
Monte Carlo Simulations of Infinite Shortened Non-Binary 

LDPC Codes 
 

Panyawat Techo, Virasit Imtawil, and Puripong Suthisopapan
 

Department of Electrical Engineering, Khon Kaen University, Thailand 

Email: t.panyawat@kkumail.com; {virasit; purisu}@kku.ac.th 
 

 

Abstract—Shortening is a technique that can be used for 

constructing rate-compatible low-complexity LDPC codes. 

However, minimum SNR required to achieve error free decoding 

in the case of long block length, known as decoding threshold, 

for shortened LDPC code has not been reported. This motivates 

us to slightly modify the Monte Carlo simulation originally 

invented M. Davey to compute decoding threshold of the 

shortened LDPC codes. From the simulation results, we found 

that decoding threshold of shortened LDPC codes based on 

uniform shortening algorithm is identical to conventional LDPC 

codes designed for specific coding rate. Moreover, the number 

of iteration used to achieve successful decoding of shortened 

code and conventional code are slightly different. 

 

Index Term—Monte carlo simulation, uniform shortening 

algorithm, non-uniform shortening algorithm, decoding 

threshold 

 

I. INTRODUCTION 

Low density parity check (LDPC) code is a class of 

powerful channels coding, invented by Robert Gallager in 

1962s. Nowadays, this code has already been applied to 

many modern digital communication systems since it can 

bring the system with very high performance [1], [2], i.e., 

low BER and low transmission power. Typically, 

performance of this code depends on many parameters 

such as code length, field order and code rate, ranging 

between 0 and 1. It is known that LDPC code with low 

code rate can achieve better performance comparing with 

that of high code rate [3], [4]. It is worth noting that 

LDPC code is normally designed to operate at specific 

code rate. 

In fact, the channel condition for many realistic 

communication systems can be changed from time to 

time, known as time-varying channel. In order to deal 

with various channel conditions, code rate should be 

adaptable, i.e., low-rate code for bad channel condition or 

high-rate code for normal channel condition.  

Unfortunately, the code rate adaptation have to utilize 

more than one pairs of encoder and decoder. This 

requires more space to install additional hardware and 

leads to higher cost. Rate-Compatible (RC) codes are the 

technique invented to overcome this problem [5]–[8]. 

This code can change its code rate according to channel 

condition by using a single pair of encoder and decoder. 
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Shortening is one of the techniques used to construct 

rate- compatible codes. This technique can adapt code 

rate of mother code to lower code rates by inserting 

known symbols [9]–[12]. Typically, performance of 

shortened RC code strongly depends on selected 

shortening algorithm, i.e., how to insert known symbols 

and there are many shortening technique proposed in a 

literature [9], [11], [13], [14]. To the best of my 

knowledge, uniform shortening algorithm is by far the 

best technique which can provide identical BER 

performance to the code designed for specific rate. For 

this algorithm, each check nodes of LDPC code 

uniformly connects to shortened variable nodes of LDPC 

code [13]. However, performances of uniform shortening 

algorithm are investigated only for the case of short and 

medium code length [13], [15]. 

This work focuses on analyzing the performance of 

uniform shortening algorithm in the case of very long 

code length (more over 100,000 symbols) [4], [16]. The 

Monte Carlo simulation proposed by Matthew Davey is 

slightly modified to calculate decoding threshold, i.e., 

minimum SNR to achieve error free transmission, of non-

binary LDPC code shortened by uniform shortening 

algorithm. 

The rest of the paper is organized as follows. The basic 

background are described in Section II.  The simulation 

results are reported and illustrated Section III.  Finally, 

some discussion and conclusions are given in Section 

IV.   

II. BASIC AND BACKGROUND 

The definition of LDCP codes and the structure of RC 

codes will be briefly described. Monte Carlo simulation 

which are the main tool for this work is also presented 

in this section. 

A. Code Definition 

Let N  and K  be code length and message length, in 

terms of symbol from finite field, i.e., 

 GF ,q respectively. LDPC code is a type of error 

correcting codes. This code has been defined in terms of 

sparse parity check matrix H  over  GF q  whose its 

dimension is  N - K  ? N  [1], [2]. Note that the LDPC 

code with  > 2q  is known as non-binary LDPC codes. 

