
Secure End-to-End VoIP System Based on Ethereum

Blockchain

Elie F. Kfoury

and David J. Khoury

Computer Science Department, American University of Science and Technology, Lebanon

Email: {ekfoury, dkhoury}@aust.edu.lb

Abstract—Blockchain is an emergent peer-to-peer technology

that enables network decentralization and ensures availability

by eliminating single points of failures. Furthermore, it provides

data immutability by relying on consensus algorithms and

protocols among peers to solve the trust concerns. In this article

we provide a decentralized Blockchain-based keystore that

holds the cryptographic public keys of users. This method

eliminates the traditional mechanisms of distributing the public

keys using central authorities (Certificate Authority). In a Voice

over IP (VoIP) application, a caller can retrieve the public key

of the callee from the Blockchain, and ensure the authenticity of

the retrieved public key. Thus, the VoIP security complexity

and intricacy are simplified on both signaling and media levels.

Results of this solution implementation show that the call setup

time is slightly affected compared to the existing secure VoIP

solutions.

Index Terms—Blockchain, VoIP, Security, Ethereum, trust,

decentralized, keystore, certificates.

I. INTRODUCTION

Voice over IP (VoIP) is a widespread technology used

continuously by a huge number of end-users and

corporates to deliver voice communications and media

sessions over the IP protocol. Ensuring security and

privacy in applications based on VoIP is vital since

intercepting a multimedia session can result in

eavesdropping the whole conversation by unintended

parties and hence, violating users’ privacies. In the last

few years, several incidents related to VoIP attacks and

breaches have occurred. For instance, VoIPTalk, a VoIP

provider offering multimedia communication over the

Internet, emailed its customers about a potential security

breach involving Session Initiation Protocol (SIP)

credentials after detecting external online attempts to

exploit vulnerabilities in their infrastructure [1].

Security in VoIP applications appears to be a hassle

especially in session key management. End-to-End

encryption between end-users is critical as it forbids

malicious parties and VoIP providers to listen to the

media stream. Different schemes for key distribution

exist but most of them require the use of a trusted third

party that issues server and/or client certificates.

On the other hand, Blockchain is an emerging

technology that provides decentralized network with no

single point of failure and ensures data immutability

through cryptographic functions and consensus

Manuscript received February 12, 2018; revised July 4, 2018.

doi:10.12720/jcm.13.8.450-455

algorithms and protocols. The Ethereum Blockchain is an

open-source, public, distributed computing platform

featuring smart contract (scripting) functionality [2]. The

scripting functionality enables developers to write

systems over the Blockchain and thus, benefit from the

nature of distribution inherited from the Blockchain

technology.

The objective of this article is to create a novel

approach for trustless key distribution management based

on the Ethereum Blockchain to resolve the complexity of

SIP security and the third party trust issues. The main

contributions of this paper include: 1) Elimination of the

public key infrastructure (PKI) and the Certificate

Authority (CA), 2) Implementation of a generic

handshake protocol for the PSK (Pre-shared Key) based

security protocols (TLS-PSK, DTLS…) 3) Simplifying

end-users wallet management functions, 4) Providing

E2E multimedia (voice and video) encryption.

The paper starts with an introduction on Blockchain

technology and VoIP systems. Section II describes the

security contemporary security measures used against

VoIP systems. Section III presents our proposed system

to provide VoIP security based on Blockchain. Section IV

discusses the implementation of the system and the

results. We conclude the paper with the intended future

work.

II. BACKGROUND ON VOIP AND SECURITY

VoIP security has been practiced for years by major

carrier networks and researchers. Like any other system,

the goal is to ensure the classical objectives of

information security: Authentication, confidentiality,

integrity, and availability. VoIP protocols are divided into

two main categories: 1) Session control protocols (SIP,

H.323…) and 2) Media control protocols (RTP, RTCP…).

Session control involves establishing and managing the

session by negotiating the call parameters such as the

available codecs, client’s capabilities, encryption key, and

others. Media control protocols are used to transfer audio

and video streams between the end-users by carrying the

media payload encoded by a pre-negotiated codec.

