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Abstract—Multicast routing in communication networks 

consists of transmitting data from one (or more) sources to 

multiple destinations, while minimizing the use of network 

resources and taking into account multiple QoS (quality of 

service) parameters. In an effort to understand the benefits and 

drawbacks of existing methods, this state-of-the-art paperaims 

to provide a tutorial that is easy to follow for readers who are 

not already familiar with the subject, and make a comprehensive 

survey and comparisons of different techniques employed in or 

proposed for routing problem. 

 
Index Terms—Multicast routing, optimization problem, neural 

networks, QoS. 

 

I. INTRODUCTION 

In recent years multicast routing has become more and 

more popular, and has motivated several researchers, 

because of the progress in the area of multimedia 

communications, file sharing, interactive games, 

videoconferencing, on-demand video, radio and TV 

transmission... etc 

Multicast routing is the ability of transmitting 

simultaneously a message from one or more sources to a 

set of appropriate destinations in a communication 

network; It consists of determining an optimal diffusion 

of packets according to certain performance criteria. It 

deals with constructing paths with minimal consumption 

of resources (bandwidth, delay, cost...). 

This problem is known in graph theory as the Steiner 

tree problem, and has been shown to be NP-complete 

(non deterministic polynomial-time complete) ([1] and 

[2]). 

Several methods are proposed in the literature to solve 

the Steiner tree problem. [3] and [4] proposed exact 

algorithms to solve this problem, but they are not viable 

in very large networks, because of their high degree of 

computational complexity. Heuristic proposed in [5] is 

one of the famous methods used to solve this problem, 

because they construct a feasible solution within 

reasonable time. This method assumes that the source 

node can obtain topology information about the 

communication network through the routing protocol, but 

it suffers from some drawbacks such as failure on the 

central node, or high communication cost in keeping 

network information up-to-date, especially in large 
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networks. To overcome this, [6] and [7] proposed 

distributed algorithms for the routing problem, where 

each node operates based on its local routing information 

and the coordination with other nodes is done via network 

message passing. 

The QoS-constrained multicast routing problem 

include routing that guarantees the required quality of 

service (QoS), such as bandwidth requirement, delay 

constraint on transmitting information between a source 

node and each destination. Many metaheuristics are 

proposed in the literature to solve the QoS-constrained 

multicast routing problem: genetic algorithms ([8]-[10]), 

taboo search ([11]-[13]), ant colony optimization ([14]-

[16]), fuzzy-based algorithms ([17], [18]). 

To solve the multicast routing problem, neural 

networks are also proposed. They were first proposed in 

[19], by defining proper energy functions and deriving 

associated weights between neurons. In 1982, and after 

the proposition of the Hopfield neural network [20], 

many researchers have been exploring HHNs and 

improving their performance on different real time 

applications. [21] proposed a modification of HNNs to 

solve constrained multicast routing, but [22] 

demonstrated that they are not efficient in large networks. 

The multicast routing problem can be formulated as a 

single-objective problem (SOP) where only one generic 

cost function is considered ([5]-[8], [23]), or as a multi-

objective problem (MOP), where several objective 

functions may be optimized (minimized or maximized ) 

in conflicting situations ([24]-[27]). The proposed method 

to solve this problem, constructs an optimal multicast tree 

under several constraints, and don’t need any central node 

to keep information about the whole network. 

The present work is organized as follows: in the 

section 2, we will describe the mathematical modeling of 

a routing problem. In section 3, a description of the 

routing theory is given. We briefly present the quality of 

service in a communication network in section 4. Section 

5 is dedicated to presenting the different approaches 

proposed in the literature to solve the routing problem. 

Finally, in section 6 we give a conclusion. 

II. MATHEMATICAL MODELING OF THE ROUTING 

PROBLEM 

This section introduces the mathematicalmodeling of 

the routing problem, as well as all the related notions. 
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A. Physical Network 

A communication network is usually modeled by a 

graph. A graph consists of a set of vertices V and a set of 

edges E . An edge connecting vertex u  to vertex v  is 

represented by (u, v). The vertices of the graph represent 

the nodes of the network, and the edges represent the 

communication links between nodes. 

Links in communication networks have several 

properties that are represented by the weights associated 

with the corresponding edges in the graph. 

There are two types of communication links: 

symmetrical and asymmetrical links. Symmetrical links 

have the same weight in both directions, where 

asymmetrical links have different weights for different 

directions. If all the links in a communication network are 

symmetrical, then this network can be modeled by a non-

oriented graph. In this type of graphs, the direction of the 

link does not matter: a link between vertices u and v can 

be represented by (u, v) or (v, u) . Generally, 

communication networks are modeled by non-oriented 

graphs. In the rest of this work, the term "graph" will 

always refer to a non-oriented graph. 

We denote by G = (V, E)  the graph modeling the 

communication network, where V = {v1, v2, … , vN} 
represents the set of vertices and E is the set of edges:  

E ⊆ {(vi, vj)/vi ∈ V, vj ∈ V, where vi ≠ vj, 1 ≤ i ≤ N 

and 1 ≤ j ≤ N}. 
Nrepresents the number of nodes in the network. i.e. 

|V| = N. 

We denote by s  the source vertex, u  a destination 

vertex and U = {u1, u2, … , uN}  the set of destination 

nodes. M = s ∪ Uis the multicast group. 

The routing problem is known, in the graph theory, as 

the Steiner tree problem, and is defined as follows:  

 A non-oriented graph G = (V, E);  

 A cost function, which associates to each edge(u, v) a 

positive real number cuv;  

 A multicastgroup M ⊂ V.  

We attempt to get a tree T = (VT, ET) that covers the 

setM , such as the cost cT = ∑  (u,v)∈T cuv is minimized. 

This minimal tree is called the Steiner tree. 

Steiner’s problem is an NP-hard problem; however 

there are trivial cases where it can be solved in 

polynomial time: 

 |M| = 2 (unicast routing): there are only 2 nodes in 

the multicast group: the problem turns into the 

shortest path problem.  

 |M| = |V|  (broadcast routing): in this case, the 

multicast group includes all nodes in the network: the 

problem becomes a problem of minimal spanning tree.  

 Gis a tree: in this case, there is only one sub-tree that 

covers the multicast group. This sub-tree represents 

the solution of Steiner’s problem.  

A path in a graph is a finite sequence vertices 

v1, v2, . . . , vp  in the manner that for each 1 ≤ k ≤ p , 

{vk, vk+1} ∈ E  and vk ∈ V . A cycle is a path 

v1, v2, . . . , vp wherev1 = vp. 

A graph G is connected if for any two vertices vi and 

vjin V, there is a path whose endpoints are vi and vj. A 

spanning tree of a graph G is a connected, acyclic and 

spanning subgraph which is a tree. A multicast tree is a 

spanning subgraph of G that includes all the vertices of M. 

B. Adjacency Matrix and Decision Variables 

We assume that the graph has N  vertices given by 

V = {v1, v2, … , vN}. The adjacency matrix 

X = (xij)1≤i≤N
1≤j≤N

is a square boolean matrix defined by:  

 xij = {
1 if (vi, vj) ∈ E

0 otherwise  (1) 

The final solution is given by the matrix Y = (yij)1≤i≤N
1≤j≤N

 

defined as follows:  

 yij = {
1 if (vi, vj) ∈ T

0 otherwise           (2) 

Fig. 1 illustrates an example of a network, modeled by 

a graph G with 8 vertices, the source vertex is s = {8} and 

the set of destination vertices is U = {1,2,3,5}  .The 

multicast group is then: M = {1,2,3,5,8}.  

