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Abstract—A simple scheme was proposed by Knuth to generate 

balanced codewords from a random binary information 

sequence. However, this method presents a redundancy which is 

twice as that of the full sets of balanced codewords, that is the 

minimal achievable redundancy. The gap between the Knuth’s 

algorithm generated redundancy and the minimal one is 

significantly considerable and can be reduced. This paper 

attempts to achieve this goal through a method based on 

information sequence candidates. 
 
Index Terms—Balanced code, inversion point, redundancy, 

running digital sum (RDS), running digital sum from left 

(RDSL), running digital sum from right (RDSR), information 

sequence candidates. 

 

I. INTRODUCTION 

A binary codeword of length k is said to be balanced if 

the number of zeros and ones within that sequence equals 

𝑘 2⁄ , for even 𝑘 . Balanced codes are very useful for 

digital recording of data on optical and magnetic storage 

disks. They can also be used to correct or detect errors 

within channels. 

Donald Knuth proposed a simple and efficient scheme 

to generate balanced codewords [1]. This approach 

stipulates that any binary unbalanced codeword, 𝒙  of 

length 𝑘  can always be encoded into a balanced one 

denoted as 𝒙′ , by inverting the first 𝑒  bits of 𝒙  where 

1 ≤ 𝑒 ≤ 𝑘. The index 𝑒 is encoded as a prefix, 𝒑 that is 

appended to 𝒙′  and send through a channel. At the 

receiver side, the decoder receives the codeword 𝒑𝒙′ , 

read off first the prefix and then, is able to recover the 

original information sequence 𝒙 by inverting back the e 

first bits of 𝒙′. This algorithm is very suitable for long 

sequences as it does make use of any lookup tables either 

at the encoder or the decoder.    

The redundancy of Knuth’s algorithm 𝒑 , is 

approximately evaluated as 

𝑝 = 𝑙𝑜𝑔2 𝑘 𝑓𝑜𝑟 𝑚 ≪ 1                                  (1) 

Since then, numerous works were published to reduce 

the redundancy presented in (1). 

In [2], an attempt to improve Knuth’s balancing 

algorithm was presented based on the distribution of the 

transmitted prefix index. The basic Knuth scheme uses 
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the first balanced point at position 𝑒 to encode it as the 

prefix, therefore the encoder is set to choose smaller 

values for the position index. It has been shown that the 

distribution of the index for equiprobable information 

sequences, is not uniform and presents a redundancy of 

slightly less than (1); this scheme uses a variable length 

prefix of the chosen index which only makes a minor 

improvement on the Knuth’s algorithm redundancy.  

A major contribution in reducing the Knuth’s 

algorithm redundancy was shown by Immink and Weber 

in [3]. This new scheme does not make use of look-up 

tables and presents a very efficient encoding of the index 

prefix; this requires at most 𝑙𝑜𝑔2( 𝑘 2⁄ + 1 ) bits to 

represent the index. Furthermore, the distribution of the 

prefix length was discussed as well as the average 

efficiency of this construction.  

Another attempt to reduce the Knuth algorithm 

redundancy was presented in [4]. This new method is 

called bit recycling for Knuth’s algorithm (BRKA); since 

there is a high probability to have more than one balance 

point given an information sequence, this scheme uses the 

multiplicity of encodings to close the gap between the 

lower bound redundancy and the Knuth’s one. 

In this paper, we describe some tools to find all 

possible inversion points within a sequence. Furthermore, 

we will present an efficient and simple method to 

significantly improve Knuth’s algorithm redundancy; 

every random binary information sequence is associated 

to a unique balanced codeword by following Knuth’s 

scheme. 

The rest of this paper is organized as follows: we will 

be exploring ways of finding balanced points in Section II. 

And then, encoding method description based on 

information sequence candidates is presented in Section 

III. Section IV describe the decoding methodology, while 

Section V gave a study of sparseness. Section VI present 

some performance analysis as well as discussions. Finally, 

the paper is concluded in Section VII.  

II. FINDING INVERSION POINTS 

There are various ways of determining inversion points 

given a random binary sequence, 𝒙 of length 𝑘. 

A. Exhaustive Search 

This is done by following the Knuth’s algorithm, that 

is inverting bits sequentially from the first index on the 
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left till the last one and record all the balanced codewords. 

