating the
DTLS handshake phase and data

encryption phase by utilizing Secure

Service Manager (SSM) as a mean for
delegation.

Reduces the delay, overhead, loss problems
caused by handshake packets and

communication processes.

N/A.

[54] Configuring a lap to study the

security aspect of CoAP-
HTTP proxy.

Analysing CoAP-HTTP proxy

security.

The experiment proves that the data is

transmitted in a plaintext and the CoAP
proxy is vulnerable to different types of

attacks.

N/A.

[55] A lightweight security
scheme in CoAP for IoT

application. The scheme uses

AES algorithm Cipher Block

Chaining (CBC) mode with

128 key length.

Studying lightweight security scheme
for IoT applications using CoAP.

It is efficient, generic and resilient to
number of security attacks like replay and

meet-in-the-middle attacks.

The pre-shared key must be
hardcoded in the device

otherwise this scheme will

not work.

[48] An optimized version of

DTLS in terms of

performance. Improving
DTLS: cookie exchange in

the handshake process by
integrating the DTLS inside

CoAP.

Enhancing and optimizing the

performance of the DTLS network for

CoAP.

The proposed enhancement lead to better

performance in terms of packet overhead,

handshake time processing, and energy
consumption

Not tested in real

environments.

[57] A lightweight security
protocol which is utilizing the

binary CDMA security codes

in sensors networks.

Designing a lightweight security
protocol for sensors networks.

MD5 and AES algorithms have been used
for message authentication and encryption

respectively. Both algorithms showed the

lowest cycles per bytes with high
performance.

During the authentication
and authorization phase.

The neighboring nodes of

the BS will suffer from high
communication overhead

due to forwarding request

and response packets.

[58] Lightweight key agreement

protocol for IoT based on

Providing lightweight key agreement

and authentication based on a hashing
technique of IP address and ID instead

The evaluation has been conducted on NS-

2 and the results showed that the proposed
algorithm outperforms the original version

To prove the efficiency of

the proposed algorithm, its
required to conduct a

25

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

IKEv2 of a digital certificate to optimize

communication and computation costs.

of IKEv2 in terms of energy consumptions

and overall communication cost.

performance evaluation

against other TLS-based
frameworks.

[59] A suite of lightweight

security protocols which

provides encryption, key

management, identity

authentication, and data

integrity.

Providing identity authentication,
encryption, key management, and data

integrity.

It achieves a higher level of security with a
very low resources consumption

The authentication
procedure in the proposed

suit vulnerable to malicious

insider attacks.

[62] Appling a network coding
technique to the

Dissemination of Small
Values data communication

protocol between fog nodes

composed of wireless sensors

Increasing the protocol performance Applying Network Coding increases the
protocol performance by 50%-60% of the

original protocol.

The timer overloads the
communication channel

with resending data for long
periods.

[63] A novel encryption scheme

which is Elliptic Curve

Cryptography (ECC) based
proxy re-encryption for fog to

things as a lightweight
encryption scheme.

Securing the communication by fast

and robust cryptographic algorithm.

The proposed technique proved its

effectiveness and efficiency of the proxy

ECC scheme as a cryptographic
mechanism for the fog to things

communication security.

Not tested in real

environments.

Different researchers proposed different lightweight

protocols to suit the constrained devices. In [38], the

LSPWSN protocol is efficient and secure which is

proposed to be used for the Web Services in wireless

sensors. Generally, the memory consumption and

bandwidth achieved better than CoAP. However, it

degrades the overall performance and it is proposed only

to be used for wireless sensor. Since sensors must send

and receive data in real time, LSPWSN might be not

applicable due to performance degradation. Further

improvements are requested to enhance LSPWSN

performance.

In [55], the proposed a lightweight is based on AES

algorithm with128 bits key length. It has excellent

features such as speed, efficiency, applicability to

different IoT applications, resilience against replay and

Man in the Middle attacks, as well as its low overhead.

However, authors assumed that the pre-shared key is

hardcoded into each device at the time of manufacturing,

which is not always applicable. Improving the scheme to

make it work without this assumption is recommended to

evaluate the proposed technique performance.