 
Fig. 1. A weighted graph G modeling a network with 8 nodes 
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The adjacency matrix associated to the graph of Fig.1 

is defined as follows:  

X =

(

 
 
 
 
 
 

0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1
1 0 0 0 0 1 0 1
1 1 0 1 1 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0

)

 
 
 
 
 
 

 

There is no exact algorithm that constructs a Steiner 

tree in a polynomial time; therefore it is necessary to 

develop approximate algorithms to solve this problem. 

Approximate algorithms for the Steiner tree problem 

can be performed in polynomial time and give "good" 

solutions (not necessarily optimal). Most of them are 

based on finding shortest paths to connect different 

components of the tree. 

III. THE ROUTING THEORY 

Depending on the number of destination nodes, there 

are four types of routing:  

 Unicast routing (one to one)  

 Anycast routing  

 Broadcast routing (one to all)  

 Multicast (one to many) 

A. Unicast Routing 

In a communication network, unicast routing (Fig.2 (a)) 

is used to switch messages between two entities. A source 

entity having data to be transmitted to a well-defined 

destination. 

 
Fig. 2. Different types of routing 

This communication can be direct, i.e. the destination 

is directly accessible from the source, and messages are 

then directly sent to this destination, or indirectly and 

performed in multi-hops. Unicast communication to an 

out-of-reach destination usually involves the research of a 

path from the source to the destination through other 

nodes in the network. A path is then constructed between 

these two entities.  

B. Anycat Routing 

Anycast routing (Fig.2 (b)) in a communication 

network consists of delivering a message to a single 

member of a network, usually the closest. Anycast is a 

routing technique that switches data to the "nearest" or 

"most efficient" server in line with the routing protocol.  

C. Broadcast Routing 

The broadcast/multicast routing was introduced by 

Deering in the early 90’s. He found that sending a single 

message from a source to each node requires a lot of 

resources (bandwidth). He then proposed the sending of a 

single message by the source, and its duplication during 

the routing [28]. Broadcast routing (Fig.2 (c)) refers to 

the ability of a communication network to deliver a single 

message simultaneously to all connected machines in the 

network.  

D. Multicast Routing 

1) Definitions 

Multicast routing (Fig.2 (d)) is the ability of a 

communication network to simultaneously deliver a 
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single message to multiple destinations, located in 

different geographical positions. One of the major 

challenges is to minimize the use of network resources 

used by multicast routing. 

A multicast group can be static or dynamic. Static 

groups cannot be changed once created, while in dynamic  

groups nodes can join in or leave out the group at any 

time [29]. 

Multicast groups can also be classified according to the 

relative number of participants [28]. In "sparse groups", 

the number of participants is small compared with the 

number of nodes in the network. In the other situation, in 

which most network nodes are participating in multicast 

communication, the groups involved are called 

"pervasive groups". 

Today, many applications require this type of routing, 

such as file sharing, interactive games and video 

conferencing. Multicast applications are becoming 

increasingly popular and greedy of resources, resulting a 

pressing need to develop more powerful tools to support 

these applications. 

In general, different multicast applications have 

different requirements, that is why multicast 

communications fall into two categories:  

 SSM (source-specific multicast): it is a form of a 

communication where only one node of the multicast 

group sends data, while others receive it.  

 ASM(any source multicast): (shared group): it is a 

type of multicast routing where each member of the 

multicast group can exchange (send or receive) data 

with other members of the group.  

2) Multicast routing algorithms 

Let G = (V, E) be an undirected graph where V is the 

set of vertices and E is the set of edges. Recall that if G is 

undirected, it models a communication network with 

symmetrical links. Let M  be the multicast group. The 

routing problem in communication networks is equivalent 

to finding a tree T in the graph G that spansM. The latter 

is called Steiner tree or multicast tree. 

Like multicast communications, multicast trees are 

also classified into two categories: source-based trees 

(corresponding to the source-specific multicast) and 

shared trees (corresponding to ASMs). 

In what follows, we will see the properties of a good 

multicast tree. 

For the majority of multicast applications, some 

properties are more significant compared with the others. 

For that, we divided these properties according to their 

priority level: high, medium and low.  

    • High priority level:   

a) Low Cost: the cost (or weight) of a multicast 

tree is the sum of the costs (or weights) of all edges in 

this tree. An optimal multicast tree has minimal cost.  

b) Minimum delay: the transmission delay from a 

source to a destination is the sum of all transmission 

delays of edges involved in this transmission. Optimal 

trees minimize transmission delays for each source-

destination couple in the multicast groups. 

c) Scalability: a good multicast tree is scalable in 

two ways. First, the construction of a multicast tree for 

large networks must be done in a reasonable time. Second, 

commutators in communication networks must be able to 

support large numbers of multicast trees simultaneously. 

    • Medium priority level:   

a) Supporting dynamic multicast groups: a good 

multicast tree should allow members to join in or leave 

out the tree without being affected. 

b) Survivability: a good multicast tree must survive 

without being affected by nodes or edges failure. 

    • Low priority level: 

Impartiality: a good multicast tree is impartial in two 

aspects. First, it attempts to provide a minimum quality of 

service (e.g. delay) to each member of the multicast 

group. (It is unfair to unnecessarily punish a member to 

improve the quality of service of other members of the 

group). It attempts to evenly distribute multicast effort 

(i.e. the packet duplication effort) between all 

participating nodes.  

IV. QUALITY OF SERVICE: QOS 

First, it is important to specify what the term "routing 

with quality of service" covers. Quality of Service (QoS) 

is the performance criteria that networks require to have 

in order to satisfy users’ needs. These performances 

correspond to different measurable parameters on the 

networks such as ([30]) : 

 End-to-end delay: time taken to transfer a packet 

between two nodes;  

 Jitter: variation of time interval between two packets 

during their routing between source and destination;  

 Bandwidth: total amount of information that a link 

between two nodes can absorb without creating a 

queue;  

 Packet loss rate: the number of packets lost compared 

to the number of packets delivered.  

Depending on the applications considered, the 

parameter to be taken into account differs: for example, 

looking for a path with a certain amount of bandwidth for 

video traffic or a path ensuring that the packets will be 

received by the destination in less than a certain period of 

time after they are delivered by the source. Any path 

satisfying a certain quantitative criterion can be qualified 

as a path ensuring a certain quality of service. On the 

other hand, each application has specific needs and only 

the application is aware of its needs. It is difficult to 

define overall service levels. Applications must be able to 

explicitly indicate, for example, the maximal delay that 

they can support.  

V. METHODS FOR SOLVING THE MULTICAST ROUTING 

PROBLEM IN COMMUNICATION NETWORKS 

A. Exact Algorithms 

The exact algorithm proposed by Chow [3] is based on 

the dynamic programming technique proposed by 

Dreyfus and Wagner [31]. 
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This technique starts with finding all optimal multicast 

trees for small subsets of D (D is the set of destination 

vertices). Next, it determines all optimal multicast trees 

for larger subsets ofD, by merging trees found previously. 

This algorithm has several drawbacks; the first one is 

that it only minimizes a single objective (cost) function 

without taking into consideration other constraints. The 

second is the high complexity in the worst case: in a 

network with 20 nodes, where 5 nodes represent the 

destination set, the algorithm must run 12,700 times [3]. 