However, inversion points from left direction might be 

different from those from the right. Given that 𝒙 =
(𝑥1, … , 𝑥𝑘)  with 𝑥𝑖 ∈ {0,1}; 𝒙 is referred to as balanced 

sequence if and only if ∑ 𝑥𝑖
𝑘
𝑖=1 = 𝑘/2 (for even k). Let us 

denote by 𝑒 , the least index at which the sequence is 

balanced and 𝒙(𝑒) the codeword obtained after inverting 

the 𝑒 first bits of 𝒙, where 1 ≤ 𝑒 ≤ 𝑘. 
Example 1 Consider the binary sequence 𝒙  = 

01000110 of length 𝑘=8. By performing an exhaustive 

search, we find: 

x
(1)

= 11000110, x
(2)

= 10000110,  x
(3)

= 10100110, 

x
(4)

= 10110110, x
(5)

= x
(6)

= 10111110, x
(7)

= 10111000, 

x
(8)

= 10111001.  

𝒛 therefore, the balanced codewords are x
(1)

, x
(3)

 and 

x
(7)

. However, this approach is not efficient as it is long 

and only finds inversion points from the left direction; 

this leads to a complexity of 𝒪𝑘2digit operations. 
1   

B. Using RDS 

The sequence x is converted into bipolar form through 

the following mapping: 0 ⟶ −1 and 1⟶+1. That is 

𝒙 = 𝑥1, … , 𝑥𝑘 ,  with 𝑥𝑖 ∈ {−1,+1} . The running digital 

sum at index i is the cumulative sum of sequence 

elements until index i. We define the running digital sum 

from left 𝑅𝐷𝑆𝐿𝑖  and the running digital sum from right 

𝑅𝐷𝑆𝑅𝑖 as follow:  

𝑅𝐷𝑆𝐿𝑖 = ∑𝑥𝑗

𝑖

𝑗=1

= 𝑅𝐷𝑆𝐿𝑖−1 + 𝑥𝑖                        (2) 

 

𝑅𝐷𝑆𝑅𝑖 = ∑𝑥𝑗

𝑖

𝑗=1

= 𝑅𝐷𝑆𝑅𝑖−1 + 𝑥𝑖                        (3) 

 
Remark 1 𝑅𝐷𝑆𝐿𝑖 = 𝑅𝐷𝑆𝑅𝑖 . However, the sequence x 

is balanced when 𝑅𝐷𝑆𝐿𝑖 = 𝑅𝐷𝑆𝑅𝑖 = 0.  
Theorem 1 For a non-balanced sequence, inversion 

points are found at indexes i if RDSLi = RDSRi+1, for 

inversion starting from left (Knuth’s algorithm case) and 

RDSRi = RDSLi 1 for inversion starting from the right of 

the sequence. 

Proof: This can be proved by observing that the 

difference between the number of symbols ` 1’ and ` + 1’ 

before and after the inversion point index i are equal. 

This is case when inverting from left or right direction. 

Therefore RDSLi = RDSRi+1 (inversion from left) and 

RDSRi = RDSLi 1 (inversion from right).  
Lemma 1 From an already balanced sequence, 

inversion points are found √ at indexes i if and only 

RDSLi = RDSRi+1 = 0 for left inversion and RDSRi = 

RDSLi 1 =0, for right one. 

Lemma 2 An already balanced sequence always has at 

least one inversion point located at the last index k. 

Let us consider the same sequence as in Example 1, x 

= 01000110. 
Index (i) 1 2 3 4 5 6 7 8 

𝑥𝑖 ∈ {−1,+1}. -1 +1 -1 -1 -1 +1 +1 -1 

RDSLi   -1 +0 -1 -2 -3 -2 -1 -2 

RDSRi+1 -1 -2 -1 +0 +1 +0 -1 X  

RDSRi -2 -1 -2 -1 +0 +1 +0 -1 

RDSLi-1 X      -1       +0        -1         -2          -3         -2-1 

Left balance √                √                                                √ 

Right balance  √  √    √ 

(4) 

Using the RDS approach as described in Theorem 1, 

the balanced codewords with inversion performed from 

the left are x
(1)

, x
(3)

, and x
(3)

, while balanced codewords 

from the right are x
(2)

, x
(4)

, and x
(8)

, as presented in (4). 

This is an efficient way of finding inversion points from 

both left and right directions; this approach presents a 

linear complexity of 𝒪𝑘2operation digits.  
This RDS approach to find inversion points can easily 

be interpreted using graphical representation. A (𝛾, 𝜏 )-

random walk is a path with increases of and decreases of . 