Attacks on VoIP systems can target both protocols.

We list hereafter the basic SIP threats targeting the

classical information security pillars mentioned earlier

and the security mechanisms that are commonly deployed

against these threats.

1) Call/Session hijacking and impersonation

Journal of Communications Vol. 13, No. 8, August 2018

450©2018 Journal of Communications

HTTP Digest mechanism defined in RFC 2617 [3] is

used between users to proxies and users to users. This

method is used to mitigate against call and registration

hijacking and impersonation threats. It provides a way for

a server or a UA (User Agent) to challenge other UAs or

servers for authentication. When the server receives a

request from the client, it generates a nonce value and

sends it along with a realm to the client as a challenge.

The client computes the response by hashing the nonce,

username, password, and the realm and then sends it to

the server. Finally, the server computes the same hash

and compares it with the received response. The main

drawback of this mechanism is the risk of having the SIP

client credentials stolen, which can result in allowing the

attacker to impersonate users without any proves that the

legitimate client is actually using these credentials.

2) Eavesdropping on SIP signaling

A malicious party can track and record whom a user is

communicating with by observing the SIP messages. The

following mechanisms are used to mitigate against this

threat:

a) Encryption at IP layer (IPSec): IPsec [4] can be

established between two internet hosts and performed at

the operating system. It is difficult for an application like

SIP to know if IPsec is in place.

b) Transport Layer Security (TLS): SIP can utilize TLS

to encrypt signaling messages as encryption on the

transport layer masks application layer data. TLS

provides only a single hop of confidentiality and

authentication between UA and a proxy server; hence,

end to end confidentiality is not fulfilled if one of the

hops is not TLS protected. The main problem with TLS is

the requirement of certificates and single hop encryption.

Typically, there is more than one hop between two

communicating UAs.

c) End to end confidentiality using S/MIME: Using

S/MIME [5] protects only the Session Description

Protocol (SDP) [6] part of the SIP message because the

Header part should be sent in clear to be able for proxy

server to route the message to the right destination.

S/MIME allows UAs to encrypt SDP bodies within SIP

and secure bodies without affecting the message header.

3) Eavesdropping on media

Malicious parties can track and monitor a media

conversation between end users. Secure Real Time

Protocol (SRTP) [7] is used to secure the RTP media

streams and hence, mitigate this threat. The main

limitation in this method is the requirement of a master

session key distribution mechanism. SIP can help to

establish a secure media session by exchanging the

master key through the SDP part of the SIP messages.

Multimedia Internet Keying (MIKEY) uses the SDP field

for transporting a media key which can be carried in SDP

in a=key-mgt-attributes. ZRTP is another protocol for

media session exchange by using RTP’s header extension

mechanism.

4) Denial of service

Attacks against availability target service interruption.

Examples of these threats are intentional call flooding,

misuse attacks (invalid registration, call request, call

control), and unintentional attacks (DNS, call billing…).

Mitigating DOS attacks is not tackled in this paper as it

can be achieved by deploying Anti-DDoS and Intrusion

Prevention Systems (IPS).

As a conclusion, the ultimate security of VoIP based

on SIP is not achieved by securing a single protocol. It

involves securing a complete system and relies on several

standardized encryption protocols including TLS, IPsec,

and S/MIME for SIP signaling encryption, SRTP for RTP

media encryption, and requires a PKI infrastructure and

trusted certificates authorities. Authentication based on

HTTP DIGEST is only good for authenticating to the first

hop. SIP identity needs improvement through certificates

and credentials. TLS protocol assures the transport

security Hop-by-hop and S/MIME Suffers from the same

key distribution issue as the TLS.

III. PROPOSED SYSTEM

The main problem with the aforementioned security

mechanisms is the requirement of having a Public Key

Infrastructure (PKI) to ensure rigid security. Therefore,

certificates are mandatory to verify the authenticity of the

client and the server. In our solution, we intend to

eliminate the usage of the PKI by relying on the

Blockchain network to store and manage the subscribers’

public keys. Fig. 1 below illustrates overview architecture

and the interfaces of the system.