This number increases exponentially with the size of the 

destination set. 

Actually, there is no algorithm constructing an exact 

minimal Steiner tree in polynomial time. However, 

several heuristics trying to reduce the complexity of this 

problem have been proposed. In the next section, we will 

present some heuristics to approach the optimal solution.  

B. Heuristics 

Several heuristics approaching the optimal solution of 

the problem of multicast routing in a reasonable time 

have been proposed in the literature. Many of these 

heuristics resume the basic ideas for building minimal 

spanning trees (whose complexity is easily controllable) 

or shortest paths between vertices to build a multicast tree 

relatively advantageous.  

1) KMB’s heuristic 

KMB’s heuristic, proposed by Kou, Markowsky and 

Berman [32] is a method that mimics the basic idea of 

Prim’s algorithm [33] for minimum spanning tree. This 

heuristic considers the complete graph G1 of de graph G 

which models the communication network. A complete 

graph is a simple undirected graph in which every pair of 

distinct vertices is connected by a unique edge. This edge 

represents the shortest path between these vertices. The 

steps of the algorithm are:   

1. Construct the complete graph G1  from the initial 

topologyG.  

2. Find the minimum spanning tree T1 of G1 (if more 

than one minimum spanning tree exists, choose one 

arbitrarily).  

3. Construct a subgraphGS of G by replacing each edge 

in T1  by the shortest path corresponding in G  (if more 

than one path exists, choose one arbitrarily).  

4. Find the minimum spanning tree TS of GS (if more 

than one minimum spanning tree exists, choose one 

arbitrarily).  

5. Construct the TH  multicast tree from TS , by 

removing, if necessary, edges from TS in the manner that 

all leaves are multicast nodes.  

2) Kompella’s heuristic 

The proposed method by Kompellaet al. [5] is one of 

the best known methods for solving this problem because 

it builds a feasible solution within a reasonable time. This 

algorithm assumes that the source has all the information 

concerning the communication network to build the 

multicast tree, and this via the routing protocol. The 

obtained multicast tree is a minimal cost tree, under delay 

constraint. 

In this method, authors look for the shortest paths 

connecting all pairs of vertices. Therefore, the transitive 

closure G′ of G  can be constructed. The next step is to 

build a tree that spans G′ . The authors use a greedy 

approach to add edges to the spanning tree until all 

destination vertices are included. 

This method builds a tree relatively advantageous 

within a reasonable time, but it has several drawbacks 

such as the failure of the central node of the network, or 

the necessary cost to update the network information, 

especially in large networks. 

To remedy this problem, distributed algorithms have 

been proposed for the multicast routing problem, where 

each node of the communication network acts based only 

on its local routing table, and coordination between the 

different nodes is provided via the routing protocol.  

C. Distributed Algorithms 

a) Bauer and Varma’s algorithms 

Bauer and Varma [6] proposed two distributed 

algorithms.The first one is a distributed implementation 

of the Takahashi and Matsuyama’s algorithm [34]. This 

construction is limited to the multicast group with the 

following steps listed below: 

 Initialization: initialize the tree by choosing an 

arbitrary vertex in the multicast group and then 

calculate distances between this vertex and al the 

other members of the group. 

 Reaching the last vertex in the group: add to the 

current tree the nearest vertex (using the shortest path 

between this vertex and the tree). Calculate distances 

between the remaining vertices and the resulting tree.  

The second method represents the distributed 

implementation of the algorithm proposed by Kruskal 

[35]. This version considers all members of the multicast 

group simultaneously. It proposes to initialize a forest (a 

set of trees) with the members of the group (each vertex 

initializes an isolated tree). This algorithm allows 

obtainingof a single spanning tree by successively 

connecting the isolated trees. In this algorithm, 

connections are made using the shortest paths:  

 Initialization: we consider each member of the group 

as an initial isolated tree.  

 Reaching the obtaining a single tree: calculate 

distances between trees and then connect the two 

nearest trees using the shortest path between them.  

The distributed version of this algorithm is similar to 

the centralized version. The trees of the initial forest are 

called components. At each iteration, each vertex of the 

graph is either a part of a component or is not yet 

included in the multicast tree. Each component has a 

leader which coordinates these activities. It executes the 

finite state machine represented by the Fig. 3. At each 

iteration, each component tries to join the nearest 

component and this is done in two steps:   
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Fig. 3.A Finite state machine of the Bauer and Varma’s distributed 
algorithm [6]  

1. Discovery: In this step, the leader vertex collects 

and updates information about the other components and 

vertices of the graph.  

2. The connection:In this step, the leader vertex 

communicates with the nearest component and requests a 

merge. If the request is accepted, one of the two leaders 

connects the two components.  

The cycle is repeated until the end of the algorithm 

regardless of the response to the merge request.  

The finite state machine: 

 "init" state: at the beginning of the algorithm, each 

multicast vertex is the leader of the component 

formed by itself, and knows beforehand the distance 

that separates it from all other components. At this 

point, the discovery step is not necessary. Thus this 

algorithm starts directly with the connection step.  

 The states "request, wait and connect": these states 

constitute the connection step. The leader sends a 

merge request to the nearest component and in this 

case we have three possible answers: accepted, 

rejected or busy.   

 Busy: a component leader sends this 

response when the request is made during 

the discovery step. After receiving this 

response, the component must re-request 

the merge.  

 Rejected: a vertex sends this answer if:   

 The component receives a 

connection request from another 

component;  

 The connection is not allowed;  

 It is no longer a leader of the 

component;  

 Accepted: This response is returned when 

the merge requests are mutual.  

The second algorithm is a special case of the first 

algorithm described above. The only difference is that 

each multicast vertex can play the role of source node, 

unlike the first algorithm when only the source 

component can connect the other components to itself.  

b) Jia’s algorithm 

Jia [7] presents another algorithm to solve the delay 

constrained routing problem. It assumes that the 

minimum cost path between two vertices is the minimum 

delay path, which is not always true. 

To facilitate the implementation, the algorithm uses a 

table to keep track of the following information regarding 

a destinationui:  

 The vertex is currently included in the tree or not;  

 The path cost separating ui from the tree;  

 The closest vertex to ui.  
The basic idea of this algorithm is practically the same 

as that of the Takahashi and Matsuyama’s algorithm [34], 

where in each iteration, the closest multicast vertex to the 

tree joins it (by using the shortest path between this 

vertex and the tree), and which respects the delay 

constraint. 

There are two important criteria for evaluating a 

distributed routing algorithm: the number of messages 

and the convergence time. 

In the worst case, the complexity of Jia’s algorithm is 

Θ(2m), where m is the number of destination vertices [7]. 

For the Bauer and Varma’s algorithm, the worst-case 

complexity is Θ(mn), where n is the size of the network.  

D. Metaheuristics 

Several meta-heuristics are proposed in the literature 

for the problem of constrained multicast routing problem. 

These meta-heuristics aim to approach a feasible solution 

in a reasonable time. Among these meta-heuristics, we 

can mention:  

 Genetic algorithms;  

 Taboo search;  

 Ant colony algorithms;  

 Neural networks;  

a) Genetic algorithms 

Genetic algorithms [36] are based on the principles of 

natural genetics and biological evolution. 

By defining an appropriate maximum number of 

iterations to the genetic algorithms, an approximation of 

the optimal solution can be obtained in a reasonable time. 