Any RDS walk always generate a {−1;+1}, {−1; +1}-

random walk; that is a walk with increases and decreases 

of either +1 or 1. This is simply due to the bipolar nature 

of a binary sequence. 

Graphically, inversion points from the left are the  

intersection dots between the random walks of RDSLi 

and RDSLi+1 (obtained by a horizontal shift of RDSRi 

walk to the left). Similarly, those from the right are 

intersection points between the random walks of RDSRi 

and RDSLi 1 (obtained by a horizontal shift of RDSLi 

walk to the right). 

 
Fig. 1. Balanced points found at indexes 1, 3 and 7 from left for the 

sequence 01000110. 

 
Fig. 2. Balanced points found at indexes 2, 4 and 8 from right for the 
sequence 01000110. 

C. Using Weights 

Let us consider the binary sequence x with 𝑥𝑖 ∈ {0, 1}. 
Considering the left direction, we define Li(0) and Li(1) 
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respectively as the weight of ‘0’ and the weight of ‘1’ 

within x from index 1 to i; similarly, Ri(0) and Ri(1) as 

the weight of ‘0’ and the weight of ‘1’ within x from 

index i + 1 to k. However for the right direction, Ri(0) and 

Ri(1) would denote respectively, the weight of ‘0’ and the 

weight of ‘1’ within x from index i to k; while Li(0) and 

Li(1), the weight of ‘0’ and the weight of ‘1’ from index 1 

to i-1. 

 Lemma 3 For  any  binary  sequence,  inversion  points  

are found  at  indexes  i either  from  left  or  right  direction,  

if 

|𝐿𝑖(0) − 𝐿𝐼(1)| = |𝑅𝑖(0) − 𝑅𝑖(1)| 

Let us consider once more the sequence from Example 

1,  

x = 01000110. 
Index (i) 1 2 3 4 5 6 7 8 

𝑥𝑖 ∈ {0, 1}. 0 1 0 0 0 1 1 0    (5) 

|𝐿𝑖(0) − 𝐿𝐼(1)|  1 0 1 2 3 2 1 2 

|𝑅𝑖(0) −  𝑅(1)| 1 2 1 0 1 0 1 X  

 
Index (i) 1 2 3 4 5 6 7 8 

𝑥𝑖 ∈ {0, 1}. 0 1 0 0 0 1 1 0    (6) 

|𝑅𝑖(0) −  𝑅(1)| 1 1 3 1 0 1 0 1 

|𝐿𝑖(0) − 𝐿𝐼(1)|  X 1 0 1 2 3 2 1  

 

Using the weight approach described in Lemma 2, (5) 

presents all possible inversion points from the left which 

are found are indexes 1, 3 and 7; while (6) shows 

inversion points from the right at indexes 2, 4 and 8.  

The weight approach to find inversion points is as 

efficient as the method based on RDS presented in 

Section II.B with a linear complexity of 𝒪𝑘2 . However, 

the weight method might be more appropriate as it does 

not require the bipolar representation of the initial binary 

sequence. 

III. ENCODING METHOD BASED ON INFORMATION 

SEQUENCE CANDIDATES 

 
Fig. 3. Encoding scheme 

The idea behind this encoding scheme is to associate 

every information sequence of length k, to a balanced 

codeword within the cardinality of 2
k
 as presented in Fig. 

3. 

Given a random binary sequence x to be encoded, if x 

is already balanced, a protocol can be adopted between 

transmitter and receiver to have a prefix-less codeword; 

otherwise , x is balanced following the Knuth’s algorithm, 

then the associated balanced codeword is obtained and 

denoted as x from the least inversion point index. All other 

information sequence candidates associated to 𝒙′  are 

captured and listed in the lexicographic order. The prefix of 

x corresponds to its rank amongst the information sequence 

candidates. 

Example 2 Let us consider all sequences of length k = 

4. The tabular below shows all information sequence 

candidates associated to every balanced codeword. 

𝒙′ 
 

0011 
 

0101 
 

0110 
 

1001 
 

1010 
 

1100 
 

 

       
 

x  1011  1101  1000  0001  0010  0000 
(7) 

 

  1111  1010  1110  0111  0101  0100  

        
 

  1100    1001  0110    0011  
 

 

(7) shows the encoding process described in [3], whereby 

balanced codewords (marked in bold) are part of the 

information sequence candidates. 