The rate of code is given by the ratio between message 

length and code length R=K N . 
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LDPC codes can be graphically represented by using 

Tanner graph. The structure of this graph can be drawn 

from parity check matrix. This Tanner graph consists of 

two main sets of nodes which are N  variable nodes and 

P = N K  check nodes. The edge in Tanner graph that 

connect check and variable nodes relates to the position 

of non-zero entry in H.  Figure 1  shows the example of 

small size parity check matrix over  GF 4 and its 

corresponding Tanner graph. 

 
Fig. 1 . Parity check matrix and corresponding Tanner graph of LDPC 

codes over  GF 4  with = 1 2R . 

Let 
rW  and 

cW  be the number of non-zero elements 

in each row and each column, respectively, of parity 

check matrix. From Fig. 1  each row has  = 4rW  and 

each column has  = 2.cW  This means that each variable 

node connects to exactly 
cW  check nodes and each check 

nodes connects to exactly rW  variable nodes. The LDPC 

code that has constant rW  and cW  for each row and each 

column is called regular LDPC code. 

The common decoding algorithm for non-binary 

LDPC codes is FFT based belief propagation algorithm 

[17]. During decoding process, the information (in terms 

of probability) between variable and check nodes of 

Tanner graph are exchanged. This will be done until the 

codeword is found or maximum iteration is reached. 

B. Shortening Technique 

Shortening is one of the techniques for generating rate 

compatible codes. The method to perform shortening is 

illustrated in Fig. 2  

 

 
Fig. 2.  Block diagram of coded systems with shortening technique. 

The concept of shortening can be described as 

follows. At transmitter side, the original 
mK  message 

symbols are inserted with 
sK  known symbols to form 

m sK = K  + K  mother code symbols. After encoding, the 

codeword of length = + N  K   P  symbols is produced. 

Before transmitting through the channel, the 
sK  

known symbols are removed from the codeword 

symbols. So, the length of transmitted symbols 

sN  K  symbols and the code rate of shortened code 

is given by 

  
  

  

s

s

s

K K
R

N K





                            (1) 

At receiver side, 
sK  known symbols are inserted 

back to the 
sN  K  noisy received symbols. So, the 

length of input of decoder is        s sK N K N    

symbols. Note that these known symbols are inserted 

back into the old position. For LDPC decoding, known 

symbols contribute perfect a priori information that 

helps the decoding process. After decoding, 
sK  

symbols are removed from N  decoded symbols. 

Finally, the estimation has length     m sK N K   

symbols.  

 
Fig. 3.  The structure of Tanner graph for shortened LDPC codes of 

  1 3R   constructed from   1 2R  . 
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To show an example, the structure of small size 

Tanner graph for   1 3R   shortened LDPC codes 

constructed from   1 2R   is depicted in Fig. 3.  For 

this example,    8,   4N K   code of   1 2R   is 

utilized as mother code. In order to construct   1 3R   

shortening code, message nodes of size   2sK   must 

be selected as shortened nodes. The first and the fourth 

are selected in this example and the rate of shortening 

code is equal to 
4  2 1

    .
8  2 3

sR


 


 For this case, it 

is seen from the figure that each check node does not 

connect to the same amount of shortening node. 

As mentioned earlier, the position of shortened nodes 

affects the performance shortened code [13], [14]. One 

way to obtain excellent performance is to select the 

position of shortened nodes in according to the concept of 

uniform shortening [13], [15]. By using the same code as 

shown in Fig. 3,  the appropriate shortened position based 

on this concept is shown in Fig. 4.  It is clearly seen that 

each check node connect to the same amount of shortened 

nodes (1  for this example), i.e., uniform shortening. 

 
Fig. 4.  Example of tanner graph with uniform shortening 

C. Monte Carlo Simulation  

 
Fig. 5.  The step to use Monte Carlo simulation for calculated decoding 

threshold of regular LDPC codes. 

Monte Carlo simulation associates with belief 

propagation decoding over girth free Tanner graph (tree 

structure) with very large nodes. Therefore, this technique 

is used to calculate asymptotic decoding performance in 

the case of very long code length under ideal decoding 

assumption. The steps to use Monte Carlo simulation for 

obtaining decoding threshold of regular LDPC codes are 

depicted in Fig. 5.  