In these algorithms, candidate solutions are encoded as 

chromosomes. Furthermore, the idea of natural selection 

is applied, such as selection and mutation operations, to 

obtain better chromosomes. 

Genetic algorithms are typically implemented as 

follows:  

 Step 1: initialize a population of chromosomes 

(solutions);  

 Step 2: evaluating each chromosome in the 

population;  

 Step 3: create new chromosomes by crossing existing 

chromosomes, and applying the mutation principle;  

 Step 4: remove elements from the population which 

are replaced by new chromosomes;  

 Step 5: evaluate the new chromosomes to be inserted 

into the population;  

 Step 6: when a stopping criterion is satisfied, then 

terminate the algorithm and return the best 

chromosome, otherwise go back to step 3. 

The GAMRA algorithm 
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The 𝐺𝐴𝑀𝑅𝐴 genetic algorithm proposed by Hwang et 

al. [37] to solve the delay constrained routing problem 

starts by constructing acceptable delay paths and stores 

them in a routing table. 

For a source node 𝑠  and a set of destination nodes 

𝐷 = {𝑢1, 𝑢2, . . . , 𝑢𝑘}, a chromosome can be represented 

by a sequence of integers of length 𝑘. A gene 𝑔𝑖  of the 

chromosome, where 1 ≤ 𝑖 ≤ 𝑘  is an integer in 

{0,1, . . . , 𝑅 − 1}which represents a possible path between 

𝑠  and 𝑢𝑖  where 𝑢𝑖 ∈ 𝐷 , 𝑅  is the number of paths 

registered in the routing table of node 𝑢𝑖 . The relation 

between gene, chromosome and routing table is 

illustrated byFig. 4 

Fig. 4. Relation between gene, chromosome and routing table 

A chromosome represents a candidate solution for the 

multicast routing problem because it guarantees a path 

between the source and each destination vertex. 

Genetic algorithms initialize a population of 

chromosomes, each of them has a fitness value that 

defines the quality of the chromosome. The different 

steps are as follow:   

1. Initialization of the population: the first step is to 

randomly generate 𝑃 different chromosomes.  

2. Chromosome evaluation: the fitness value of a 

chromosome corresponds to the value of the objective 

function represented by this chromosome. This value is 

calculated as follows:  

𝐹(ℎ𝑖) = 1 −
𝐶(ℎ𝑖)

𝐶(𝐿)
                             (3) 

 where:  

        - ℎ𝑖: represents a chromosome;  

  - 𝐶(ℎ𝑖): represents the cost of the graph 

encoded by ℎ𝑖;  
  - 𝐶(𝐿): represents the total cost of the graph 

representing the initial topology.  

Then, the chromosomes will be sorted in descending 

order of their fitness values such as:  

𝐹(ℎ0) ≥ 𝐹(ℎ1) ≥. . . ≥ 𝐹(ℎ𝑃−1)                      (4) 

 The first chromosome represents the best found solution. 

3. Remove duplicated chromosomes:The application 

of genetic operations such as crossing, on 2 duplicated 

chromosomes will generate the same chromosome. 

Therefore, duplicated chromosomes will be replaced by 

new randomly generated chromosomes.  

4. Selection: for this process, a number of 

chromosomes of best fitness values in the current 

population will be selected.  

5. crossing: during this operation, two chromosomes 

of important fitness values exchange parts of their chains. 

The starting point and the length of the portion to be 

exchanged are randomly selected. Two new offspring are 

created and inserted into the population.  

6. Mutation: this process is a kind of change within a 

chromosome. In this approach, a bit of the chromosome 

chain is changed with a certain probability, defined as the 

mutation rate.  

The drawbacks of this approach are the time required 

to build the routing tables, and the standard crossover 

procedure, which gives a non-robust algorithm that 

converges slowly.  

Zhengyinget al. 

The genetic algorithm proposed in [8] adds the 

bandwidth constraint to the previous problem. 

In this approach, a chromosome represents a multicast 

tree. Before the population initialization step, a refining 

operation is envisaged. During this operation, the edges 

that have a lower bandwidth compared with the one 

required by the routing will be removed. Therefore the 

remaining edges in the refined graph must satisfy the 

bandwidth constraint. 

The authors use a depth-first search algorithm to 

construct random multicast trees, which will form the 

initial population. Trees thus built do not necessarily 

respect the delay constraint. 

The fitness function is defined as follows:  

f(T) =
α

∑  e∈Tcost(e)
∏  t∈D Φ(delay(PT(s, t)) − DDFC(t))(5) 

  

Φ(Z) = {
1 Z ≤ 0
0 Z > 0 

where:  
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 α : Apositive real coefficient;  

 Φ(Z): Apenalty function;  

 DDFC:Thedestination delay function constraint. This 

function assigns an upper bound of delay between the 

source and the destination t;  

 delay(PT(s, t)): The sum of the edge delays which 

constitute the path between the source s  and the 

destinationt.  
If the path satisfies the delay constraint (i.e. 

delay(PT(s, t)) ≤ DDFC(t)    ∀t ∈ D), the value of Φ is 1, 

otherwise is r(0 < r < 1). The value of rdetermines the 

degree of penalty. 

1. Selection: at this stage, optimal individuals are first 

chosen and directly copied into the next generation, then 

the other individuals are chosen according to a model. 

The probability spi of selection of the parent i is given 

by the following formula:  

     spi =
f(Ti)

∑  
NP
i=1

f(Ti)
                                   (6) 

2. Crossover: the Crossoverprocessisrepeated 𝑁𝑃 −
𝑁𝑏𝑒𝑠𝑡  times, where 𝑁𝑃  is the size of the population and 

𝑁𝑏𝑒𝑠𝑡  is the number of the best individuals that are 

directly included in the next generation. 

Duringthisprocess, two parent trees are selected to 

produce a childtree. Wechoose the commonedges in the 

two parent trees and copy themdirectly to the childtree. 

Thesesamecommonedgescanform, in some cases, 

separatesubtrees, to whichwecanaddotheredges to 

transformtheminto a multicast tree. 

When connecting separate subtrees, we first select two 

random subtrees and connectthem via the minimum cost 

or minimum delay path. If no parent satisfies the delay 

constraint, we choose the minimum delay. The new 

subtree thus constructed will be included in the next 

selection. Therefore, this selection process is repeated 

until the construction of a multicast tree is completed.  

3. Mutation: The mutation procedure chooses 

randomly, according to a probability 𝑝𝑚, a set of vertices, 

and splits the multicast tree in to subtrees by deleting all 

the edges that have one of the selected vertices as 

endpoints. Then, the sesubtrees are connected by 

minimum cost or minimum delay paths.  

Zhang et al. 
The approach proposed by Zhang et al. [38 ] combines 

genetic algorithms and simulated annealing. Simulated 

annealing is used here to avoid premature convergence of 

the genetic algorithm. 

The precedure of codingis the same as used in[8], but 

with a new initialization process of the population, which 

simulates the grafting process. This process is done in 2 

steps: 

    • Trunk creation: 

        (a) The source vertex 𝑠  joins the multicast tree 

and becomes the current vertex.  

        (b) Select a random edge 𝑒  connected to the 

current vertex.  

        (c) The other endpoint of edge 𝑒  joins the 

multicast tree and becomes the current vertex.  

        (d) Repeatsteps (2) - (3) until the current vertex 

becomes the destination vertex.  