Fig. 1. System architecture and interfaces

A. System Components

We describe hereby briefly on high level the main

interfaces of the system:

The user downloads the mobile application from the

Google Play store into an Android operating system (1).

The application includes an interface to the Ethereum

Blockchain network (3). The application generates an

empty Ethereum wallet and requests Ether from the

wallet management function in the server (2). After the

successful transfer of Ether, the mobile app generates and

stores a key pair in the protected Android keystore.

Moreover, it stores the public key in the Blockchain

through the smart contract (3) then requests approval

from the wallet management server (2). The server

validates the request transaction by contacting the Google

Journal of Communications Vol. 13, No. 8, August 2018

451©2018 Journal of Communications

Play service to verify the authenticity of the app

(described later in more details) (4). If the request is

authentic, the wallet management approves the storing

transaction in the Blockchain (5). It should be mentioned

that this solution does not affect in any means the VoIP

architecture based on SIP. A new interface between the

wallet management and SIP server is defined to automate

the SIP credentials configuration (6).

The main components involved in this system are: 1)

Mobile application, 2) Wallet management server and 3)

Ethereum smart contract.

1) Mobile application (VoIP Client)

The mobile app comprises the following components:

a standard SIP client, a light Ethereum client that uses the

Light Ethereum Subprotocol (LES) [8] to interface the

Blockchain, and a dedicated module to interwork with the

wallet management function in the server. The sequence

of events that take place after the installation of the

application on the phone is depicted in Fig. 2.

Start

First Run?

Request Ether

Secure SIP
Registration

Generate Key pair
(Ex. RSA 2048)

Store in
protected
Keystore

Yes

Generate
Ether Wallet

Store Phone Num + RSA
PuK in Ethereum

No

User SIP
Configuration

End

Approved
Transfer

Exit

No

Yes

Fig. 2. Mobile application flowchart

The application generates an empty Ethereum wallet

on its first launch, and prompts the user to fill it with

sufficient Ether to be able to store the key in the

Blockchain network. The transfer of Ether to the client is

mandatory as storing data or changing the state of a

contract in the Blockchain requires transaction fees which

are priced in Ether. To simplify this process for end-users,

the application provides an in-app purchase dialog that

prompts the user to pay for the Ether transfer in fiat

currency. After the purchase is complete, the mobile

application sends the newly generated wallet address, the

purchase receipt, and the mobile phone number to the

wallet management as an encrypted payload (interface 2

in Fig. 1). The encryption protocol used is described later

in the Generic handshake protocol section (Section C).

The application then generates the subscriber key pair

and stores it in the protected Android keystore.

The wallet management validates the request and

transfers sufficient Ether to the client. The validation

process is described next in the wallet management

function section (Section 3).

Upon successful transfer, the client stores its public

key in the smart contract along with the receipt token and

the subscriber number. More on validating the storage

transaction in the Blockchain is explained next in the

smart contract section (Section 2).

2) Smart contract

A smart contract is an account holding object that

contains distributed code executed by the Ethereum

Blockchain autonomously. Any user owning a wallet

with sufficient Ether can deploy a smart contract to the

Blockchain by sending it as a signed transaction. The

contract code is written in Solidity [9], a high-level

language with syntax similar to JavaScript designed to be

used with the Ethereum Virtual Machine (EVM).

In our system, we developed a smart contract that

holds the public keys of the subscribers by using a

mapping data structure indexed by the receipt tokens. Fig.

3 illustrates the smart contract main functionalities:

a) addClient(phoneNumber, publicKey, Receipt): Any

user can call the function addClient and insert a new

record containing its public key in the Blockchain.