Note that -thi  codeword can be represented by -thi  

variable node and the length of codeword is equal to total 

number of variable nodes. Thus, we will use the terms 

codeword and variable nodes interchangeably. Let h  be 

the non-zero element of  GF ,q    1, 2, , i N  and 

  1, 2, ,   1.rj W   The Monte Carlo simulation 

can be described as follows: 

Step 1: Assuming that the zero codeword is 

transmitted. Given a specific level of SNR, a large 

number of variable node is firstly generated. Each 

variable node associated with intrinsic information. We 

use   , , , i i1 i2 iQQ Q Q
   Q  to denote the intrinsic 

information (in terms of vector of probabilities) to be 

sent from -thi  variable node. Note that 

   Pr   ix iQ c x   where 
ic  is -thi  codeword symbol 

and  GF .x q  Typically, the size of these symbols 

must be at least   100,000N   symbols [4]. 

Step 2:   1rW   variable nodes are randomly selected 

to be connected to -thi  check nodes. It is worth 

mentioning that random  GFh q  is assigned to each 

connection. 

Step 3: According to FFT-based belief propagation 

algorithm [17], [18] each check node calculates an 

extrinsic information from incoming messages of 

  1rW   variable nodes defined in previous step as 

follows 

 
1

1

1

rW

i j

j







 
  

 
R Q                        (2) 

where 1 2  , , , i i i iqR R R
   R  is the extrinsic 

information from -thi  check node. At the end of this step, 

N  extrinsic messages associated with N  check nodes 

are obtained. 

Step 4: We will create a new ensemble of N  variable 

nodes as follows. Each new variable node is randomly 

connected to   1cW   check nodes (each has its own 

extrinsic information). The intrinsic message of each 

new variable node is given by 

1

1

cW

i i i l

l

 




 Q R
                                

 (3) 

where i  is normalizing factor and    Pr   0i ic    

generated from the level of SNR defined in Step 0.  
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Step 5: The average entropy is used to measure the 

ambiguity among N  variable nodes [4]. This average 

entropy can be computed by using this equation 

1 1

1
  log

qN

ix q ix

i x

H Q Q
N  

  
   

  
                   (4) 

Since the zero codeword is assumed, the average 

entropy approaches zero if the decoding process is done 

successfully, i.e., complete removing the effect of noise 

or no ambiguity.  

Following [4], we will repeat step 1    step 4  until 

average Shannon entropy of a new ensemble of variable 

node is less than 510  If average Shannon entropy is less 

than 
510 ,

 this means that the successful decoding can be 

accomplished at this SNR. We will utilize this Monte 

Carlo simulation to obtain the lowest level of SNR that 

the successful decoding can be achieved. This SNR level 

is called in this paper as decoding threshold. 

Next, we present a method to use Monte Carlo 

simulation for computing decoding threshold of 

shortened LDPC codes based on uniform shortening. 

According to the concept of uniform shortening, each 

check node must be connected to the same amount of 

shortened variable nodes. For regular LDPC codes, this 

amount of shortened nodes is given by 

 
  

1

r c s r

s

s

W W R W
K

R

 



                      (5) 

 
Fig. 6.  The structure of -thi  check node of Monte Carlo simulation for 

the case of shortened LDPC codes. 

Fig. 6  shows the structure of -thi  check node at step 

1  of Monte Carlo simulation for the case of shortened 

LDPC codes. 

For example, we will demonstrate the structure of 

shortened LDPC codes of   1 2R   constructed from 

mother code of   3 4R   with  2, 8 -regular  structure. 

With this structure, each check node connects to exactly 

8  variable nodes. By using  5  the amount of shortened 

nodes is equal to 

 
1

8 2 8
22     4

1 0 5
1

2

sK
.

  

  



 

The structure of -thi  check node for shortened case is 

shown in Fig. 7   

 
Fig. 7.  The structure of -thi  check node of shortened LDPC codes 

with  2, 8 -regular  structure. 