    • Membrane connection 

        (a) Choose a random destination as the current 

vertex that is not yet included in the multicast tree.  

        (b) Select a random edge 𝑒  connected to the 

current vertex.  

        (c) The other endpoint of the edge 𝑒  joins the 

multicast tree and becomes the current vertex.  

        (d) If the current vertex is not included in the tree, 

repeat (2) - (3), otherwise go to (5)  

        (e) Repeat steps (1) - (4) until all destinations are 

included in the multicast tree.  

    • Selection: in this approach, a roulette selection 

method is adopted. The last chromosome of the 

population is used to save the best individuals of all 

generations, in order to ensure the convergence of the 

algorithm towards a global optimal solution.  

    • Crossover: the crossover steps are as follow:   

        (a) Save the common edges of parent trees. 

Several separate subtrees and isolated nodes are then 

obtained.  

        (b) Randomly add edges of the non-connected 

destinations to the source and then connect separate 

subtrees and nodes.  

        (c) Removeprotrudingnodes and edges.  

 Simulated annealing mutation: the mutation operation 

proposed in [38] is not the one commonly used in 

genetic algorithms as it uses simulated annealing. 

An approximate solution is accepted with a probability 

pm:  

pm = {
exp

−(fit−fit′)

t
    fit > 𝑓𝑖𝑡′

1    fit ≤ fit′ (7) 

where:   

        - fit: the fitness value of parent  

        - fit′: the fitness value of the son  

If  fit ≤ fit′ , i.e. the mutation-created son is better than 

the parent, it must be copied directly into the next 

generation. Otherwise, the offspring is accepted by the 

probability pm. 

The value of the probability pm  depends on the 

temperature  t. This temperature should be initialized by a 

relatively large value so that the approximate solutions 

are accepted with a high probability, and this will ensure 

the convergence of the algorithm.  

b) Taboo search 

Taboo search is a metaheuristic formulated for the first 

time by Glover in 1986 [39], which guide other heuristics 

in such a way that they explore various areas of the 

solution space. Thanks to this method we find a local 

minimum. 

At each iteration of the taboo search method, we start 

with the current solution. We explore its "neighborhood", 

and from this neighborhood, we select the best possible 
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solution that does not necessarily improve the current 

solution. This new solution becomes the current solution, 

which is referred to as a "movement". The 

"neighborhood" of the solution is defined as a part of the 

solution space that is accessible by applying an 

elementary transformation. These transformations can be 

defined in many ways depending on the specifics of the 

problem. 

Some problems arise when looking for the optimal 

solution in this way. Supposing that the current solution 

is a local optimum, the new solution thus obtained by the 

next move should be a little worse. The problem arises in 

the subsequent movement because we will fall back on 

the local optimum that we have just avoided. In next 

iterations, the search will alternate between these two 

solutions. This is why the heuristic must have memory: 

the mechanism is to prohibit (hence the name of taboo) to 

return to the last explored positions. The taboo search 

method "memorizes" the elementary transformations 

applied to a number of the previous movements and 

places them in a "taboo list". Movements that are the 

opposite of those already executed are prohibited. This 

prevents to return to a solution already used and to find 

oneself in a local optimum. 

TS-CST algorithm 

The TS − CST  algorithm is a taboo search heuristic 

proposed by Skorin-Kapov and Kos [40], for the delay-

constrained multicast routing problem. 

The authors propose to reduce the size of the graph 

before the implementation of the algorithm by using 

some standard rules, with a slight modification due to the 

additional delay constraint. First, we prune the graph of 

all the vertices that are not destinations (vertices of the set 

V\D) which are of degree 1, because they will surely not 

be included in the solution. On the other hand, it is 

observed that the edge adjacent to each vertex of 

destination which is of degree 1, will always be included 

in the multicast tree. 

Potential solutions are multicast trees represented by 

strings of |V\D|  bits, where each bit corresponds to a 

vertex in V\D. If a bit is equal to 1, it means that the 

corresponding vertex is not included in the tree. For 

vertices belonging to the tree, the corresponding bits are 

equal to 0. 

Potential solutions are multicast trees represented by 

|V\D| bits, where each bit corresponds to a vertex in V\D. 

If a bit equals 1, it means that the corresponding vertex is 

not included in the tree. For the vertices belonging to the 

tree, the corresponding bits are equal to 0. 

The evaluation of a potential solution starts by 

eliminating the vertices corresponding to the bits set to 1, 

starting from graph G as well as all the adjacent edges. 

The second step of the evaluation is to find a spanning 

tree with minimum cost, under delay constraint, of this 

modified graph. In this approach, the authors propose a 

modification of the Prim algorithm [33], to find a 

minimal cost spanning tree, where the delay between the 

source and each destination is less than Δ . Prim’s 

algorithm consists of growing the tree from the source, 

and then at each step adds a minimum weight edge 

adjacent to the tree under construction. The procedure 

ends when all vertices are included in the tree. To ensure 

that the delay constraint is respected, the construction of 

the tree begins with the source vertex. The procedure 

ends when all vertices are included in the tree. At each 

iteration of the TS − CST  algorithm, to explore a 

neighborhood, we calculate the cost of each minimal 

spanning tree, under delay constraint, found for each 

neighboring solution. 

As mentioned previously, the solutions that are similar 

to the current one are all that can be achieved by applying 

a basic transformation to the current solution. In this 

heuristic, we use a set of |V\D|  elementary 

transformations, where the nth transformation is defined 

as the modification of the value of the rank bit n, in the 

string that represents the current solution. According to 

this definition, the neighborhood of the current solution is 

the set of all bit strings that differ from the current one-bit 

solution chain. This basically means that in a "move", the 

new solution can only add or remove a multicast vertex 

from the previous solution. This procedure can be 

formulated as follows: if Xi−1 = x1
(i−1)

x2
(i−1)

. . . x|V\D|
(i−1)

 is a 

string of bits, where each xk, k = 1,2, . . . |V\D| represents 

the kth  vertex in all V\  D. If we apply an elementary 

transformation mn, n = 1,2, . . . |V\D|, to Xi−1, we get:  

 Xi = x1
(i)
x2
(i)
. . . x|V\D|

(i)
= mn(Xi−1) =

x1
(i−1)

x2
(i−1)

. . . xn−1
(i−1)

xn
(i−1)

xn+1
(i−1)

. . . x|V\D|
(i−1)

 (8) 

In ith  "movement", we choose the solution Xi  which 

has the minimal cost spanning tree, obtained by applying 

an elementary transformation on Xi−1, which is not in the 

taboo list. This solution is compared to the best solution 

found, and the best of both is maintained. The taboo list is 

updated after each move by adding the inverse of the 

elemental transformation applied to Xi−1  to get Xi  and 

eliminating the oldest member of the list. 

The initial configuration of the TS − CST algorithm is 

such that all bits are set to zero. This means that the 

multicast tree that matches the initial configuration 

includes all the vertices of the set V\D. In other words, all 

the vertices of the set V\D are multicast vertices. 

The choice of the number of iterations depends on the 

decision maker. Of course, a large number of iterations 

improves the quality of the solution obtained, but the 

execution time increases continuously with the number of 

vertices in the graph and with the value of the delay 

constraint.  

TSDLMRA algorithm 

In the TSDLMRA algorithm, proposed by Wang et al. 