However, this is vulnerable to identity theft: a malicious

user might register the phone number and impersonate

another user. To solve this, we created two mappings in

the smart contract: pendingList, approvedList. The

pendingList is a mapping that contains any client that

calls the addClient function. In order to get approved, the

wallet management must copy the entry from pending to

the approved list (described next in the wallet

management section (3)).

b) approveClient(phoneNumber, Receipt): Approves

the client by moving the entry from the pending list to the

approved list. Only the contract creator, which is

typically the wallet management, has the right to approve

subscribers.

c) getClient(phoneNumber): A function that accepts

the phone number of the destination address and returns

the public key.

Fig. 3. Smart contract functionalities

3) Wallet management function

The main functionalities of the wallet management are:

a) Ether Transfer: When the wallet management receives

the encrypted payload mentioned earlier in the VoIP

Client section, it retrieves the receipt token which is

signed by Google Play’s application private key. The

server verifies the receipt by decrypting the token using

the application’s public key. The aim of this verification

Journal of Communications Vol. 13, No. 8, August 2018

452©2018 Journal of Communications

is to make sure that the client requesting Ether has paid

for the transfer fees. If the verification is successful, the

server transfers Ether from its own wallet to the address

extracted from the payload through its Ethereum client.

b) Storage transaction approval: After the mobile

client receives the amount of Ether and stores the data in

the smart contract, it contacts the wallet management

requesting the storage approval by sending securely the

receipt token. This is mandatory as the storage in the

Blockchain network can be done by any user without any

control. It is worth mentioning that a malicious user

cannot overwrite a stored record even if the stored token

is compromised. Furthermore, since the wallet

management is the contract deployer, it can move the

entry indexed by the receipt token from the pendingList

to the approvedList.

c) SIP Credentials Configuration: Another important

role of the wallet management is the storage of the SIP

credentials (username and password) in the VoIP

provider’s database. The username is the subscriber’s

phone number, and the password is the hash of the receipt

token. Hence, there is a need for an interface between the

wallet management function and the SIP database as

shown in Fig. 4.

Fig. 4. SIP Database interfaces

B. Light Client Security

Considering that this platform will mainly be used on

mobile devices, it is impractical or nearly impossible to

download the whole Blockchain data to the phone as the

size is continuously growing (~380 GB Dec. 2017). As a

result, the light client is developed to enable building

Ethereum nodes that run on all computers and laptops

large and small, smart phones, and even internet of things

devices [10]. The size of the lightchain data by the time

of writing (Dec. 2017) is 0.005GB, which is affordable

on a mobile device. It is worth noting that this lightchain

data will be downloaded once only on the mobile for all

Ethereum decentralized apps.

The main building block of the light client is the

Merkle Tree [11]. It is a tree data structure that allows

efficient and secure verification of the contents. To query

the Blockchain, the client sends a request to light client

servers. The server simply finds the object, fetches the

Merkle branch (the list of hashes going up from the

object to the tree root) and replies back to the light client

with the branch.

Fig. 5. Merkle tree (Source: Wikipedia)

Due to the usage of Merkle trees, a client can get a

secure assurance about the state of a smart contract in

logarithmic complexity.

C. Generic Handshake Protocol for the PSK (Pre-

shared Key) Based Security Protocols

An important contribution of this platform (smart

contract in Ethereum) is the elimination of the Public Key

Infrastructure (PKI) and the Certificate Authority (CA),

and the implementation of a generic handshake protocol

for the PSK (Pre-shared Key) based security protocol like

TLS-PSK, DTLS-PSK, SRTP, etc…

Fig. 6. Generic handshake protocol for the PSK

This out of band generic protocol is responsible for the

distribution of the PSK key between two entities.

This protocol implements the Needham–Schroeder

method [12] to distribute the Session key using

asymmetric encryption.

1) The originator A requests the public key of the

responder B from the smart contract in the

Blockchain.

2) A encrypts with the public key of B Pub, a randomly

generated nonce (N1) which is used to identify this

transaction uniquely, and the Identifier of A (IDA)

3) B requests A’s public key Pua from the Blockchain.

4) B sends A’s nonce (N1) and a new nonce generated

by B (N2) encrypted with Pua. This nonce (N1) helps

A ensure that the correspondent is B as only B can

decrypt the message.