In [57], the designed lightweight security protocol is

utilizing the binary CDMA security codes in sensors

networks. It is designed mainly for wireless network

sensors where the transmitted data must be confidential.

This proposed technique has problem with the BS, it will

be overloaded with packets when neighboring nodes of

BS are forwarding request and response packets.

In [59], the lightweight security suite is proposed to

provide encryption, key management, identity

authentication, and data integrity services. The overall

performance achieves a higher level of security with a

very low resources consumption. However, there are a

possibility of malicious insider attack in the

authentication procedure. This possibility is low and

unlikely to be happened; however, it is recommended to

be reduced furthermore. In [62], authors applied network

coding technique to the Dissemination of Small Values

data communication protocol between fog nodes of

wireless sensors. It is simulated to measure its

performance; it is obtained excellent results by

optimizing the bandwidth usage, data flow, reducing the

latency, and the data transmission. However; sometime

the used timer is overloading the communication channel.

A novel encryption scheme based on ECC is proposed to

encrypt the data. It produces smaller ciphertext in less

time compared to RSA; however it’s not tested in real

environments and it’s known that ECC is complex and

hard to implement [63].

V. CONCLUSION

Fog Computing Concept has been introduced to

address the cloud computing limitations and to provide

multiple benefits such as low latency and mobility.

However, the security of Fog Computing protocols is still

a concern especially those related CoAP protocol. CoAP

protocol does not have the reliable standards to secure its

architecture. The biggest challenge faced by CoAP

protocol is the lack of the main researches on how

security can be managed or provided to the protocol.

Although there were different studies to secure CoAP

using DTLS and optimizes its implementations, it is

proven that DTLS is not applicable and it was not

designed for IoT devices. Thus, different researchers

worked on proposing new lightweight protocols which

are suitable for limited resources devices.

This paper surveyed the main security mechanisms

proposed to secure CoAP protocol, its architecture,

security and performance evaluation. There are different

techniques which must be improved furthermore and

tested to evaluate their performance. In conclusion, all

related studies and techniques have been surveyed and

discussed in deep to provide a solid reference for the Fog

Computing and CoAP protocol security. As a

26

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

contribution, all reviewed papers have been categorized

into two categories and a taxonomy has been proposed to

ease understanding all available techniques to secure

CoAP. It is found that using DTLS to secure CoAP is not

applicable at all and it is not designed for constrained

devices. Even though there were excellent studies to

optimize the DTLS implementations in CoAP, it is still

not applicable. Thus, different researchers proposed

different lightweight protocols to provide constrained

devices with security services such as encryption,

authentication, authorization, and integrity.

LSPWSN performance in [38] must be improved

furthermore to be at least equal to CoAP performance. In

[55], the authors assumed that the pre-shared key is

hardcoded into each device at the time of manufacturing,

which is hard and not applicable at all. It is recommended

to propose similar scheme without this assumption and

evaluates its performance and security. It is

recommended in [57] to solve BS problem by finding a

technique to avoid packet overloading when sending too

much packets between neighboring nodes. Also, It is

recommended to test [58], [63] techniques in realistic

environment to evaluate its performance and improve it

furthermore if needed. Proposed technique in [63]

showed impressive encryption results; however it is

utilizing ECC which may be difficult to be implemented

on IoT device. Among all reviewed studies, [58], [59],

[62] showed robustness performance with excellent

security services. It is still need minor improvements such

as testing in real environments and mitigating minor

issues. Since DTLS is not designed for constrained

devices, future researchers must focus on proposing new

lightweight protocols or improving existing ones. IoT-

Fog communications must be secured, and different

security services must be considered while designing

these protocols. Also, the IoT devices characteristics such

as resources limitations must be considered. As a future

work, improvements and recommendations mentioned

previously must be taken in consideration as well as

evaluating other techniques [66]-[68] in securing

constrained devices.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Ebtesam conducted the survey under the supervision of

Fahd, both authors discussed and analyzed the survey

work and wrote the paper. Fahd reviewed the entire paper

and all authors had approved the final version

REFERENCES

[1] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J.