𝒙′ 
 

0011 
 

0101 
 

0110 
 

1001 
 

1010 
 

1100 
 

 

       
 

x  1011  1101  1000  0001  0010  0000 
(8) 

 

  1111    1110  0111    0100  

        
 

 

However, in our scheme, balanced codewords are 

excluded from the cardinalities of information sequence 

candidates as shown in (8) based on Theorem 2. 

Theorem 2 Any balanced codeword of length k is 

always associated to another balanced one. 

Proof: By applying Knuth’s inversion algorithm on 

any already balanced codeword, another balanced 

codeword is generated; at the worst-case scenario, it is 

found by inverting all bits as stated in Lemma 2. 

Let us denote by 𝒄(𝒙′), the cardinality of information 

sequence candidates associated to a balanced codeword. 

In Example 2, 1 ≤  𝑐(𝒙′)  ≤ 2. 

The inclusion of balanced sequences within the set of 

information sequence candidates as presented in [3], adds 

an extra rank in the ranking process. As we described in 

Lemma 2, an already balanced sequence always leads to 

at least one another balanced sequence obtained by 

inverting all bits which might or not be the associate one.  

Let us denote by max{RDSLi} and min {RDSLi}, the 

maximum and minimum of RDSLi respectively 

performed on any sequence. 
Theorem 3 

𝑐(𝒙′) = 𝑚𝑎𝑥{ 𝑅𝐷𝑆𝐿𝑖} − 𝑚𝑖𝑛{ RDSL𝑖}. 

Proof: It was proved in [3] that 

𝑐(𝒙′) = 𝑚𝑎𝑥{ 𝑅𝐷𝑆𝐿𝑖} − 𝑚𝑖𝑛{ RDSL𝑖} + 1. the balanced 

codeword was removed out of every set of information 

sequence candidate. Therefore the new 𝑐(𝒙′)  is 
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subtracted by 1, that is 𝑐(𝒙′) = 𝑚𝑎𝑥{ 𝑅𝐷𝑆𝐿𝑖} −
𝑚𝑖𝑛{ RDSL𝑖}. 
Theorem 4 

1 ≤  𝑐(𝒙′)  ≤ 𝑘/2 

Proof: It was established in [3] that 2 ≤  𝑐(𝒙′)  ≤
𝑘/2 + 1; then after removing the balanced codeword out 

of every set of information sequence candidate, it follows 

that 1 ≤  𝑐(𝒙′)  ≤ 𝑘/2 .Therefore, the required prefix 

redundancy for this scheme is  𝑙𝑜𝑔2 𝑘/2 ; this is a 

significant improvement on the Knuth’s algorithm  with a 

redundancy of 𝑙𝑜𝑔2 𝑘/2 . The prefix is obtained from 

ranking the information sequence candidates associated 

to a balanced codeword from 0 to 
𝑘

2
−1. 

IV. DECODING 

The decoding process is illustrated in Fig. 4. The 

process is as follow: The prefix is extracted from the 

overall received codeword of length 𝑛 = 𝑘 + 𝑝  as the 

first 𝑘/2  bits; then all the 𝑘/2  information sequence 

candidates associated to 𝒙′  are listed and ordered 

lexicographically from 0 to 𝑘/2 −1. Finally, the prefix is 

mapped to the rank of the right original information 

sequence. 

 
Fig. 4. Flow chart of the decoding process 

Example 3 We want to decode the received codeword, 

1111000011, where the bold and underline word 

represents the prefix.  
 

Info. seq. candidates Prefix rank   

01000011 0 (00)   

00000011 1 (01) 

(9) 

 

00110011 x(Not ranked because   

00111011 2 (10)  

00111111 3 (11)  
 

(9) shows all information sequence candidates associated 
to the balanced codeword 11000011 with their 
correspondent prefix ranks. 

Therefore, the received codeword 1111000011 is 

mapped to the original information sequence, 00111111. 
One can notice that the proposed scheme requires a re-

dundancy of log2 (8/2)=2 to encode any 8 bits sequence as in 

Example 3, while the Knuth’s one is log2(8) = 3 and the 
Immnink & Weber’s one as in [3] is log2 (8/2 + 1) = 2.32.   