[12],  a solution is encoded by a vector x, of |M| elements, 

where each element represents a path from the source s to 

a destination u ∈ D  of multicast tree, i.e x =
(p1, p2, . . . , pk)  with k = |M| , pi = p(s, ui) , ui ∈ U , 

1 ≤ i ≤ k. The initial solution T0  represents the tree of 
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the shortest paths. The best solution Tbest  is stored 

throughout the procedure, if T0  satisfies the delay 

constraint, the best solution Tbest is the initial solution T0, 

otherwise, Tbest  is the minimal delay tree built by the 

Dijkstra algorithm [41]. 

c) Ant colony algorithm 

The ant colony algorithms [42], [43] mimic the 

behavior of ant colonies in the real world. Without vision, 

ants can find the shortest path from the food source to 

their nests. During this time, they can be adapted to 

changing environment. Indeed, information is transmitted 

between ants through a substance called "pheromone". In 

the process of movement, an ant can not only leave the 

substance on the path over which it has passed, but also 

detect the existence and intensity of it, and move towards 

the direction where the intensity is high. As a result, the 

collective behavior of the ant colony indicates positive 

feedback from the information: more ants pass on a 

certain path, more likely that ants select this path to return 

later. Through the communication of information 

between ants, they make the optimal choice, thus 

reaching the goal of foraging. 

Concerning the application of ant colony algorithms to 

the constrained multicast routing problem, several 

methods are proposed in [44], [45], [46], [47], and [48]. 

The common feature of these algorithms is that we first 

look for the shortest paths that connect the source vertex 

to each destination vertex, these paths are then merged to 

build the multicast tree, and the pheromone is updated 

according to the optimal path. This process is repeated 

until the algorithm converges. Despite the advantages of 

being parallel and distributed, this embodiment is 

inefficient due to the repetitive operation. 

TGBACA algorithm 

To improve the efficiency of ant colony algorithms, 

Wang et al. [49] propose a construction of the TGBACA 

ant colony algorithm. This algorithm optimizes directly 

the multicast tree. 

This method search a minimal cost multicast tree under 

4 constraints: bandwidth, delay, packet loss rate, and 

delay jitter. 

In this approach, the communication network is 

modeled by a directed graph. the existence of an edge 

e = (u, v) implies the existence of the edge e′ = (v, u). 

Generally, C(e) ≠ C(e′) , D(e) ≠ D(e′) , L(e) ≠ L(e′) , 

and B(e) ≠ B(e′), where C, D, L, and B represent the cost, 

delay, packet loss rate, and bandwidth associated to each 

edge, respectively. 

In this algorithm the ant does not select a single 

destination, but it aims to find a tree containing all the 

vertices of destination. Each vertex in the subtree that 

each ant sought is susceptible to be the current vertex. 

The multicast tree T = (ET, VT)  is initialized by 

ET = NULL  and VT = {s}  where s  is the source vertex. 

We create a set of edges E′, initialized by E′ = {e(s, i)}, 

where e(s, i) is an edge belonging to the initial topology, 

and satisfying the following inequalities: B(e(s, i)) ≥ Bd, 

D(e(s, i)) ≤ Δd , 1 − (1 − L(e(s, i))) ≤ Ld  where Bd , Δd 

and Ld  represent respectively the bandwidth constraint, 

the delay constraint and the packet loss rate constraint. 

The probability of selecting an edge of the set E′ is 

given by the following formula: 

 Pi = {

[τi]
αλi]

β

∑  ej∈E′ [τi]
α[λi]

β
    if    ei ∈ E′

0                       otherwise
 (9) 

where ei  is the ith  edge of E , τi  is the intensity of the 

pheromone of ei , and λi  is a function associated to ei . 
λican be a function of cost, delay, or packet loss rate 

depending on the case. We choose λ
1

cos ti
, where cos ti is 

the cost associated to ei, α and β are parameters used to 

adjust the effect of the pheromone intensity as well as the 

function λi. 
Assuming that the edge e(i, j)  has been chosen, the 

following steps are followed:  

 Step 1: add the edge e(i, j) to the set of edges ET of T 

and add the vertex j to the set of vertices VT of T, ie 

ET = ET ∪ {e(i, j)}, VT = VT ∪ {j};  

 Step 2: modify the value of the delay D(PT(s, j)) of 

the path connecting the source vertex and the vertex j, 
ie D(PT(s, j)) = D(PT(s, i)) + D(e(i, j));  

 Step 3: change the value of the packet loss rate 

L(PT(s, j)) of the path connecting the source vertex 

and the vertex j , ie L(PT(s, j)) = 1 − (1 −
L(PT(s, i)))(1 − L(e(i, j)));  

 Step 4: modify the value of the bandwidth B(PT(s, j)) 
of the path connecting the source vertex and the 

vertex j, ie B(PT(s, j)) = min(B(PT(s, i)), B(e(i, j)));  

 Step 5: update the set E′ = E′ − E1 + E2 , where 

E1 = {e(k, j)\e(k, j) ∈ E′}  denotes the set of edges 

that have the vertex j as endpoint and belong to E′, 
and the set E2 = {e(j, k)\k ∉ VT, and B(e(j, k) ≥ Bd), 
D(PT(s, j)) + D(e(j, k)) ≤ Δd  and 1 − (1 −
L(PT(s, j))(1 − L(e(j, k))) ≤ Ld} designates the edges 

that have j  as endpoint and satisfy the quality of 

service constraints.  

The deletion of the edges belonging to E1 from the set 

E′  guarantees that the degree of the added vertices is 

equal to 1 and avoids the appearance of loops. 

E2guaranteed that adding edges will satisfy quality of 

service constraints. 

The authors propose the pheromone update formula as 

follows:  

                    τij = (1 − ρ). τij + ρ. Δτij              (10) 

where ρ  represents an evaporation parameter used to 

control the rate of pheromone evaporation, and ρ ∈ [0,1]; 

Δτij represents the pheromone increase on the edge e(i, j). 

The complexity of this algorithm is Θ(iter ×
(antnum × (|E| × |V| + |E|) + |E|))  where antnum  is 

the number of ants, iter the number of iterations, |E|the 

number of edges, and |V| the number of vertices in the 

initial graph. 
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NACOg algorithm 

The NACOg  algorithm, proposed by Yin et al.[15], 

looks for a minimal cost multicast tree, under delay and 

bandwidth constraints, in a directed graph. The authors 

first present a CTT  strategy (Constrained tree traversal 

strategy), which ensures that the found trees always 

respect constraints. This strategy puts in place appropriate 

mechanisms to avoid the production of a loop, which will 

prevent the construction of a feasible tree. There are two 

cases of loop generation: the auto-cross loop, which 

occurs when the current path reaches a vertex that was 

previously visited by the same routing procedure, and the 

inter-cross loop that occurs when the path current reaches 

a vertex that is contained in a previously built path. The 

NACOg  algorithm works with the CTT  strategy to 

generate a minimal cost multicast tree, and drive scalable 

computation to minimize the cost of transmission. Each 

ant in a colony adopts this strategy to ensure the 

feasibility of the resulting multicast tree. The quality of 

this tree in terms of transmission cost is improved 

through the evolutionary optimization process by the use 

of two factors: the τ  pheromone matrix and the η 

visibility matrix. 