III. SIMULATION RESULT 

Decoding thresholds of shortened LDPC codes 

obtained from Monte Carlo simulation are presented. 

Following M. Davey [4], 100,000  initial noisy symbols 

are used to represent infinite code lengths. FFT-based 

belief propagation algorithm with maximum 100  

iterations is used as decoding algorithm for all Monte 

Carlo simulations. 

For short and medium code lengths, it has been shown 

in [13], [15] that the BER performance of shortened 

LDPC code based on uniform shortening algorithm 

(referred to as shortened code) is identical to that of 

independently designed code (shortly called 

conventional code), i.e., code designed for specific rate.  

As mentioned earlier, in this study, we would like to 

further investigate the performance of shortened in the 

case of long code length. 

TABLE I: COMPARISON BETWEEN DECODING THRESHOLD OF SHORTENED 

CODEAND CONVENTIONAL CODE. 

ield 
order 

Code rate Decoding threshold 

Shortened Conventional Shortened Conventional 

 GF 4  
1 2  1 2  1 10.  1 10.  

2 3  2 3  1 70.  1 70.  

 GF 8  
1 2  1 2  1 16.  1 16.  

2 3  2 3  1 73.  1 73.  

 GF 16  
1 2  1/2 1 27.  1 27.  

2 3  2 3  1 80.  1 80.  

 GF 64  
1 2  1 2  0 61.  0 61.  

2 3  2 3  1 41.  1 41.  

 

Table I  shows the performance comparison (in terms 

of decoding threshold) between shortened code and 

conventional code in the case of infinite code length The 

mother code of   3 4R   is used in computing decoding 

threshold. The shortened code have   2 3R   and 

  1 2R   the structure of  3, 12 -regular LDPC code is 

utilized for the case of  GF 4  -  GF 16  whereas the 

results for  GF 64  is done over the structure of  2, 8 -

regular LDPC code. It is clearly seen from the table that 

decoding threshold of shortened code is the same as that 
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of conventional code for all cases. This means that the 

uniform shortening algorithm can provide excellent 

decoding performance for shortened LDPC code. This 

analysis can be used to confirm the correctness of the 

results previously reported in the case of short and 

medium code length. 

As shown in Table I, it is implied that, at the same 

code rate BER performance of rate-compatible LDPC 

code shortened by uniform shortening algorithm is the 

same as that of independently designed LDPC code. Note 

that other shortening algorithms such as [14], [19] cannot 

provide identical performance to independently designed 

LDPC code. Therefore, uniform shortening algorithm is 

the best known algorithm so far. 

 
Fig. 8.  The number of average iteration of shortened and conventional 

code over  GF 4  with   1 2R   used to achieve successful decoding. 

Although decoding thresholds of both shortened and 

conventional code but we demonstrate in Fig. 8 11-  that 

the convergent rates of Monte Carlo simulation of both 

codes are not the same. Noting that the convergent rate of 

Monte Carlo is the number of iteration used to achieve 

successful decoding, i.e., 510 .H   Figure 8 11-  shows 

that, the convergent rates of shortened code and 

conventional code are slightly different. For example, at 

  2 3R   and  GF 64  as shown in Fig. 10  shortened 

code uses about 80  iteration to achieve 510H   while 

conventional code uses about 75  iteration. 

 
Fig. 9.  The number of average iteration of shortened and conventional 

code over  GF 8  with   1 2R   used to achieve successful decoding. 

 
Fig. 10.  The number of average iteration of shortened and conventional 

code over  GF 16  with   2 3R   used to achieve successful decoding. 

 
Fig. 11.  The number of average iteration of shortened and conventional 

code over  GF 64  with   2 3R   used to achieve successful decoding. 

IV. CONCLUDSION 

The ultimate goal of this work is to analyze the 

performance of uniform shortening algorithm in the case 

very long code length. By using modify Monte Carlo 

simulation, it is found that uniform shortening algorithm 

is the best known shortening algorithm since the 

shortened LDPC code based on this algorithm can give 

the same decoding threshold comparing with 

independently designed LDPC code. Therefore, we can 

utilize uniform shortening algorithm to construct rate-

compatible LDPC codes which have excellent decoding 

performance at any coding rate. 
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