Morrow, and P. A. Polakos, “A comprehensive survey on

fog computing: State-of-the-Art and research challenges,”

IEEE Communications Surveys & Tutorials, vol. 20, no. 1,

pp. 416-464, 2018.

[2] K. Lee, D. Kim, D. Ha, U. Rajput, and H. Oh, “On

security and privacy issues of fog computing supported

internet of things environment,” J. Neurosci. Res., vol. 58,

no. 3, 2015.

[3] L. M. Vaquero and L. Rodero-merino, “Finding your way

in the fog: Towards a comprehensive definition of fog

computing,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 5, pp. 27–32, 2014.

[4] Z. Shelby, K. Hartke, C. Bormann, and B. Frank,

“Constrained application protocol (CoAP),” Internet

Engineering Task Force (IETF): Fremont, CA, USA,

2014.

[5] Z. Shelby, K. Hartke, and C. Bormann. (2014). The

constrained application protocol (CoAP). [Online].

Available: https://tools.ietf.org/html/rfc7252 (

[6] A. Banks and R. Gupta. (2014). OASIS Message Queuing

Telemetry Transport (MQTT). version 3.1.1, OASIS.

[Online]. Available: http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[7] AMQP - Advanced Message Queuing Protocol. [Online].

Available: https://www.amqp.org/

[8] DDS – Data Distribution Services. [Online]. Available:

http://portals.omg.org/dds/

[9] Zigbee. [Online]. Available: http://www.zigbee.org/

[10] ISO, UPnP - ISO/IEC 29341-1:2011 Device Architecture.

[Online]. Available:

https://www.iso.org/standard/57195.html

[11] OASIS, Devices Profile for Web Services Version 1.1.

[Online]. Available: http://docs.oasis-open.org/ws-

dd/dpws/wsdd-dpws-1.1-spec.html

[12] M. Iglesias-Urkia, A. Orive, Adri, A. Urbieta, and D.

Casado-Mansilla, “Analysis of CoAP implementations for

industrial Internet of things: A survey,” Journal of

Ambient Intelligence and Humanized Computing, vol. 10,

no. 7, pp. 2505—2518, 2019.

[13] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y.

Tan, “Performance evaluation of MQTT and CoAP via a

common middleware,” in Proc. IEEE Ninth International

Conference on Intelligent Sensors, Sensor Networks and

Information Processing, Singapore, 2014, pp. 1–6.

[14] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G.

Reali, “Comparison of two lightweight protocols for

smartphone-based sensing,” in Proc. IEEE 20th

Symposium on Communications and Vehicular

Technology in the Benelux, Namur, 2013, pp. 1-6.

[15] M. Motaharul, Z. Khan, and Y. Alsaawy, “A framework

for harmonizing internet of things (IoT) in cloud:

Analyses and implementation,” Wireless Networks, pp. 1-

12, 2019.

[16] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight

internet protocols for web enablement of sensors using

constrained gateway devices,” in Proc. International

Conference on Computing, Networking and

Communications, 2013, pp. 334–340.

[17] O. Bergmann, K. T. Hillmann, and S. Gerdes, “A CoAP-

gateway for smart homes,” in Proc. International

27

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

https://tools.ietf.org/html/rfc7252
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Conference on Computing, Networking and

Communications, Maui, HI, 2012, pp. 446-450.

[18] S. M. Chun and J. T. Park, “Mobile CoAP for IoT

mobility management,” in Proc. 12th Annual IEEE

Consumer Communications and Networking Conference,

Las Vegas, NV, 2015, pp. 283-289.

[19] A. Betzler, C. Gomez, I. Demirkol, and M. Kovatsch,

“Congestion control for CoAP cloud services,” in Proc.

Emerging Technology and Factory Automation,

Barcelona, 2014, pp. 1-6.