Journal of Communications Vol. 13, No. 8, August 2018

453©2018 Journal of Communications

5) A returns (N2), encrypted using B’s public key, to

assure B that its correspondent is A.

6) A encrypts with Pra a generated secret key Ks and

then encrypts the whole message along with (N2)

with Pub

7) B decrypts with Pua and Prb to retrieve the secret key.

D. End to End secure VoIP System

The end to end security proposed in this paper does not

affect the standard building blocks of a VoIP system

based on SIP. But it describes a new security mechanism

that is not related in any means to the existing solutions

described previously. The security solution instead relies

on the Ethereum Blockchain to hold the public keys of all

subscribers. These keys will be used to produce session

keys that secure the SIP control signaling between SIP

clients and servers, and the media between two SIP

clients. Hence we divide this section into two parts:

1) Establishment of a secure channel between

VoIP client and SIP Server:

The SIP messages (requests and responses) are secured

using TLS-PSK. The key is distributed using the generic

handshake protocol for the PSK-based security protocols

described in section C. After the establishment of the

TLS session, the client securely sends a SIP Register

message containing the credentials and registers to the

server. All further SIP messages for setting up the call are

sent encrypted. This method ensures authentication of the

end client even if the SIP credentials are compromised.

Hence, it mitigates against the SIP credentials theft

discussed in the introduction.

2) Secure peer to peer call setup:

Once the communication channel between the SIP

client and the SIP server is secured, end-to-end

encryption between endpoints can be set. The VoIP client

fetches the public key of the callee from the Ethereum

Blockchain and consequently generates a random session

key to be used as a master key in SRTP protocol in order

to encrypt the RTP voice packets between two endpoints.

The master key is encrypted using the destination’s

public key, and then sent using the MIKEY protocol

through the SDP part of the SIP invite as depicted in Fig.

7.

Fig. 7. End-to-End media security

Upon reception, the master key is decrypted using the

private key, and then is passed to SRTP to be used as the

session’s master key.

Another alternative is to distribute the key using

Station-to-Station (STS) [13] key agreement scheme as

demonstrated in Fig 8. The main advantage of this

approach is the usage of Diffie-Hellman as the key

exchange (ensure Perfect Forward Secrecy).

Fig. 8. STS End-to-End media security through RTCP

Since the STS protocol requires interaction between

the endpoints to distribute and to authenticate the key,

RTP Control Protocol (RTCP) [14] is used.

IV. RESULTS AND SIMULATION

To validate the proposed system, we implemented the

solution using the following components: a) Kamailio: an

Open Source SIP Server [15], b) RTPProxy: a high-

performance media proxy for RTP streams, c) Geth Light

Client (Ethdroid) [16]: Easy-to-use Ethereum Geth

wrapper for Android, d) Solidity: Contract-oriented

programming language for writing smart contracts, e)

NodeJS: Server side scripting (Wallet management

server), f) SIPDroid as the Android SIP client [17]. Fig. 9

demonstrates a SIP Invite message in which master key k

is sent encrypted through the SDP payload.

Fig. 9. SIP Invite with SDP Payload showing encrypted k

Table I shows the time taken to setup a call when

sending the key in the SDP part of the SIP message.

Storing the public key in the Ethereum Testnet

Blockchain took 11.5 seconds to be validated. This time

is only spent once upon configuration. Retrieving the

Journal of Communications Vol. 13, No. 8, August 2018

454©2018 Journal of Communications

public key on the other hand took only 507ms; this

amount of time is spent on each call setup.

TABLE I: CALL SETUP TIME RESULTS

Key retrieval from Blockchain Call Setup Time

507ms 1218ms

The total call setup time is composed of: key retrieval

from the Blockchain, symmetric key generation, public

key encryption, SIP signaling, private key decryption,

and SRTP key derivation. It took 1218ms to setup the

end-to-end secure call between the parties.

V. CONCLUSIONS

In this paper, we have presented a novel approach for

trustless key distribution management based on the

Ethereum Blockchain to resolve the complexity of SIP

security and the third party trust issues. Our

implementation was tested on the Ethereum Testnet.