E. Artificial Neural Networks for the Multicast Routing 

Problem 

Neural networks are also proposed to solve the 

problem of multicast routing, because of the important 

property of parallelism that they offer. Rauch and 

Winarske [19] proposed a modification of the neural 

networks for the travelling salesman problem to solve the 

routing problem. In 1982, Hopfield introduced Hopfield’s 

neural network [20], since then many researchers have 

explored 𝐻𝑁𝑁𝑠 (Hopfield Neural Networks): Pornavalai 

et al. [21] proposed modifying the 𝐻𝑁𝑁𝑠  to solve this 

constrained problem, but Gee and Prager [22] showed 

that they are not efficient for large networks. Nozawa [28] 

and Jain and Sharma [37] proposed a 𝐻𝑁𝑁𝑠 modification 

by adding other properties. Wang et al. [48] proposed 

transiently chaotic neural networks for this problem.  

a) Rauch and winarske 

Rauch and Winarske [19] propose a modification of 

the neural networks for the travelling salesman problem 

to solve the problem of routing. The authors took the case 

of a network that has nodes modeled by a square matrix 𝐶 

of order 16 ,where the coefficients 𝑐𝑖𝑗  represent the 

capacity (cost) between the nodes 𝑖  and 𝑗 . In this 

representation, it is assumed that each link has a capacity 

of 8 units, with maximum capacity. If 𝑐𝑖𝑗 = 0, it means 

that there is no direct link between 𝑖 and 𝑗. The topology 

of this network requires that communication between 2 

nodes  requires at  most 4. 

Suppose we want to find a multicast path between 

node 1 and node 13 that go accross at most by 4 edges. A 

candidate path is the path that goes accross the 1 − 4 −
9 − 16 − 13  nodes. In order to represent the 5 nodes, we 

use 5 vectors of dimensions 16: 𝑈1, 𝑈2, 𝑈3, 𝑈4  and 𝑈5 , 

where 𝑈1 has zeros everywhere except the element 1, 𝑈2 

has zeros everywhere except element 4, and so on up to 

the vector 𝑈5 which has zeros everywhere except element 

13. The neural network algorithm starts with a reasonable 

initialization of the five 𝑈 control vectors, then tries to 

converge to the final value of the control vectors, which 

corresponds to the five desired nodes.  

b) Pornavalai et al. 

Pornavalai et al. [21] proposed a modification of the 

Hopfiled neural networks to solve the delay constrained 

routing problem. The authors assume that a 

communication network is represented by a directed 

graph, where there is at most one arc connecting 2 

vertices. We associate 2 parameters to each arc: cost and 

delay. These parameters are previously known by the 

source before searching the multicast path. 

The Hopfield neural network is a discrete time 

recurrent neural network model, whose matrix of 

connections is symmetrical and has zeros on the diagonal, 

and where a single neuron is updated at each unit of time. 

The most used activation function between the input 𝑈𝑖 
and the output 𝑉𝑖  of each neuron in the network is the 

Sigmoid function:  

       𝑉𝑖 = 𝑔(𝑈𝑖) =
1

1+𝑒−𝜆𝑖.𝑈𝑖
                           (11) 

The neuron outputs will be transmitted to the input of 

other neurons through the matrix of connections 𝑇 =
[𝑇𝑖𝑗]. The 𝑈𝑖 input of a neuron is the weighted sum of all 

the data provided by the other neurons. The external input 

𝐼𝑖 represents the data provided by the user to the network. 

The dynamics of 𝑖𝑡ℎ neuron is defined by the following 

function:  

𝑑𝑈𝑖

𝑑𝑡
= −

𝑈𝑖

𝜏
+ ∑  𝑁

𝑗=1 𝑇𝑖𝑗𝑉𝑗 + 𝐼𝑖                   (12) 

If the gain of the amplifiers is relatively large, then (12) 

follows a gradient descent of the quadratic energy 

function:  

       𝐸 = −
1

2
∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑇𝑖𝑗𝑉𝑖𝑉𝑗 −∑  𝑛
𝑖=1 𝐼𝑖𝑉𝑖(13) 

From the equations (11) and (12), the dynamics of the 

𝑖𝑡ℎ neurone becomes:  

𝑑𝑈𝑖

𝑑𝑡
= −

𝑈𝑖

𝜏
−

∂𝐸

∂𝑉𝑖
                      (14) 

In this article, the authorsmodifiy in two steps the 

neural network proposed by Ali and Kamoun [50], which 

solves the unconstrained unicast routing problem. The 

first step is to add the delay constraint, and the second 

step is to turn the unicast problem into a multicast 

problem. 

In this article, the authors modifiy in two steps the 

neural network proposed by Ali and Kamoun [50], which 

solves the unconstrained unicast routing problem. The 

first step is to add the delay constraint, and the second 

step is to turn the unicast problem into a multicast 

problem. 
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The first step is done by adding the delay term to the 

energy function of the unconstrained model. In the 

second step, the energy function thus obtained is 

modified so that the Hopfield network minimizes the cost 

of the multicast tree and not unicast paths independently. 

We use 𝑛 matrices of dimensions 𝑛 × 𝑛, where 𝑛 is the 

size of the network. The 𝑞𝑡ℎ  matrix isused to find the 

unicast path to the destination 𝑞  under time constraint. 

Each neuron in the matrix is described by a double index: 

(𝑥, 𝑖), where 𝑥  and 𝑖  represent the row and the column 

respectively. The neuron in the line 𝑥 and the column 𝑖 
represents the link between the nodes 𝑥 and 𝑖. The cost 

term of the energy function corresponding to each 

destination 𝑚 of the set 𝐷 is defined as follows: the cost 

term of the energy function corresponding to each 

destination 𝑚 of the set 𝐷 is defined as follows:  

𝐸1
𝑚 = ∑  𝑛

𝑥=1 ∑  𝑛
𝑖=1𝑖≠𝑥 𝐶𝑥𝑖 . 𝑓𝑥𝑖

𝑚(𝑉). 𝑉𝑥𝑖
𝑚 (15) 

 𝑓𝑥𝑖
𝑚 =

1

1+∑  𝑛
𝑗=1𝑗≠𝑥,𝑗∈𝐷 ,𝑉𝑥𝑖

𝑗  (16) 

where 𝑉 = {𝑉𝑥𝑖
𝑘 : 𝑘 = 1,2, . . . , 𝑛, 𝑘 ≠ 𝑚, 𝑘 ∈ 𝐷}  

and  𝑉𝑥𝑖
𝑚 = 1 if the link between  x and i is included in 

the multicast tree of destination m and 𝑉𝑥𝑖
𝑚 = 0 otherwise. 