[20] H. A. Khattak, M. Ruta and E. Di Sciascio, “CoAP-based

healthcare sensor networks: A survey,” in Proc. 11th

International Bhurban Conference on Applied Sciences

and Technology, Islamabad, 2014, pp. 499-503.

[21] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M.

Zorzi, “Internet of things for smart cities,” IEEE Internet

of Things Journal, vol. 1, no. 1, pp. 22-32, 2014.

[22] C. P. Kruger and G. P. Hancke, “Implementing the

internet of things vision in industrial wireless sensor

networks,” in Proc. 12th IEEE International Conference

on Industrial Informatics, Porto Alegre, 2014, pp. 627-

632.

[23] E. Rescorla and N. Modadugu, “Datagram transport layer

security version 1.2,” Internet Engineering Task Force

(IETF): Fremont, CA, USA, 2012.

[24] J. Vishwesh and M. B. Rajashekar, “Internet of Things

(IoT): Security analysis & security protocol CoAP,”

International Journal of Recent Trends in Engineering &

Research, vol. 3, no. 3, pp. 417–425, 2017.

[25] M. Zolanvari, “IoT security: A survey,” Computer

Scientists & Computer Engineers at WashU, 2015.

[26] N. Sabu. (2015). Fog Computing technology (PPT).

[Online]. Available:

https://www.slideshare.net/NikhilSabu/fog-computing-

technology?from_action=save

[27] S. Yi, C. Li, and Q. Li, “A Survey of fog computing:

concepts, applications and issues,” in Proc. Workshop on

Mobile Big Data, New York, 2015, pp. 37–42.

[28] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog

computing and its role in the internet of things,” in Proc.

First edition of the MCC Workshop on Mobile Cloud

Computing, New York, 2017, pp. 266–277.

[29] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An

overview of fog computing and its security issues,” Hong

Kong J. Paediatr., vol. 18, no. 2, pp. 105–116, 2013.

[30] A. Dasgupta and A. Q. Gill, “Fog computing challenges:

A systematic review,” in Proc. Australasian Conference

on Information Systems Dasgupta & Gill, Hobart,

Australia, 2017.

[31] A. Verma, A. Soni, and P. Patel, “Fog computing:

security, issues and its challenges,” International Journal

of Engineering Research in Computer Science and

Engineering, vol. 3, no. 10, pp. 60–65, 2016.

[32] J. Dizdarevic, F. Carpio, A. Jukan, and X. Masip-Bruin,

“Survey of communication protocols for internet-of-

things and related challenges of fog and cloud computing

integration,” ACM Computing Surveys, vol. 51, pp. 1–29,

2019.

[33] S. Zamfir, T. Balan, I. Iliescu, and F. Sandu, “A security

analysis on standard IoT protocols,” in Proc.

International Conference on Applied and Theoretical

Electricity, Craiova, 2016, pp. 1-6.

[34] H. Lin and N. W. Bergmann, “IoT privacy and security

challenges for smart home environments,” Information,

vol. 7, 2016.

[35] D. B. Ansari, Atteeq-Ur-Rehman, and R. A. Mughal,

“Internet of Things (IoT) protocols: A brief exploration of

MQTT and CoAP,” International Journal of Computer

Applications, vol. 179, no. 27, pp. 9–14, 2018.

[36] M. P. Singh and A. K. Chopra, “The internet of things and

multiagent systems: Decentralized intelligence in

distributed computing,” in Proc. IEEE 37th International

Conference on Distributed Computing Systems, Atlanta,

GA, 2017, pp. 1738-1747.

[37] X. Chen, “Constrained application protocol for internet of

things,” Research Paper on Computer Science &

Engineering, Washington University, 2014.

[38] P. E. Figueroa, J. A. Pérez, and I. Amezcua, “Performance

evaluation of lightweight and secure protocol for wireless

sensor networks: A protocol to enable web services in

IPv6 over low-power wireless personal area networks,”

International Journal of Distributed Sensor Networks, vol.

13, no. 6, 2017.