V. STUDY OF THE SPARSENESS OF 𝑐(𝒙′) 

Let N( 𝜆,  k) be the number of possible balanced 

codewords 𝒙′  of length k such that 𝑐(𝒙′) = 𝜆  . The 

following equation holds from Theorem 4; 

∑ N(𝜆, 𝑘) 

𝑘/2

𝜆=1

= (
𝑘

𝑘/2
)                 (10) 

The value N(𝜆, k) has been evaluated in [3] for /2 −1. 

This was done using the computation of the number of 

bipolar sequences whose running sum lies within two 

finite bounds B1 and B2 (with B2 > B1), as proposed by 

Chien [5].  

The interval of running sum values that a sequence 

may reach, also referred to as the digital sum variation 

(DSV) is given by B = B2−B1 + 1. Each iteration in the 

random walk of a sequence defines an entry of a BΧB 

connection matrix, 𝑀𝐵 .   
𝑀𝐵 is such that, 𝑀𝐵 (𝑖, 𝑗) = 1, if there is a path in the 

random walk from state 𝑠𝑖  to state 𝑠𝑗 ; and 𝑀𝐵 (𝑖, 𝑗) = 0 

if no path can be established. For each iteration, a random 

walk of the running sum can only move one state up or 

down. Therefore, 𝑀𝐵 (𝑖 + 1, 𝑖) =  𝑀𝐵 (𝑖, 𝑖 + 1) = 1  and 

𝑀𝐵 (𝑖, 𝑖) = 0 , where 𝑖, 𝑗 = 1, 2, …𝐵 − 1  as presented in 

(11). 

𝑀𝐵 =

[
 
 
 
 
 
0 1 0
1 0 1
0 1 0

⋯
⋯

0 0
0 0
0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0
0 0 0

⋯
⋯

0 1
1 0]

 
 
 
 
 

                            (11) 

𝑀𝐵 
𝒌(𝑖, 𝑗) denotes the (𝑖. 𝑗)𝒕𝒉 entry of the k

th
 power of 

𝑀𝐵 . 

Theorem 5 The number of balanced codewords 𝒙′  of 

length k and c(𝒙′) = 𝜆, 𝑁(𝜆, 𝑘) for  1≤ 𝜆 ≤ 𝑘/2 −1is 

such that  

 

𝑁(𝜆, 𝑘) = ∑ 𝑀𝜆+1
𝑘

𝜆+1

𝑖=1

(𝑖. 𝑖) − 2 ∑ 𝑀𝜆
𝑘

𝜆

𝑖=1

(𝑖. 𝑖)

+ ∑ 𝑀𝜆−1
𝑘

𝜆−1

𝑖=1

(𝑖. 𝑖) 

Proof: The number of balanced codewords such that 

c(𝒙′) = 𝜆 for 2≤ 𝜆 ≤ log
2
𝑘/2 +1 in [3] was as follow, 

𝑁(𝜆, 𝑘) = ∑𝑀𝜆
𝑘

𝜆

𝑖=1

(𝑖. 𝑖) − 2 ∑ 𝑀𝜆−1
𝑘

𝜆−1

𝑖=1

(𝑖. 𝑖)

+ ∑ 𝑀𝜆−2
𝑘

𝜆−2

𝑖=1

(𝑖. 𝑖) 

 
However, there is one starting state where a sequence 

has the maximum RDS spanning B + 1. Similarly, all 

sequences with c( 𝒙′) =  B have two starting states; 
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sequences with c(𝒙′) = 𝐵 − 1 have three starting states. 

This implies that 

∑ 𝑀𝜆
𝑘

𝜆

𝑖=1

(𝑖. 𝑖) = 𝑁(𝜆, 𝑘) + 2𝑁(𝜆 − 1, 𝑘) + 3𝑁(𝜆 − 2, 𝑘)

+ 4𝑁(𝜆 − 3, 𝑘) + 5𝑁(𝜆 − 4, 𝑘) … 

= ∑(𝐼 + 1)

𝜆−1

𝑖=0

𝑁(𝜆 − 𝑖, 𝑘). 