Results showed that the solution performs well in terms

of call setup time. Moreover, it has a minimal impact on

the overall VoIP architecture. Regarding the future work,

we are in the process of designing a generic secure key

distribution framework based on the Ethereum

Blockchain that works on any application and any

platform (mobile app, servers, IoT devices, browsers…).

REFERENCES

[1] C. Osborne. (2017). VoIPtalk admits to possible data

breach | ZDNet. [Online]. Available:

http://www.zdnet.com/article/voiptalk-admits-to-possible-

data-breach/

[2] Understanding Ethereum (Report). CoinDesk. 24 June

2016.

[3] RFC 2617 – IETF. HTTP Authentication: Basic and

Digest Access Authentication.

[4] RFC 6071 – IETF. IP Security (IPsec) and Internet Key

Exchange.

[5] RFC 5751 – IETF. Secure/Multipurpose Internet Mail

Extensions.

[6] RFC 4566 – IETF: Session Description Protocol.

[7] RFC 3711 – IETF: The Secure Real-time Transport

Protocol.

[8] Ethereum. Light client protocol. Ethereum Wiki, May

2016. [Online]. Available:

https://github.com/ethereum/wiki/wiki/Light-client-

protocol

[9] Solidity Language. [Online]. Available:

http://solidity.readthedocs.io/en/latest/

[10] Ethereum Blog. (2017). Merkling in Ethereum - Ethereum

Blog. [Online]. Available:

https://blog.ethereum.org/2015/11/15/merkling-in-

ethereum/

[11] R. C. Merkle, “Method of providing digital signatures,”

U.S Patent US4309569, Jan. 5, 1982.

[12] R. M. Needham and M. D. Schroeder, “Using encryption

for authentication in large networks of computers,”

Communications of the ACM, vol. 21, no. 12, pp. 993–999,

Dec. 1978.

[13] S. Blake-Wilson and A. Menezes, “Unknown key-share

attacks on the Station-to-Station (STS) protocol,” in

Public Key Cryptography, Lecture Notes in Computer

Science, 1560, Springer, 1999, pp. 154–170.

[14] RFC 6642 – IETF. RTP Control Protocol (RTCP)

Extension for a Third-Party Loss Report.

[15] Kamailio. The Kamailio SIP Server Project. [Online].

Available: https://www.kamailio.org

[16] Ethdroid. Easy-to-use Ethereum Geth wrapper for

Android. [Online]. Available:

https://github.com/ethmobile/ethdroid

[17] Sipdroid. Free SIP/VoIP client for Android. [Online].

Available: http://sipdroid.org/

Elie F. Kfoury holds a B.S degree in

Computer Science and has graduated

with high distinction from AUST in 2015.

He is currently pursuing an M.S degree

and working as an academic and teaching

assistant in the Computer Science and

ICT departments at AUST. He has

published several research papers in

international and local conferences. His

research interests include IoT, Blockchain, VoIP, distributed

systems, and Information Security. He developed an IoT

security platform based on Ethereum Blockchain which was

selected by Ericsson Garage Startup.

David J. Khoury has More than 30+

years’ experience in the

Telecommunications and Technology

field. He held different positions at

Matra and Ericsson mainly in France and

Sweden in the Research and

Developments area, Product and System

management. He holds a degree in

Masters of Engineering in Telecommunications from E.S.I.B,

Beirut Lebanon in 1983. He was leading a group for the

development of the ISDN, where a generic platform for multiple

accesses in the Ericsson main exchange AXE was developed.

He was involved in the early evolution of the GSM towards an

IP based network and as well the early studies of 3G/WCDMA,

HSPA and LTE. The last 4 years he started teaching at AUST

Beirut at the computer science department mainly the VoIP,

security, cryptography, mobile systems, and Blockchain courses.

He holds 4 US patents and a number of publications and he was

the winner of Ericsson business Innovation 2003.

Journal of Communications Vol. 13, No. 8, August 2018

455©2018 Journal of Communications