[39] H. Wang and Z. Sun, “Compression method for IPSec

over 6LoWPAN,” KSII Transactions on Internet &

Information Systems, vol. 12, no. 4, pp. 1819-1831, 2018.

[40] R. Garg and S. Sharma, “Modified and Improved IPv6

Header Compression (MIHC) scheme for 6LoWPAN,”

Wireless Personal Communications, vol. 103, no. 3, pp.

2019-2033, 2018

[41] A. Capossele, V. Cervo, G. D. Cicco, and C. Petrioli,

“Security as a CoAP resource: An optimized DTLS

implementation for the IoT,” in Proc. IEEE International

Conference on Communications, London, 2015, pp. 549-

554.

[42] F. Van den Abeele, I. Moerman, P. Demeester, and J.

Hoebeke, “Secure service proxy: A CoAP(s) intermediary

for a securer and smarter web of things,” Sensors

(Switzerland), vol. 17, no. 7, 2017.

[43] M. Vu˘cini´c, B. Tourancheau, T. Watteyne, F. Rousseau,

A. Duda, R. Guizzetti, and L. Damon, “DTLS

Performance in Duty-Cycled Networks,” in Proc.

International Symposium on Personal, Indoor and Mobile

Radio Communications, Hong Kong, 2015.

[44] H. Tschofenig and T. Fossati,” Transport Layer Security

(TLS)/Datagram Transport Layer Security (DTLS)

profiles for the internet of things,” Internet Engineering

Task Force (IETF): Fremont, CA, USA, 2016.

[45] A. E. Khaled and S. Helal, “Interoperable communication

framework for bridging RESTful and topic-based

communication in IoT,” Future Generation Computer

Systems, vol. 92, pp. 628-643, 2019.

[46] G. Tanganelli, C. Vallati, and E. Mingozzi, “Edge-Centric

distributed discovery and access in the internet of things,”

IEEE Internet of Things Journal, vol. 5, no. 1, pp. 425-

438, 2018.

28

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

[47] T. A. Alghamdi, A. Lasebae, and M. Aiash, “Security

analysis of the constrained application protocol in the

internet of things,” in Proc. Second International

Conference on Future Generation Communication

Technologies, London, 2013, pp. 163-168.

[48] Y. Maleh, A. Ezzati, and M. Belaissaoui, “An enhanced

DTLS protocol for internet of things applications,” in

Proc. International Conference on Wireless Networks and

Mobile Communications, Fez, 2016, pp. 168-173.

[49] R. Herrero and D. Hernandez, “Forward error correction

in real-time internet of things CoAP-based wireless sensor

networks,” IET Wireless Sensor Systems, vol. 9, no. 1, pp.

42-47, 2019.

[50] J. Park and N. Kang, “Lightweight secure communication

for CoAP-enabled internet of things using delegated

DTLS handshake,” in Proc. International Conference on

Information and Communication Technology

Convergence, Busan, 2014, pp. 28-33.

[51] R. Hummen, J. Ziegeldorf, H. Shafagh, S. Raza, and K.

Wehrle, “Towards viable certificate-based authentication

for the internet of things,” in Proc. 2nd ACM Workshop

on Hot Topics on Wireless Networks Security and Privacy,

ACM, 2013, pp. 37-42.

[52] R. Hummen, H. Shafagh, and S. Raza, “Delegation-based

authentication and authorization for the IP-based internet

of things,” in Proc. 11th IEEE International Conference

on Sensing, Communication, and Networking, Singapore,

2014.

[53] J. Park, H. Kwon, and N. Kang, “IoT—Cloud

collaboration to establish a secure connection for

lightweight devices,” Wireless Networks, vol. 23, no. 3,

pp. 681–692, 2017.

[54] D. M. Rathod and S. Patil, “Security analysis of

constrained application protocol (CoAP): IoT protocol,”

International Journal of Advanced Studies in Computers,

Science and Engineering, vol. 6, no. 8, pp. 37-41, 2017.

[55] U. Arijit, B. Soma, B. Abhijan, P. Arpan, and B. Tulika,

“Lightweight security scheme for IoT applications using

CoAP,” International Journal of Pervasive Computing

and Communications, vol. 10, no. 4, pp. 372-392, 2014.