This leads to the following 

𝑁(𝜆, 𝑘) = ∑ 𝑀𝜆+1
𝑘

𝜆+1

𝑖=1

(𝑖. 𝑖) − 2 ∑ 𝑀𝜆
𝑘

𝜆

𝑖=1

(𝑖. 𝑖)

+ ∑ 𝑀𝜆−1
𝑘

𝜆−1

𝑖=1

(𝑖. 𝑖) 

 
 

A simplified expression of MB was provided in [3] 

based on a formula to compute powers of MB derived by 

Salkuyeh [6] as follow: 

∑ 𝑀𝐵
𝑘

𝐵

𝑖=1

(𝑖. 𝑖) = 2𝑘  ∑𝑐𝑜𝑠𝑘

𝐵

𝑖=1

(𝑖. 𝑖).
𝜋𝑖

𝐵 + 1
           (12) 

This makes the computation of 𝑁(𝜆, 𝑘) much simpler 

as follow: 

𝑁(𝜆, 𝑘)

= 2𝑘 (∑ 𝑐𝑜𝑠𝑘

𝜆+1

𝑖=1

𝜋𝑖

𝜆 + 2
− 2 ∑𝑐𝑜𝑠𝑘

𝜆

𝑖=1

𝜋𝑖

𝜆 + 1

+ ∑𝑐𝑜𝑠𝑘

1

𝑖=1

𝜋𝑖

𝜆
)                                        (13) 

The computation of 𝑁(𝜆, 𝑘)  as presented in (13) 

becomes obvious for special values of as shown in (14). 

The enumeration of sequences corresponding to these 

values of as well as the pseudo code for computing 𝑐(𝒙′), 

for generating the ordered set of information sequence 

candidates and for determining the prefix index were 

provided in [3]. 

Info. seq. candidates Prefix rank  
 

1 2  
 

2 2(2(𝑘/2)−1) 
(14) 

 

𝑘/2 𝑘(𝑘 − 4), (𝑘 > 4)  

 
 

𝑘/2 k  
 

   
 

VI. ANALYSIS AND DISCUSSIONS 

We would like to compute the average number of bits 

denoted as 𝐻(𝑘) required to encode the prefix index of a 

sequence of length 𝑘.  The number of information 

sequence candidates associated to a balanced codeword 

𝑥′  is 𝑐(𝑥) out of the 2𝑘 − ( 𝑘
𝑘/2

)  possible information 

sequence candidates.  

= ∑ 𝜆𝑁(𝜆, 𝑘) = 2𝑘 − (
𝑘
𝑘
2

)                      

𝜆/2

𝑖=1

 (15) 

It follows that 

∑𝜆𝑁(𝜆, 𝑘)log
2
 𝑘

𝜆
2

𝑖=1

2𝑘 − (
𝑘
𝑘
2

) ⁄                         (16) 

The minimum redundancy for the full set of balanced 

code-words is given in [2] by: 

 

𝐻𝑜(𝑘) = 𝑘 − log2  (
𝑘
𝑘
2

)  ≈  
1

2
log2𝑘 + 0.326           (17) 

The average number of bits for the construction in [3] 

is as follow: 

  𝐻1(𝑘) = 2−𝑘  ∑ 𝜆𝑁(𝜆, 𝑘)log
2
 𝜆

𝜆
2
+1

𝑖=2

                       (18) 

The average number of bits for the method in [4] is 

given-by 

 𝐻2(𝑘) = ∑𝑃(𝑐) 𝐴(𝑐)

𝜆
2

𝑐=1

                  (19) 

 

where 𝑃(𝑐) = 2𝑐+1−𝑘  (
𝑘−1−𝑐

𝑘

2
−𝑐

) , 1 ≤  𝑐 ≤ 𝑘/2, 

𝑑 = 𝑐 − 2⌊log2 𝑐⌋, and AV(c)  
= (c

− 2d). ⌊log
2
 𝑐⌋.

1

2⌊log2 𝑐⌋

+ 2𝑑.
1

2⌊log2 𝑐⌋
. ⌈log

2
 𝑐⌉ 

Table I presents the comparison of the average number 

of bits necessary to encode the prefix from various 

schemes. Let  𝑑𝐻𝑎
, 𝐻𝑏 be the difference between the 

average prefix length 𝐻𝑎  and 𝐻𝑏 ; we observed 

that 𝑑𝐻 , 𝐻𝑜 ≤ 0.61,  𝑑𝐻 . 𝐻1 ≤0:64 and 𝑑𝐻2
, 𝐻 ≤ 1.23.  