𝐶𝑥𝑖 = is the cost of the link between 𝑥 and 𝑖 
The term of energy function that forces the output of 

the neuron to 1 or 0 is defined as follows: 

 𝐸2
𝑚 = ∑  𝑛

𝑥=1 ∑  𝑛
𝑖=1𝑖≠𝑥 𝑉𝑥𝑖

𝑚(1 − 𝑉𝑥𝑖
𝑚) (17) 

The term of energy function that ensures that each 

matrix finds a full and continuous path from the source to 

a destination is defined as follows:  

𝐸3
𝑚 = (1 − 𝑉𝑚𝑠

𝑚) + ∑  𝑛
𝑥=1 {∑  𝑛

𝑖=1𝑖≠𝑥 𝑉𝑥𝑖
𝑚 −∑  𝑛

𝑖=1𝑖≠𝑥 𝑉𝑖𝑥
𝑚}2

 (17) 

The term of energy function that penalizes neurons 

respresenting non-existing links in the network is defined 

as follows:  

 𝐸4
𝑚 = ∑  𝑛

𝑥=1 ∑  𝑛
𝑖=1,𝑖≠𝑥,(𝑥,𝑖)≠(𝑚,𝑠) 𝑃𝑥𝑖𝑉𝑥𝑖

𝑚(18) 

where 𝑃𝑥𝑖 = 1  if the link between x and i is non −

existing in the network and 𝑃𝑥𝑖 = 0 otherwise.  
The delay constraint is expressed by the following 

inequality:  

 ∑  𝑛
𝑥=1 ∑  𝑛

𝑖=1,𝑖≠𝑥,(𝑥,𝑖)≠(𝑚,𝑠) 𝐿𝑥𝑖𝑉𝑥𝑖
𝑚 ≤ Δ     (19) 

where:  

𝐿𝑥𝑖 = the delay of link between 𝑥 and 𝑖 
To transform the inequality of delay constraint into 

equality, we use a neuron that has as function of transfer:  

 ℎ(𝑧) = {
0    𝑖𝑓:  𝑧 ≤ 0

𝑧 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20) 

where  

 𝑧 = ∑  𝑛
𝑥=1 ∑  𝑛

𝑖=1𝑖≠𝑥(𝑥,𝑖)≠(𝑚,𝑠) 𝐿𝑥𝑖𝑉𝑥𝑖
𝑚 − Δ          (21) 

This neuron contributes positively only if the delay 

constraint is violated. 

The term of energy function relative to the delay 

constraint can be defined as follows:  

                        𝐸5,𝐿𝑃
𝑚 = 𝐻(𝑧)                                (22) 

where:  

                      𝐻(𝑧) = ∫  ℎ(𝑧)d𝑧                       (23) 

The total energy function for the delay-constrained 

multicast routing problem is defined as follows:  

                       𝑧 = ∑  𝑛
𝑚=1𝑚∈𝐷 𝐸𝑚                                              (24) 

where 𝐸𝑚 is the energy function of matrix 𝑚, used to find 

the unicast path connecting source 𝑠 to destination 𝑚 and 

is defined by:  

 𝐸𝑚 = 𝐸1
𝑚 + 𝐸2

𝑚 + 𝐸3
𝑚 + 𝐸4

𝑚 + 𝐸5,𝐿𝑃
𝑚              (25) 

𝐸𝑚 =
𝜇1

2
∑  𝑛
𝑥=1 ∑  𝑛

𝑖=1𝑖≠𝑥(𝑥,𝑖)≠(𝑚,𝑠) 𝐶𝑥𝑖 . 𝑓𝑥𝑖
𝑚(𝑉). 𝑉𝑥𝑖

𝑚

+
𝜇2

2
∑  𝑛
𝑥=1 ∑  𝑛

𝑖=1𝑖≠𝑥 𝑉𝑥𝑖
𝑚(1 − 𝑉𝑥𝑖

𝑚)

+
𝜇3

2
(1 − 𝑉𝑚𝑠

𝑚)

+
𝜇4

2
∑  𝑛
𝑥=1 {∑  𝑛

𝑖=1𝑖≠𝑥 𝑉𝑥𝑖
𝑚 − ∑  𝑛

𝑖=1𝑖≠𝑥 𝑉𝑖𝑥
𝑚}2

+
𝜇5

2
∑  𝑛
𝑥=1 ∑  𝑛

𝑖=1,𝑖≠𝑥,(𝑥,𝑖)≠(𝑚,𝑠) 𝑃𝑥𝑖𝑉𝑥𝑖
𝑚 +

𝜇6

2
𝐻(𝑧)

(26) 

where 𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, and 𝜇6 are coefficients used to 

specify and control the meaning of each term in the 

energy function. 

From the equation (13), the evolution of the input 

voltage of 𝑈𝑥𝑖
𝑚 is given by:  

 
𝑑𝑈𝑥𝑖

𝑚

𝑑𝑡
= −

𝑈𝑥𝑖
𝑚

𝜏
−
∂𝐸𝑚

∂𝑉𝑥𝑖
𝑚                            (27) 

Replacing (26) in (27) gives the dynamic of the neural 

network: 

𝑑𝑈𝑥𝑖
𝑚

𝑑𝑡
= −

𝑈𝑥𝑖
𝑚

𝜏
−
𝜇1

2
𝐶𝑥𝑖 . 𝑓𝑥𝑖

𝑚(𝑉). (1 − 𝛿𝑥𝑚𝛿𝑖𝑠)

−
𝜇2

2
(1 − 2𝑉𝑥𝑖

𝑚) +
𝜇3

2
𝛿𝑥𝑚𝛿𝑖𝑠

−𝜇4∑  𝑛
𝑦=1𝑦≠𝑥 (𝑉𝑥𝑦

𝑚 − 𝑉𝑦𝑥
𝑚) + 𝜇4∑  𝑛

𝑦=1𝑦≠𝑖 (𝑉𝑖𝑦
𝑚 − 𝑉𝑦𝑖

𝑚)
𝜇5

2
𝑃𝑥𝑖(1 − 𝛿𝑥𝑚𝛿𝑖𝑠)

+
𝜇6

2
𝐿𝑥𝑖(1 − 𝛿𝑥𝑚𝛿𝑖𝑠)ℎ(𝑧)

(28) 

where:  

 𝑉𝑥𝑖
𝑚 = 𝑔𝑥𝑖

𝑚(𝑈𝑥𝑖
𝑚 =) =

1

1+𝑒
−𝜆𝑥𝑖
𝑚.𝑈𝑥𝑖

𝑚 (29) 

 𝛿𝑎𝑏 = {
1    𝑖𝑓:  𝑎 = 𝑏

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (30) 

The simulations have shown that the proposed neural 

networks, compared with other methods, generate 

solutions in the the neighborhood of optimal solutions, 

but Gee and Prager [22] have shown that they are not 

efficient for large networks. . 

F. Optimization of the Multicast Routing Problem 

As mentioned previously, the multicast routing 

problem is an optimization problem. In most of the 

methods proposed in the literature, this problem is 

formulated as a single objective optimization problem 
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(𝑆𝑂𝑃), where a single objective function is considered 

([5] ,[6] ,[7], [37] and [23]). recently, this problem has 

been dealt with in a multi-objective context (𝑀𝑂𝑃 ), 

where several objective functions can be optimized 

(minimized or maximized) simultaneously ([24]-[27]). 

Table I compares several approaches of resolution, 

objective functions considered and constraint. 

TABLE I: COMPARATIVE TABLE OF SEVERAL APPROACHES TO SOLVING THE MULTICAST ROUTING PROBLEM 

 

VI. CONCLUSIONS 

The main objective of this article was to expose the 

various approaches to solving the problem of multicast 

routing in communication networks proposed in the 

literature. For this, we first saw the mathematical 

modeling of this problem, we then briefly described the 

theory of routing, introducing the 4 types of routing: 

unicast, anycast, broadcast and the type of routing traited 

in this document which is the multicast routing. 

For this type of routing, different resolution 

approaches are adopted. The exact algorithms give an 

exact construction of the routing tree, but have many 

disadvantages, including high complexity in the worst 

case. To remedy this problem, several heuristics have 

been proposed. We have emphasized that a multicast 

routing problem is an optimization problem, where one 

(or more) objective function (s) must be optimized, under 

several constraints. 
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