[56] A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, and A. Pal,

“Lightweight security scheme for vehicle tracking system

using CoAP,” in Proc. International Workshop on

Adaptive Security, ACM, no. 3, 2013.

[57] J. H. Roh, M. Y. Kim, and H. K. Moon, “An approach to

designing lightweight security protocol on binary CDMA

sensor networks,” in Proc. International Conference on

Ultra-Modern Telecomm & Workshops, 2009, pp. 1–6.

[58] M. Lavanya and V. Natarajan, “Lightweight key

agreement protocol for IoT based on IKEv2,” Computers

& Electrical Engineering, vol. 64, pp. 580-594, 2017.

[59] X. W. Wu, E. H. Yang, and J. Wang, “Lightweight

security protocols for the internet of things,” in Proc.

IEEE 28th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications, 2017, pp. 1–

7.

[60] M. Wazid, A. K. Das, N. Kumar, and A. V. Vasilakos,

“Design of secure key management and user

authentication scheme for fog computing services,”

Future Generation Computer Systems, vol. 91, pp. 475-

492, 2019.

[61] A. Alrawais, A. Alhothaily, C. Hu, X. Xing, and X.

Cheng, “An attribute-based encryption scheme to secure

fog communications,” IEEE Access, vol. 5, no. 1, pp.

9131-9138, 2017.

[62] B. Marques, I. Machado, A. Sena, and M. C. Castro, “A

communication protocol for fog computing based on

network coding applied to wireless sensors,” in Proc.

International Symposium on Computer Architecture and

High-Performance Computing Workshops, 2017, pp. 109–

114.

[63] A. A. Diro, N. Chilamkurti, and Y. Nam, “Analysis of

lightweight encryption scheme for fog-to-things

communication,” IEEE Access, vol. 6, pp. 26820–26830,

2018.

[64] A. A. Diro, N. Chilamkurti, and N. Kumar, “Lightweight

cybersecurity schemes using elliptic curve cryptography

in publish-subscribe fog computing,” Mobile Networks

and Applications, vol. 22, no. 5, pp. 848-858, 2017.

[65] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen:

breaking the TLS and DTLS record protocols,” in Proc.

IEEE Symposium on Security and Privacy, Berkeley, CA,

2013, pp. 526-540.

[66] N. U. Ain and A. Rahman, “Quantum cryptography: A

comprehensive survey,” Journal of Information

Assurance and Security, vol. 11, no. 1, pp. 31-38, 2016.

[67] A. Rahman, S. A. Alrashed, and A. Abraham, “User

behavior classification and prediction using FRBS and

linear regression” J. of Information Assurance and

Security, vol. 12, no. 3, pp. 86-93, 2017.

[68] A. Rahman, N. Saba, and N. Ain, “A novel robust

watermarking technique using cubic product codes,”

Journal of Information Security Research, vol. 6, no. 1, pp.

14-24, 2015.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Fahd Al-Haidari is currently an

assistant professor at College of

Computer Science and Information

Technology (CCSIT), Imam

Abdulrahman Bin Faisal University

(IAU), Dammam, Saudi Arabia. He

received his M.S. degree in Computer

Science from King Fahd University of

Petroleum and Minerals (KFUPM) in

May 2006, and the Ph.D. degree in Computer Science and

Engineering from the same department in 2012. His research

interests include cloud computing, network security, algorithms

and simulation, machine learning, cryptography, in addition to

performance evaluation of computer networks.

29

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

Ebtesam J. Alqahtani is currently an Information Security

Analyst with Saudi Aramco. She has recently finished her MS

in Computer Science from College of Computer Science and

Information Technology (CCSIT), Imam Abdulrahman Bin

Faisal University (IAU), Dammam, Saudi Arabia. Her research

interests include information security, data mining, AI and

Data/Network Security.

30

Journal of Communications Vol. 15, No. 1, January 2020

©2020 Journal of Communications