TABLE I: COMPARISON OF THE PREFIX  AVERAGE NUMBER OF BITS 

k H0 H H1 H2 

4 1.4150 0.8000 1.4387 0.5000 

8 1.8707 1.4632 1.8985 0.9375 

16 2.3483 2.0806 2.3790 1.3706 

32 2.8370 2.6629 2.8691 1.8082 

64 3.3314 3.2207 3.3641 2.2516 

128 3.8286 3.7615 3.8616 2.7039 

256 4.3272 4.2902 4.3603 3.1647 

512 4.8265 4.8104 4.8597 3.6330 

1024 5.3261 5.3246 5.3594 4.1082 

 

Fig. 5 presents the average number of bits for prefix 

encoding for various schemes. The proposed scheme’s 

average redundancy given by (16), performed better than 

the average   minimum   redundancy   for  the  full  set  of  
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balanced codewords as in (17) and the Immink & Weber 

average redundancy as in (18). However, the difference 

in length between the proposed (14) scheme and the Al-

rababa’s et al average redundancy as in (19) is less than 

1.23.  

 

Fig. 5. 𝐻𝑜(𝑘), 𝐻(𝑘), 𝐻1(𝑘) and 𝐻2(𝑘) vs  log2𝑘. 

 
Fig. 6. 𝐻′(𝑘), 𝐻1

′(𝑘) log2𝑘 and ⌈log2 𝑘⌉ 

Fig. 6 shows the comparison between the average 

redundancy for balanced prefixes for 𝐻(𝑘) , 𝐻1(𝑘) 

denoted as 𝐻′(𝑘) and 𝐻1
′(𝑘)respectively as well as log2𝑘 

and ⌈log2(𝑘)⌉ . 𝐻′(𝑘)  is obtained from a simple 

modification of 𝐻(𝑘) provided in (16) as follow 

𝐻′(𝑘) = ∑ 𝜆𝑁(𝜆, 𝑘)(∆𝜆)

𝜆
2

𝑖=1

2𝑘 − (
𝑘
𝑘
2

) ⁄                         (20) 

Similarly,  𝐻′(𝑘) is derived form 𝐻1(𝑘)  given in (18) 

as fellow: 

𝐻1
′(𝑘) = 2−𝑘 ∑ 𝜆𝑁(𝜆, 𝑘)(∆𝜆)                   (21) 

𝜆
2
+1

𝑖=2

 

where (∆𝜆) correspond to the smallest value of length k 

such that 
𝑘

2
≤ 𝜆 . The graphs of log2(𝑘)  and 

⌈log2 𝑘⌉represents the minimum redundancy and that of 

integer valued redundancy of the traditional Knuth’s 

construction. We observe that, it is only from 𝑘 > 64 that 

the average redundancy of the scheme presented in [3] is 

less than that of the Knuth scheme; whereas 

 
Fig. 7. Fixed length schemes 

According to Theorem 4, the two coding schemes are 

applicable for the proposed scheme. For the fixed length 

prefix construction, the encoding of the prefix requires 

exactly log2(𝑘/2) bits; whereas for the variable length (VL) 

scheme, the prefix length varies between 1 and log2(𝑘/2) 

depending on the nature of the information sequence. 

However, the VL scheme is more efficient than the fixed 

length one on the average basis. 

Fig. 7 presents the fixed length performance, we 

observed that the proposed scheme is more efficient than 

the classic Knuth scheme for any length and it performs 

better than the fixed length construction presented in [3] 

for k < 512. For practical systems purpose, a redundancy 

can only be a positive integer value. Fig 8 presents the 

rounded up fixed length schemes. This confirmed the 

previous assumption that the proposed fixed length 

scheme is more efficient than that of [3] for k < 512.  

 
Fig. 8. Rounded up fixed length schemes 

VII.    CONCLUSION 

We have presented a modification of the construction 

given in [6], for encoding and decoding of binary 
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codewords. The proposed scheme requires exactly 

log2 (𝑘/2) bits for the fixed length prefix and a prefix 

length between 0 and log2 (𝑘/2) bits for VL scheme. The 

sparseness of the prefix length was analyzed, and the 

average efficiency of this scheme was discussed and 

compared to existing ones. The proposed construction is 

very advantageous compared to some prior schemes as 

look-up tables are not used and it is less redundant. 

Furthermore, this scheme can be featured with the 

construction provided in [7] to provide the overall 

codeword balancing (information with prefix). As future 

work, we intend to apply the proposed scheme on the 

overall codeword length to close the remaining gap from 

the lower redundancy bound.  
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